Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 2, pp. 199–204 © RGN Publications

Optimizing the Sum of Linear Absolute Value Functions on An Interval

M.M. Khashshan

Abstract. In this paper we give a new result for solving the problem of optimizing the sum of absolute values in the form $|x - a_r|$ over any interval.

1. Introduction

Consider the following problem

Optimize

$$f(x) = \sum_{r=1}^{n} |x - a_r|, \text{ where } a_{r-1} < a_r \text{ for each } 2 \le r \le n$$

Over any given interval I.

This problem has different applications in different aspects such as digital communication and approximation techniques, see [2]. Also, Han-Lin and Chian-Son [1] solved obtained minimized this sum over the set of all real numbers using so-called goal programming. In [3], we obtained an explicit formula that gives the minimum of this sum over the set of all real numbers. In this paper we introduce and prove a theorem which directly gives the optimum value of f(x) over any given interval. Our proof depends on rewriting f as a piecewise linear function. We do so by generalizing the case when n = 2, that is; $f(x) = |x - a_1| + |x - a_2|$, $a_1 < a_2$, to the case when n is any positive integer, that is;

$$f(x) = \sum_{r=1}^{n} |x - a_r|$$
, where $a_{r-1} < a_r$ for each $2 \le r \le n$.

For the case when n = 2; if $f(x) = |x - a_1| + |x - a_2|$, $a_1 < a_2$ then

$$f(x) = \begin{cases} -(x-a_1); & x \le a_1 \\ x-a_1; & x > a_1 \end{cases} + \begin{cases} -(x-a_2); & x \le a_2 \\ x-a_2; & x > a_2 \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification. 90C05, 90C90.

Key words and phrases. Absolute value functions; Piecewise linear function; Convex function.

M.M. Khashshan

and hence

$$f(x) = \begin{cases} -(x-a_1) - (x-a_2); & x \le a_1 \\ (x-a_1) - (x-a_2); & a_1 < x \le a_2 \\ (x-a_1) + (x-a_2); & x > a_2 \end{cases}$$

2. The main results

We start this section with the solution of the proposed problem when the interval *I* is of the form $[b_1, b_2]$, where $b_1 < b_2$.

Theorem 2.1. Consider the function $f(x) = \sum_{r=1}^{n} |x - a_r|$ over $[b_1, b_2]$ where $a_{r-1} < a_r$ for each $2 \le r \le n$, $b_1, b_2 \in \mathbb{R}$. Then **A.** If *n* is odd, then f(x) has an absolute maximum value at

$$\begin{cases} x = b_1 & \text{if } b_2 \le a_{\frac{n+1}{2}} \text{ or } (b_1 < a_{\frac{n+1}{2}} < b_2 \text{ and } f(b_1) \ge f(b_2)) \\ x = b_2 & \text{if } b_1 \ge a_{\frac{n+1}{2}} \text{ or } (b_1 < a_{\frac{n+1}{2}} < b_2 \text{ and } f(b_1) \le f(b_2)) \end{cases}$$

and f(x) has an absolute minimum value at

$$\begin{cases} x = b_1 & \text{if } b_1 \ge a_{\frac{n+1}{2}} \\ x = b_2 & \text{if } b_2 \le a_{\frac{n+1}{2}} \\ x = a_{\frac{n+1}{2}} & \text{if } b_1 < a_{\frac{n+1}{2}} < b_2 \end{cases}$$

B. If n is even, then f(x) has an absolute maximum value at

$$\begin{cases} x = b_1 & \text{if } b_2 \le a_{\frac{n}{2}} \text{ or } (b_1 < a_{\frac{n}{2}} \text{ and } a_{\frac{n}{2}} < b_2 \le a_{\frac{n}{2}+1}) \\ & \text{or } (b_1 < a_{\frac{n}{2}} \text{ and } b_2 > a_{\frac{n}{2}+1} \text{ and } f(b_1) \ge f(b_2)) \\ x = b_2 & \text{if } b_1 \ge a_{\frac{n}{2}+1} \text{ or } (a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1} \text{ and } b_2 > a_{\frac{n}{2}+1}) \\ & \text{or } (b_1 < a_{\frac{n}{2}} \text{ and } b_2 > a_{\frac{n}{2}+1} \text{ and } f(b_1) \le f(b_2)) \end{cases}$$

and f(x) has an absolute minimum value at

$$\begin{cases} x = b_1 & \text{if } b_1 \ge a_{\frac{n}{2}+1} \\ x = b_2 & \text{if } b_2 \le a_{\frac{n}{2}} \\ x = t \ \forall \ t \in [a_{\frac{n}{2}}, b_2] & \text{if } b_1 \le a_{\frac{n}{2}} \text{ and } a_{\frac{n}{2}} < b_2 \le a_{\frac{n}{2}+1} \\ x = t \ \forall \ t \in [b_1, a_{\frac{n}{2}+1}] & \text{if } a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1} \text{ and } b_2 \ge a_{\frac{n}{2}+1} \\ x = t \ \forall \ t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}] & \text{if } b_1 \le a_{\frac{n}{2}} \text{ and } b_2 \ge a_{\frac{n}{2}+1} \end{cases}$$

and f(x) is constant if $a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1}$ and $a_{\frac{n}{2}} < b_2 \le a_{\frac{n}{2}+1}$.

Proof. Our goal is to show that f is convex on \mathbb{R} in both cases, either n is odd or n is even, and we will see that f has an absolute minimum value at $x = a_{\frac{n+1}{2}}$ when n is odd and it has an absolute minimum value at $x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$ when n is even. After that we will restrict the natural domain of f to be the closed bounded interval $[b_1, b_2]$, and then we will discuss all possible situations of b_1 , b_2

200

in relation with $a_{\frac{n+1}{2}}$ when *n* is odd and in relation with $a_{\frac{n}{2}}, a_{\frac{n}{2}+1}$ when *n* is even. First, we rewrite the function *f* as a piecewise linear function as follows:

$$f(x) = \begin{cases} -\sum_{r=1}^{n} (x - a_r) = g_1(x); & x \le a_1 \\ \sum_{r=1}^{i} (x - a_r) - \sum_{r=i+1}^{n} (x - a_r) = g_{i+1}(x); & a_i < x \le a_{i+1}, i = 1, \dots, n-1 \\ \sum_{r=1}^{n} (x - a_r) = g_{n+1}(x); & x > a_n \end{cases}$$

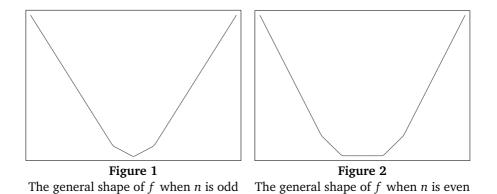
Now, we consider the cases when n is odd and when n is even:

A. Let *n* be odd. Then the functions $g_1, \ldots, g_{\frac{n+1}{2}}$ are strictly decreasing linear functions (each of them has x's with negative sign more than x's with positive sign). On the other hand, the functions $g_{\frac{n+3}{2}}, \ldots, g_{n+1}$ are strictly increasing linear functions (each of them has x's with positive sign more than x's with negative sign). Since f is continuous on \mathbb{R} (sum of continuous functions), then we can conclude that f is strictly decreasing over $(-\infty, a_{\frac{n+1}{2}}]$ and strictly increasing over $[a_{\frac{n+1}{2}},\infty)$. This implies that $\min(f) = f(a_{\frac{n+1}{2}})$, that is; f has an absolute minimum value at $x = a_{\frac{n+1}{2}}$. We can see that f is convex on \mathbb{R} , and the general shape of fwhen *n* is odd appears in Figure 1. Now, let $x \in [b_1, b_2]$. When $b_2 \le a_{\frac{n+1}{2}}$ then *f* is strictly decreasing over $[b_1, b_2]$, implies that f has an absolute maximum value at $x = b_1$ and has an absolute minimum value at $x = b_2$. When $b_1 < a_{\frac{n+1}{2}} < b_2$ then f is strictly decreasing over $[b_1, a_{\frac{n+1}{2}}]$, strictly increasing over $[a_{\frac{n+1}{2}}, b_2]$, which implies that f has an absolute maximum value at $x = b_1$ if $f(b_1) \ge f(b_2)$, and f has an absolute maximum value at $x = b_2$ if $f(b_1) \le f(b_2)$, and moreover f has an absolute minimum value at $x = a_{\frac{n+1}{2}}$. When $b_1 \ge a_{\frac{n+1}{2}}$ then f is strictly increasing over $[b_1, b_2]$, which implies that f has an absolute maximum value at $x = b_2$ and has an absolute minimum value at $x = b_1$.

B. Let *n* be even. Then the functions $g_1, \ldots, g_{\frac{n}{2}}$ are strictly decreasing linear functions, $g_{\frac{n}{2}+1}$ is a constant function, and the functions $g_{\frac{n}{2}+2}, \ldots, g_{n+1}$ are strictly increasing linear functions. Since *f* is continuous on \mathbb{R} , then we can conclude that *f* is strictly decreasing over $(-\infty, a_{\frac{n}{2}}]$, is a constant over $[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$, and is strictly increasing over $[a_{\frac{n}{2}+1}, \infty)$, this implies that $\min(f) = f(t) \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$. We can see that *f* is convex on \mathbb{R} , and the general shape of *f* when *n* is even appears in Figure 2. Now, let $x \in [b_1, b_2]$. When $b_2 \leq a_{\frac{n}{2}}$ then *f* is strictly decreasing over $[b_1, b_2]$, implies that *f* has an absolute maximum value at $x = b_1$ and has an absolute minimum value at $x = b_2$. When $b_1 \geq a_{\frac{n}{2}+1}$ then *f* is strictly increasing over $[b_1, b_2]$, which implies that *f* has an absolute maximum value at $x = b_2$ and has an absolute minimum value at $x = b_1$. When $b_1 < a_{\frac{n}{2}}, a_{\frac{n}{2}} < b_2 \leq a_{\frac{n}{2}+1}$ then *f* is strictly decreasing over $[b_1, b_2]$, which implies that *f* has an absolute maximum value at $x = b_2$ and has an absolute minimum value at $x = b_1$. When $b_1 < a_{\frac{n}{2}}, a_{\frac{n}{2}} < b_2 \leq a_{\frac{n}{2}+1}$ then *f* is strictly decreasing over $[b_1, a_{\frac{n}{2}}]$ and constant over $[a_{\frac{n}{2}}, b_2]$, implies that *f* has an absolute maximum value at $x = b_1$ and has an absolute minimum value at $x = b_1$. When $b_1 < a_{\frac{n}{2}}, b_2 \leq a_{\frac{n}{2}+1}$ then *f* is strictly decreasing over $[b_1, a_{\frac{n}{2}}]$ and constant over $[a_{\frac{n}{2}}, b_2]$, implies that *f* has an absolute maximum value at $x = b_1$ and has an absolute minimum value at $x = t \forall t \in [a_{\frac{n}{2}}, b_2]$. When $a_{\frac{n}{2}} \leq b_1 < a_{\frac{n}{2}+1}, a_{\frac{n}{2}} < b_2 \leq a_{\frac{n}{2}+1}$ then

M.M. Khashshan

 $b_1, b_2 \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$, since f is constant over $[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$ when $x \in \mathbb{R}$ then f is constant when $x \in [b_1, b_2]$. In addition, when $a_{\frac{n}{2}} \leq b_1 < a_{\frac{n}{2}+1}, b_2 > a_{\frac{n}{2}+1}$ then f is constant over $[b_1, a_{\frac{n}{2}+1}]$ and strictly increasing over $[a_{\frac{n}{2}+1}, b_2]$, implies that f has an absolute maximum value at $x = b_2$ and has an absolute minimum value at $x = t \forall t \in [b_1, a_{\frac{n}{2}+1}]$.



Remark 2.2. The solution of the proposed problem is summarized in the following four tables for all other forms of the interval *I*. The proof of each one of them is similar to the proof of the previous theorem.

Interval	Conditions	Absolute $max(f)$ at	Absolute $\min(f)$ at
	$b_2 \le a_{rac{n+1}{2}}$	None	$x = b_2$
$x \in (b_1, b_2]$	$b_1 < a_{\frac{n+1}{2}} < b_2 \text{ and } f(b_1) \le f(b_2)$	$x = b_2$	$x = a_{\frac{n+1}{2}}$
x C (01, 02)	$b_1 < a_{\frac{n+1}{2}} < b_2$ and $f(b_1) > f(b_2)$	None	$x = a_{\frac{n+1}{2}}$
	$b_1 \ge a_{\frac{n+1}{2}}$	$x = b_2$	None
$x \in [b_1, b_2)$	$b_2 \le a_{\frac{n+1}{2}}$	$x = b_1$	None
	$b_1 < a_{\frac{n+1}{2}} < b_2$ and $f(b_1) < f(b_2)$	None	$x = a_{\frac{n+1}{2}}$
	$b_1 < a_{\frac{n+1}{2}} < b_2$ and $f(b_1) \ge f(b_2)$	$x = b_1$	$x = a_{\frac{n+1}{2}}$
	$b_1 \ge a_{rac{n+1}{2}}$	None	$x = b_1$
$x \in I = (b_1, b_2)$	$a_{\frac{n+1}{2}} \in I$	None	$x = a_{\frac{n+1}{2}}$
$x \in I = (b_1, b_2)$	$a_{\frac{n+1}{2}} \notin I$	None	None

	Table 1.	n is odd and I is	a finite interva
--	----------	---------------------	------------------

Interval	Conditions	Absolute $max(f)$ at	Absolute $\min(f)$ at
$(-\infty,\infty)$		None	$x = a_{\frac{n+1}{2}}$
$x \in (-\infty, b]$	$b \le a_{\frac{n+1}{2}}$	None	x = b
$x \in (-\infty, b]$	$b > a_{\frac{n+1}{2}}$	None	$x = a_{\frac{n+1}{2}}$
$x \in [b, \infty)$	$b < a_{\frac{n+1}{2}}$	None	$x = a_{\frac{n+1}{2}}$
$x \in [b, \infty)$	$b \ge a_{\frac{n+1}{2}}$	None	x = b
$x \in I = (-\infty, b) \text{ or } (b, \infty)$	$a_{\frac{n+1}{2}} \in I$	None	$x = a_{\frac{n+1}{2}}$
	$a_{\frac{n+1}{2}} \notin I$	None	None

 Table 2. n is odd and I is an infinite interval

Table 3. *n* is even and *I* is a finite interval

Table 3. n is even and I is a finite interval			
Interval	Conditions	Absolute $max(f)$ at	Absolute $\min(f)$ at
	$b_2 \le a_{rac{n}{2}}$	None	$x = b_2$
$x \in (b_1, b_2]$	$b_1 < a_{rac{n}{2}}$ and $a_{rac{n}{2}} < b_2 \le a_{rac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, b_2]$
	$b_1 < a_{\frac{n}{2}}, b_2 > a_{\frac{n}{2}+1} \text{ and } f(b_1) > f(b_2)$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b_1 < a_{\frac{n}{2}}, b_2 > a_{\frac{n}{2}+1} \text{ and } f(b_1) \le f(b_2)$	$x = b_2$	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{\frac{n}{2}}$ and $b_2 \le a_{\frac{n}{2}+1}$	$x = t \forall t \in (b_1, b_2]$	$x = t \forall t \in (b_1, b_2]$
	$a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1} \text{ and } b_2 > a_{\frac{n}{2}+1}$	$x = b_2$	$x = t \forall t \in (b_1, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{\frac{n}{2}+1}$	$x = b_2$	None
	$b_2 \le a_{\frac{n}{2}}$	$x = b_1$	None
$x \in [b_1, b_2)$	$b_1 < a_{\frac{n}{2}} \text{ and } a_{\frac{n}{2}} < b_2 \le a_{\frac{n}{2}+1}$	$x = b_1$	$x = t \forall t \in [a_{\frac{n}{2}}, b_2)$
	$b_1 < a_{\frac{n}{2}}, b_2 > a_{\frac{n}{2}+1} \text{ and } f(b_1) \ge f(b_2)$	$x = b_1$	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b_1 < a_{\frac{n}{2}}, b_2 > a_{\frac{n}{2}+1}$ and $f(b_1) < f(b_2)$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{rac{n}{2}}$ and $b_2 \le a_{rac{n}{2}+1}$	$x = t \forall t \in [b_1, b_2),$	$x = t \forall t \in [b_1, b_2)$
		f is constant	
	$a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1} \text{ and } b_2 > a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [b_1, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{rac{n}{2}+1}$	None	$x = b_1$
	$b_2 \le a_{rac{n}{2}}$	None	None
$x \in (b_1, b_2)$	$b_1 < a_{\frac{n}{2}}$ and $a_{\frac{n}{2}} < b_2 \le a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, b_2)$
	$b_1 < a_{\frac{n}{2}}$ and $b_2 > a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{rac{n}{2}}$ and $b_2 \le a_{rac{n}{2}+1}$	$x = t \forall t \in (b_1, b_2),$	$x = t \forall t \in (b_1, b_2)$
		f is constant	
	$a_{\frac{n}{2}} \le b_1 < a_{\frac{n}{2}+1} \text{ and } b_2 > a_{\frac{n}{2}+1}$	None	$x = t \forall t \in (b_1, a_{\frac{n}{2}+1}]$
	$b_1 \ge a_{rac{n}{2}+1}$	None	None

M.M. Khashshan

Interval	Conditions	Absolute $max(f)$ at	Absolute $\min(f)$ at
$(-\infty,\infty)$		None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b \le a_{\frac{n}{2}}$	None	x = b
$x \in (-\infty, b]$	$a_{\frac{n}{2}} < b \le a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, b]$
	$b > a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b < a_{\frac{n}{2}}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
$x \in [b, \infty)$	$a_{\frac{n}{2}} \leq b < a_{\frac{n}{2}+1}$	None	$x = t \; \forall t \in [b, a_{\frac{n}{2}+1}]$
	$b \ge a_{\frac{n}{2}+1}$	None	x = b
	$b \le a_{\frac{n}{2}}$	None	None
$x \in [-\infty, b)$	$a_{\frac{n}{2}} < b \le a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, b)$
	$b > a_{\frac{n}{2}+1}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
	$b < a_{\frac{n}{2}}$	None	$x = t \forall t \in [a_{\frac{n}{2}}, a_{\frac{n}{2}+1}]$
$x \in (b, \infty)$	$a_{\frac{n}{2}} \leq b < a_{\frac{n}{2}+1}$	None	$x = t \; \forall t \in (b, a_{\frac{n}{2}+1}]$
	$b \ge a_{\frac{n}{2}+1}$	None	None

Table 4. *n* is even and *I* is an infinite interval

References

- Han-Lin Li and Chian-Son Yu, A global optimization method for nonconvex separable programming problems, *European Journal of Operational Research* 117 (1999), 275– 292.
- [2] R.A. El-Attar, M. Vidyasagar and S.R.K. Dutta, An algorithm for l_1 -norm minimization with application to nonlinear l_1 -approximation, *SIAM J. Numer. Anal.* **16**(1) (1979), 70–86.
- [3] M.M. Khashshan, Minimizing the sum of linear absolute value functions on \mathbb{R} , *International Journal of Computational and Applied Mathematics* **5**(4) (2010), 537–540.

M.M. Khashshan, Department of Mathematics, Teachers College, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail: drmohammedr@yahoo.com

Received July 17, 2011 Accepted October 21, 2011