Fekete-Szeg Problem for α-Quasi Convex Functions of Order β

C. Selvaraj and R. Geetha

Abstract. For $f \in Q_{\alpha, \beta}^{c}$, sharp bounds are obtained for the Fekete-Szeg functional $\left|a_{3}-\mu a_{2}^{2}\right|$, where μ is real.

1. Introduction

Let S denote the class of normalized analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

where $z \in D=\{z:|z|<1\}$. We denote by C the subclass of S consisting of functions which are convex in D. A classical result of Fekete and Szeg [4] determines the maximum value of $\left|a_{3}-\mu a_{2}^{2}\right|$ as a function of the real parameter μ, for functions belonging to S.

Also every quasi-convex function is close-to-convex and hence univalent in D. Many authors [1, 2, 3, 5, 7] have got the estimate for the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for different classes. In this paper, we give an estimate for the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the class $Q_{\alpha, \beta}^{c}$.

Special Cases

(1) When $\beta=0$ we get the results of [1].
(2) When $\alpha=0, \beta=0$, then $f \in K$, an close-to-convex functions and we have a result given in [6].
(3) When $\alpha=1, \beta=0$, then $f \in Q$, the class of quasi-convex functions introduced by Noor [9].

Definition 1.1. Let f be given by (1.1) and $0 \leq \alpha<1,0 \leq \beta<1$. Then $f \in Q_{\alpha, \beta}^{c}$ if and only if there exists $g \in C$ such that for $z \in D, g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ satisfying
the condition.

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\alpha) \frac{f^{\prime}(z)}{g^{\prime}(z)}+\frac{\alpha\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\beta \tag{1.2}
\end{equation*}
$$

Here C denotes the class of convex functions that is $g \in C$ if and only if g is analytic in D and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right\}>0, \quad z \in D \tag{1.3}
\end{equation*}
$$

We note that by using a lemma due to Miller and Mocanu [8] it can easily be shown that $Q_{\alpha, \beta}^{c} \subset Q^{c}$, the class of quasi-convex functions for $0<\alpha<1$ and hence $f \in Q_{\alpha, \beta}^{c}$ means f is univalent.

We now state some preliminary lemmas that are required for proving our results.

2. Preliminary Results

Lemma 2.1 ([10]). Let h be analytic in D with $\operatorname{Re} h(z)>0$ and be given by $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ for $z \in D$. Then

$$
\left|c_{2}-\frac{1}{2} c_{1}^{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}
$$

Lemma 2.2 ([6]). Let $g \in C$ with $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$. Then for μ real $\left|b_{3}-\mu b_{2}^{2}\right| \leq \max \left\{\frac{1}{3},|\mu-1|\right\}$.
Lemma 2.3. Let $f \in Q_{\alpha, \beta}^{c}$ and be given by (1.1). Then
(i) $(\alpha+1)\left|a_{2}\right|-\beta \leq 2$,
(ii) $(2 \alpha+1)\left|a_{3}\right|-\beta \leq 3$.

Proof. Since $g \in C$, it follows from (1.3)

$$
\begin{equation*}
g^{\prime}(z)+z g^{\prime \prime}(z)=g^{\prime}(z) p(z) \tag{2.1}
\end{equation*}
$$

for $z \in D$ with $\operatorname{Re} p(z)>0$ given by $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$.
Equating the coefficients we get

$$
\begin{align*}
2 b_{2} & =p_{1} \tag{2.2}\\
6 b_{3} & =p_{2}+2 b_{2} p_{1} \tag{2.3}
\end{align*}
$$

It follows from (1.2) that

$$
\begin{equation*}
(1-\alpha) f^{\prime}(z)+\alpha\left(z f^{\prime}(z)\right)^{\prime}-\beta g^{\prime}(z)=g^{\prime}(z) h(z) \tag{2.4}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ with $\operatorname{Re} h(z)>0$.
Equating coefficients we get

$$
\begin{equation*}
2(\alpha+1) a_{2}-2 \beta b_{2}=2 b_{2}+c_{1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
3(2 \alpha+1) a_{3}-3 b_{3} \beta=c_{2}+2 b_{2} c_{1}+3 b_{3} . \tag{2.6}
\end{equation*}
$$

On using classical inequalities $\left|p_{1}\right| \leq 2,\left|p_{2}\right| \leq 2,\left|c_{1}\right| \leq 2,\left|c_{2}\right| \leq 2,\left|b_{1}\right| \leq 1$, $\left|b_{2}\right| \leq 1$, the required result follows from (2.5) and (2.6).

3. Main Results

Theorem 3.1. Let f be given by (1.1) and belong to the class $Q_{\alpha, \beta}^{c}$. Then for $0 \leq \alpha<1,0 \leq \beta<1$,
$3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right|$

$$
\leq\left\{\begin{array}{c}
(\alpha+1)^{2}(3+2 \beta)^{2}-3(2 \alpha+1)(1+\beta)(2+\beta)^{2} \mu, \mu \leq \frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \\
(5+3 \beta)(1+\beta)(1+\alpha)^{2}-3(2 \alpha+1)(1+\beta)^{3} \mu+\frac{(1+\beta)\left[2(1+\alpha)^{2}-3(2 \alpha+1) \mu(1+\beta)\right]^{2}}{3(2 \alpha+1) \mu}, \\
\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{2(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \\
(1+\beta)(1+\alpha)^{2}(3+\beta), \frac{2(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)} \\
3(2 \alpha+1)(1+\beta)(2+\beta)^{2} \mu-(\alpha+1)^{2}\left(2 \beta^{2}+8 \beta+9\right), \mu \geq \frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}
\end{array}\right.
$$

All the inequalities are sharp.
Proof. From (2.2), (2.3), (2.5) and (2.6) it is easily established that

$$
\begin{align*}
3(2 \alpha+1) & (1+\beta)\left(a_{3}-\mu a_{2}^{2}\right) \\
\leq & (1+\beta)\left\{3\left[b_{3}(1+\beta)-\frac{(2 \alpha+1)}{(\alpha+1)^{2}}(1+\beta)^{2} \mu b_{2}^{2}\right]\right. \\
& +\left[c_{2}+\left(\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu}{4(\alpha+1)^{2}}-\frac{1}{2}\right) c_{1}^{2}\right] \\
& \left.+\left[1-\frac{3(2 \alpha+1) \mu(1+\beta)}{2(\alpha+1)^{2}}\right] p_{1} c_{1}\right\} . \tag{3.1}
\end{align*}
$$

First consider

$$
\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{2(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}
$$

Equation (3.1) gives

$$
\begin{aligned}
& 3(2 \alpha+1)(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq(1+\beta)\left\{3\left|b_{3}(1+\beta)-\frac{(2 \alpha+1)}{(\alpha+1)^{2}}(1+\beta)^{2} \mu b_{2}^{2}\right|\right. \\
& \quad+\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\left[\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu}{4(\alpha+1)^{2}}\right]\left|c_{1}\right|^{2} \\
& \left.\quad+\left[\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu(1+\beta)}{2(\alpha+1)^{2}}\right]\left|c_{1}\right|\right\} \\
& =
\end{aligned}
$$

where we have used Lemma 2.1 and the inequality $\left|p_{1}\right| \leq 2$. Elementary calculation shows that the function ϕ attains its maximum value at

$$
x_{0}=2\left[\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu(1+\beta)}{3(2 \alpha+1) \mu}\right]
$$

and hence

$$
3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right| \leq \phi\left(x_{0}\right)
$$

i.e.,

$$
\begin{aligned}
& 3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq(5+3 \beta)(1+\beta)(\alpha+1)^{2}-3(2 \alpha+1)(1+\beta)^{3} \mu \\
&\left.+\frac{(1+\beta)}{3(2 \alpha+1) \mu}\left[2(\alpha+1)^{2}-3(2 \alpha+1) \mu(1+\beta)\right]^{2} \quad \text { using Lemma } 2.2\right)
\end{aligned}
$$

Next, since $\left|x_{0}\right| \leq 2(1+\beta)$ we have $\mu \geq \frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}$ and hence completing the proof for the case

$$
\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{2(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}
$$

Letting $c_{1}=2\left[\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu(1+\beta)}{3(2 \alpha+1) \mu}\right], c_{2}=2, p_{1}=2, p_{2}=2, b_{2}=1$ and $b_{3}=1$ in (3.1) shows that the result is sharp.

Secondly, consider the case $\mu \leq \frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}$. Write

$$
a_{3}-\mu a_{2}^{2}=a_{3}-\frac{(\alpha+1)^{2} a_{2}^{2}}{3(2 \alpha+1)(1+\beta)}+\left[\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}-\mu\right] a_{2}^{2}
$$

Since $\left|a_{2}\right| \leq \frac{2+\beta}{\alpha+1}$ it follows that

$$
\begin{aligned}
& 3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq 3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\frac{(\alpha+1)^{2} a_{2}^{2}}{3(2 \alpha+1)(1+\beta)}\right| \\
&+\left[\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}-\mu\right]\left|a_{2}\right|^{2} 3(2 \alpha+1)(\alpha+1)^{2}(1+\beta) \\
& \leq(1+\alpha)^{2}(3+2 \beta)^{2}-3(2 \alpha+1)(1+\beta)(2+\beta)^{2} \mu
\end{aligned}
$$

Here we have used the result that is proved for $\mu=\frac{(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)}$.
Equality is attained by choosing $c_{1}=c_{2}=p_{1}=p_{2}=2, b_{2}=b_{3}=1$ in (3.1).
Next assume that

$$
\frac{2(\alpha+1)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}
$$

First we consider the case $\mu=\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}$. It follows from (2.1), (2.2), (2.3) and (3.1) that

$$
\begin{aligned}
3(2 \alpha & +1)(1+\beta)(1+\alpha)^{2}\left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq(1+\beta)(1+\alpha)^{2}(3+\beta)-\frac{(\alpha+1)^{2}}{4}\left[\left|c_{1}\right|-(1+\beta)\left|p_{1}\right|\right]^{2} \\
& =\psi\left(\left|c_{1}\right|,\left|p_{1}\right|\right), \text { say }
\end{aligned}
$$

we can show that ψ attains maximum value when $\left|c_{1}\right|=(1+\beta)\left|p_{1}\right|$ and so

$$
3(2 \alpha+1)(1+\beta)(1+\alpha)^{2}\left|a_{3}-\mu a_{2}^{2}\right| \leq(1+\beta)(1+\alpha)^{2}(3+\beta) .
$$

Next write

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2}= & \frac{3(2 \alpha+1)(1+\beta) \mu-2(\alpha+1)^{2}}{(\alpha+1)^{2}}\left[a_{3}-\frac{(\alpha+1)^{2} a_{2}^{2}}{(2 \alpha+1)(1+\beta)}\right] \\
& +3\left[\frac{(\alpha+1)^{2}-(2 \alpha+1)(1+\beta) \mu}{(\alpha+1)^{2}}\right]\left[a_{3}-\frac{2(\alpha+1)^{2} a_{2}^{2}}{3(2 \alpha+1)(1+\beta)}\right]
\end{aligned}
$$

and the result follows at once by using results already established for $\mu=\frac{2}{3} \frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}$ and $\mu=\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}$. The result is sharp for $p_{1}=c_{1}=$ $0, p_{2}=c_{2}=2, b_{2}=0$ and $b_{3}=\frac{1}{3}$ in (3.1). Finally consider $\mu \geq \frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}$. Write

$$
a_{3}-\mu a_{2}^{2}=a_{3}-\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)} a_{2}^{2}+\left(\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}-\mu\right) a_{2}^{2}
$$

and thus

$$
\begin{aligned}
& 3(2 \alpha+1)(\alpha+1)^{2}(1+\beta)\left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq 3(2 \alpha+1)(1+\alpha)^{2}(1+\beta)\left|a_{3}-\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)} a_{2}^{2}\right| \\
&+3(2 \alpha+1)(1+\alpha)^{2}(1+\beta)\left[\mu-\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}\right]\left|a_{2}\right|^{2} \\
& \leq 3(2 \alpha+1)(1+\beta)(2+\beta)^{2} \mu-(\alpha+1)^{2}\left(2 \beta^{2}+8 \beta+9\right),
\end{aligned}
$$

where results for $\mu=\frac{(\alpha+1)^{2}}{(2 \alpha+1)(1+\beta)}$ and the inequality $\left|a_{2}\right| \leq \frac{2+\beta}{\alpha+1}$ has been used. By choosing $c_{1}=p_{1}=2 i, c_{2}=p_{2}=-2, b_{2}=i, b_{3}=-1$ in (3.1) equality is obtained.

References

[1] H.R. Abdel-Gawad, On the Fekete-Szeg problem for α-quasi convex functions, Tamkang Journal of Mathematics 31 (4) (Winter) (2000), 251-255.
[2] H.R. Abdel-Gawad and D.K. Thomas, The Fekete-Szeg problem for strongly close-toconvex functions, Proc. Amer. Math. Soc. 114 (1992), 345-349.
[3] N.K. Cho, On the Fekete-Szeg problem and argument inequality for strongly quasiconvex functions, Bull. Korean Math. Soc. 38(2) (2001), 357-367.
[4] M. Fekete and G. Szeg , Eine Bermerkung ber ungerade schlichte functionen, J. Lond. Math. Soc. 8 (1933), 85-89.
[5] A. Janteng and S. Abdul Halim, Fekete-Szeg problem for certain subclass of quasiconvex functions, Int. J. Contemp. Math. Sci. I(1) (2006), 45-51.
[6] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[7] R.R. London, Fekete-Szeg inequalites for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), 947-950.
[8] S.S. Miller and P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
[9] K.I. Noor, On quasi convex functions and related topics, Internet. J. Math. Math. Sci. 10 (1987), 241-258.
[10] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, G ttingen, (1975).
[11] C. Selvaraj, On alpha-quasi-uniformly convex functions, Journal of Indian Acad. Mathematics 25(1) (2003), 169-185.
C. Selvaraj, Department of Mathematics,Presidency College, Chennai 600 005, Tamil Nadu, India.
E-mail: pamc9439@yahoo.co.in
R. Geetha, Department of Mathematics, RMKCET, Puduvoyal, Chennai, Tamil Nadu, India.
E-mail: gbala89@yahoo.com

Received May 7, 2011
Accepted October 9, 2011

