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1. Introduction
In 2003, the author [14] introduced the notion of Lorentzian concircular structure manifolds
(briefly (LCS)n-manifolds) with an example, which generalize the notion of LP-Sasakian
manifolds introduced by Matsumoto [8]. Furthermore, (LCS)n-manifolds have been studied by
several authors (see for examples, [1,5,6,12,15,16,25]).

The research work on the geometry of invariant submanifolds of contact and complex
manifolds is carried out by Kon [7] in 1973, C.S. Bagewadi [2] in 1982, Yano and Kano [29] in
1984, and others [9,17–22,30] etc. Also the study of geometry of anti-invariant submanifolds is
carried out by [3,10,13,28] in various contact manifolds. Motivated by the studies of the above
authors, we study anti-invariant submanifolds of (LCS)n-manifolds.

http://doi.org/10.26713/jims.v10i4.797


624 Some Results on Anti-Invariant Submanifolds of (LCS)N -Manifold: C.S. Bagewadi et al.

The paper is organized as follows: Section 2 consists of preliminaries of (LCS)n-manifolds
and in section 3, decomposition of basic equations of (LCS)n-manifolds is carried out in
horizontal and vertical projections and further results pertaining to geometric properties
of the anti-invariant submanifolds are obtained.

2. Preliminaries
An n-dimensional Lorentzian manifold M̄ is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is M̄ admits a smooth symmetric tensor field g
of type (0,2) such that for each point the tensor gp : TpM̄×TpM̄ → R is a non-degenerate inner
product of signature (−,+, . . . ,+), where TpM̄ denotes the tangent vector space of M at p and R
is the real number space.

Definition 2.1. In a Lorentzian manifold (M̄, g) a vector field P defined by g(X ,P)= A(X ) for
any X ∈Γ(TM̄), is said to be a concircular vector field if

(∇̄X A)(Y )=α[g(X ,Y )+ω(X )A(Y )],

where α is a non-zero scalar and ω is a closed 1-form and ∇̄ denotes the operator of covariant
differentiation of M̄ with respect to the Lorentzian metric g.

Let M̄ admit a unit timelike concircular vector field ξ, called the characteristic vector field
of the manifold, then we have g(ξ,ξ) =−1, since ξ is a unit concircular vector field, it follows
that there exists a non-zero 1-form η such that g(X ,ξ)= η(X ).

The equation of the following form holds

(∇̄Xη)(Y )=α[g(X ,Y )ξ+η(X )η(Y )], α 6= 0,

∇̄Xα= Xα= dα(X )= ρη(X ),

for all vector fields X ,Y and α is a non-zero scalar function related to ρ by ρ =−(ξα). Let us
take φX = 1

α
∇̄Xξ from which it follows that φ is symmetric (1,1) tensor and called the structure

tensor manifold. Thus the Lorentzian manifold M̄ together with unit time like concircular vector
field ξ, its associated 1-form η and a (1,1) tensor field φ is said to be a Lorentzian concircular
structure manifold (briefly, (LCS)n-manifold) [14]. Especially, if we take α = 1 then we can
obtain the LP-Sasakian structure of Matsumoto [8]. In (LCS)n-manifold (n > 2) the following
relations hold.

φ2 = I +η⊗ξ, η(ξ)=−1, (2.1)

where I denotes the identity transformation of the tangent space TM. Also in a (LCS)n-manifold
the following relations are satisfied

φξ= 0, η ·φ= 0, g(X ,φY )= g(φX ,Y ), (2.2)

g(φX ,φY )= g(X ,Y )+η(X )η(Y ), g(X ,ξ)= η(X ), (2.3)

R̄(X ,Y )ξ= (α2 −ρ)[η(Y )X −η(X )Y ], (2.4)
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R̄(ξ, X )ξ= (α2 −ρ)[η(X )ξ+ X ], (2.5)

for X ,Y ∈ T(M̄).

Also M̄(φ,ξ,η, g) an almost contact metric structure is a (LCS)n-manifold if

(∇̄X φ̄)Y =α[g(X ,Y )ξ+2η(X )η(Y )ξ+η(Y )X ] (2.6)

R̄(X ,Y )Z =φR(X ,Y )Z+ (α2 −ρ){g(Y , Z)η(X )− g(X , Z)η(Y )} (2.7)

∇̄Xξ=αφX . (2.8)

Let M be a submanifold of M̄. Let Tx(M) and T⊥
x (M) denote the tangent and normal space of

M at x ∈ M respectively. Then, the Gauss and Weingarten formulas are given by

∇̄X Y =∇X Y +σ(X ,Y ) (2.9)

∇̄X N =−AN X +∇⊥
X N (2.10)

for any vector fields X ,Y tangent to M and any vector field N normal to M, where ∇̄ and ∇
are the operators of covariant differentiation on M̄ and M, ∇⊥ is the linear connection induced
in the normal space T⊥

x (M). Both AN and σ are called the shape operator and the second
fundamental form and they are related as

ḡ(σ(X ,Y ), N)= g(AN X ,Y ) (2.11)

for any X ,Y ∈ TM and N ∈ T⊥M.

A submanifold M of (LCS)n-manifold M̄ is said to be invariant if the structure vector
field ξ of M̄ is tangent to M and φ(Tx(M) ⊂ Tx(M), where Tx(M) is the tangent space for all
x ∈ M and if φ(Tx(M) ⊂ T⊥

x (M) where T⊥
x (M) is the normal space at x ∈ M then M is said to

be anti-invariant in M̄. The submanifold M is called totally umbilical if σ(X ,Y ) = g(X ,Y )H,
where H is the mean curvature and if σ(X ,Y )= 0 then M is said to be totally geodesic.

If M is an anti-invariant submanifolds of (LCS)n-manifold M̄. Then for every vector Z̄ of M̄
at a point of M, we put

Z̄ = Z̄t + Z̄n (2.12)

where Z̄t and Z̄n are tangential and normal vectors to M, respectively. Define homomorphisms
P and Q of the normal bundle of M respectively by

PN = (φN)t, QN = (φN)n (2.13)

for every normal vector field N of M.

If X is a vector field on an anti-invariant submanifold M, then φX is a vector field in the
normal bundle of M.

Now, pre-multiplying φX , φN and ξ and comparing tangential and normal components, we
get the following:

X +η(X )ξt = Pφ(X ), η(X )ξn =QφX , (2.14)

η(N)ξt = PQN, N +η(N)ξn =φPN +Q2N, (2.15)

Pξn = 0, Pξt +Qξn = 0, (2.16)
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for any X ∈ TM and N ∈ T⊥M.

We study the case when characteristic vector field ξ of M̄ is tangent and normal to M.

3. The Case in which ξ is Tangent to M

In this section we assume that ξ is tangent to M so ξn = 0 thus equation (2.14) gives

X +η(X )ξ= PφX , QφX = 0, (3.1)

PQN = 0, N =φPN +Q2N, (3.2)

for any X ∈ TM and N ∈ T⊥M.

From (3.1), we find that Q3+Q = 0 and hence Q defines f -structure in the normal bundle [26].

Lemma 3.1. Let M be an anti-invariant submanifold of a (LCS)n-manifold M̄ such that ξ is
tangent to M. Then

− AφX Y −Pσ(X ,Y )=α[g(Y , X )ξ+2η(Y )η(X )ξ+η(X )Y ] (3.3)

∇⊥
YφX −φ(∇Y X )−Qσ(X ,Y )= 0 (3.4)

Proof. From (2.6) for X ,Y ∈ TM, we have

(∇̄Yφ)X =α{g(Y , X )ξ+2η(Y )η(X )ξ+η(X )Y },

i.e.,

∇̄YφX −φ(∇̄Y X )=α{g(Y , X )ξ+2η(Y )η(X )ξ+η(X )Y }.

Since φX ∈ T⊥
x M for X ∈ TxM, we have by (2.9) and (2.10) in L.H.S. of the above

−AφX Y +∇⊥
YφX −φ(∇Y X )−φσ(X ,Y )=α{g(Y , X )ξ+2η(Y )η(X )ξ+η(X )Y }. (3.5)

Again using (2.12) in the above, we have

−AφX Y +∇⊥
YφX −φ(∇Y X )−Pσ(X ,Y )−Qσ(X ,Y )=α{g(Y , X )ξ+2η(Y )η(X )ξ+η(X )Y }.

Comparing tangential and normal components, we get (3.3) and (3.4), respectively.

Lemma 3.2. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ is
tangent to M. Then

∇X PN = P∇⊥
X N + AQN X , (3.6)

Q∇⊥
X N =σ(X ,PN)+φ(AN X )+∇⊥

X QN. (3.7)

Proof. From (2.6) and for X ∈ TM and N ∈ T⊥M, i.e., X , N ∈ TM̄, we have

(∇̄Xφ)N =α{g(X , N)ξ+2η(X )η(N)ξ+η(N)X },

∇̄XφN −φ(∇̄X N)= 0.

Using (2.10) and (2.12) in the above, we have

∇̄X (PN)+∇̄X (QN)−φ(−AN X +∇⊥
X N)= 0.
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Again using (2.9) and (2.12), we have

∇X PN +σ(X ,PN)+−AQN X +∇⊥
X QN +φ(AN X )−P∇⊥

X N −Q∇⊥
X N = 0.

Equating tangential and normal components of the above we get (3.6) and (3.7), respectively.

Lemma 3.3. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ is
tangent to M. Then

∇Xξ=αφX , (3.8)

σ(X ,ξ)= 0. (3.9)

Further, if M is totally umbilical then M is totally geodesic.

Proof. From Gauss formula and (2.8), we have

αφX = ∇̄Xξ=∇Xξ+σ(X ,ξ) (3.10)

Equating the tangential and normal components we get (3.8) and (3.9), respectively.

Let M be totally umbilical then σ(X ,Y ) = g(X ,Y )H, where H is the mean curvature. By
(3.8), we have σ(X ,ξ)= g(X ,ξ)H = 0, This implies g(ξ,ξ)H = 0 or H = 0, hence σ(X ,Y )= 0.

So by definition M is totally geodesic.

Proposition 3.1. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ is
tangent to M. Then

(a) P and Q are parallel along ξ.

(b) The directional derivative of ξ is normal to M and σ(ξ,ξ) vanishes in the direction of ξ.

Proof. (a) Taking X = ξ in (3.6), we have

∇ξPN −P∇⊥
ξ N =−AQNξ. (3.11)

Let X ∈ TM and taking inner product of the above equation with X , we have

g(∇ξPN −P∇⊥
ξ N, X )=−g(AQNξ, X ). (3.12)

Using (2.11) and (3.9) in R.H.S. of the above, we have

g(AQNξ, X )= g(σ(X ,ξ),QN)=σ(0,QN)= 0.

But

(∇̄ξP)N = ∇̄ξPN −P(∇̄ξN),

(∇̄ξP)N =∇ξPN +σ(ξ,PN)−P(−ANξ+∇⊥
ξ N). (3.13)

Using (3.11) and (3.13)

(∇̄ξP)N =σ(ξ,PN)+P ANξ+ AQNξ. (3.14)

Thus by virtue of (3.12), we have

g((∇̄ξP)N, X )= 0.
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This is true for all vector fields X . Hence

(∇̄ξP)N = 0.

Similarly (3.7) gives

g(∇̄ξQ)N, X )= 0,

for all vector fields X tangent to M.

Hence (∇̄ξQ)N = 0, by the above. Therefore P and Q are parallel along ξ.

(b) Follows from (3.8) and (3.9).

Proposition 3.2. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ with ξ tangent
to M. Then we have

(∇̄XΦ)(X ,ξ)=−α[‖X‖2 +η2(X )], (3.15)

∇̄Xη= 0, (3.16)

where Φ is the fundamental 2-form given by Φ(X ,Y )= g(φX ,Y ).

Proof. By definition of covariant derivative for X ,Y , Z ∈ TM we have

(∇̄XΦ)(Y , Z)= ∇̄XΦ(Y , Z)−Φ(∇̄X Y , Z)−Φ(Y ,∇̄X Z)

= ∇̄X g(φY , Z)− g(φ(∇̄X Y ), Z)− g(Y ,φ(∇̄X Z)

= g(∇̄XφY , Z)+ g(φY ,∇̄X Z)− g(φ(∇̄X Y ), Z)− g(Y ,φ(∇̄X Z))

= g((∇̄Xφ)Y , Z).

Using (2.6) in the above

(∇̄XΦ)(Y , Z)= g(α{g(X ,Y )ξ+2η(X )η(Y )ξ+η(Y )X }, Z)

=α[g(X ,Y )η(Z)+2η(X )η(Y )η(Z)+η(Y )g(X , Z)].

Take X =Y = X , and Z = ξ in the above and by virtue of (2.1), we have

(∇̄XΦ)(X ,ξ)=α[−g(X , X )−2η2(X )+η2(X )]

=−α[‖X‖2 +η2(X )]

and

(∇̄Xη)(Y )= (∇̄XηY )−η(∇̄X Y )

= ∇̄X g(Y ,ξ)− g(∇̄X Y ,ξ)

= g(∇̄X Y ,ξ)+ g(Y ,∇̄Xξ)− g(∇̄X Y ,ξ)

= g(Y ,αφX )=αg(Y ,φX )= 0

by virtue of (3.8), this is true for all vector fields Y and so ∇̄Xη= 0.

We have the following geometric meaning from the Proposition 3.2.

Remark 3.1. (1) The volume [‖X‖2 +η2(X )] of an anti-invariant submanifold M of (LCS)n-
manifold formed by the tangent vectors X and ξ is the derivative of the of the second
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fundamental form of φ on these vectors.

(2) The derivative of 1-form η dual to the characteristic vector ξ always vanishes in all
directions of the anti-invariant submanifold M of (LCS)n-manifold.

Proposition 3.3. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ with ξ is
tangent to M. If AN X = 0 for any N ∈ T⊥

x M then φTxM is parallel with respect to the normal
connection.

Proof. Using Gauss and Weingarten formulas and equation (2.6), we have

∇⊥
XφY = ∇̄XφY + AφY X

= (∇̄Xφ)Y +φ(∇̄X Y )+ AφY X

=α[g(X ,Y )ξ+2η(X )η(Y )ξ+η(Y )X ]+φ∇X Y + AφY X +φ(∇̄X ,Y )

Since AN = 0 for any N ∈ T⊥M, in order to show that φ(TxM) is parallel with respect to the
normal connection, we have to show that for every local section φY in φ(TxM), ∇Xφ(Y ) is also
a local section in φ(TxM), i.e., we have to show that

g(∇⊥
XφY , N)= 0.

Taking inner product of the above equation with N , we have

g(∇⊥
XφY , N)= g(φ∇X Y , N)+ g(φ(σ(X ,Y )), N).

Using (2.3) in the above

g(∇⊥
XφY , N)= g(∇X Y ,φN)+ g(σ(X ,Y ),φN)= g(∇X Y ,φN)+ g(AφN X ,Y ).

Also φN ∈ T⊥
X M for N ∈ T⊥

X M.

Hence g(∇⊥
XφY , N)= 0.

4. The Case in which ξ is Normal

In this section, we assume that ξ is normal to M so ξt=0 and (2.14) gives

X = PφX , QφX = 0

PQN = 0, N +η(N)ξ=φPN +Q2N

for any X ∈ TM, N ∈ T⊥M.

Lemma 4.1. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ is
normal to M. Then

−AφY X = Ph(X ,Y ), (4.1)

∇⊥
XφY =αg(X ,Y )ξ+Qσ(X ,Y )+φ(∇X Y ). (4.2)

Proof. Since ξ is normal to M, by virtue of (2.6) for X ,Y ∈ TM, we have

(∇̄Xφ)Y =αg(X ,Y )ξ.
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Simplifying (2.9) and (2.10), we have

∇̄XφY −φ(∇̄X Y )=αg(X ,Y )ξ

− AφY X +∇⊥
XφY −φ(∇X Y )−φσ(X ,Y )=αg(X ,Y )ξ

− AφY X +∇⊥
XφY −φ(∇X Y −Pσ(X ,Y )−Qσ(X ,Y )=αg(X ,Y )ξ

Comparing tangential and normal components we get (4.1) and (4.2), respectively.

Lemma 4.2. Let M be an anti-invariant submanifold of a (LCS)n-manifold M̄ such that ξ is
normal to M. Then

P AN X +∇X (PN)− AQN X −P∇⊥
X N −αη(N)X = 0 (4.3)

h(X ,PN)−Q∇⊥
X N +QAN X +∇⊥

X (QN)= 0 (4.4)

for any X ∈ TM, N ∈ T⊥M.

Proof. Using (2.6) for X ∈ TM, N ∈ T⊥M, we have

(∇̄Xφ)N =αη(N)X

Simplifying and using (2.9), (2.10) and (2.12), we have

∇̄XφN −φ(∇̄X N)=αη(N)X

i.e.,

∇X (PN)+h(X ,PN)+ (−AQN X +∇⊥
X QN)+P AN X

−P∇⊥
X N +QAN X −Q∇⊥

X NX =αη(N)X

Comparing tangential and normal components we get (4.3) and (4.4), respectively.

Lemma 4.3. Let M be an anti-invariant submanifold of a (LCS)n-manifold M̄ such that ξ is
normal to M. Then

AξX = 0, (4.5)

∇⊥
Xξ=αφX . (4.6)

Further, M is totally geodesic.

Proof. From Weingarten formula

∇̄Xξ=−AξX +∇⊥
Xξ.

From (2.8), we have

−AξX +∇⊥
Xξ=αφX .

Equating the tangential and normal components we have (4.5) and (4.6) for any X ∈ TM and
ξ ∈ T⊥

x M.

By (4.5), we have

g(AξX ,Y )= 0

⇒ g(σ(X ,Y ),ξ)= 0
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⇒ σ(X ,Y )= 0.

Therefore M is totally geodesic.

Lemma 4.4. If M is an anti-invariant submanifold of a (LCS)n-manifold M̄ such that ξ is
normal to M. Then the curvature tensor of the normal bundle annihilates ξ.

Proof. Now

R⊥(X ,Y )ξ=∇⊥
X∇⊥

Y ξ)−∇⊥
Y∇⊥

Xξ−∇⊥
[X ,Y ]ξ.

Using (4.6), we have

R⊥(X ,Y )ξ=∇⊥
X (αφY )−∇⊥

Y (αφX )−αφ([X ,Y ]).

Now using (4.2) in the above

R⊥(X ,Y )ξ=αg(X ,αY )ξ+Qh(X ,αY )+φ(∇XαY )−αg(Y ,αX )ξ

−Qh(Y ,αX )−φ(∇YαX )−αφ([X ,Y ]).

Simplifying the above

R⊥(X ,Y )ξ=φ(∇XαY −∇YαX −α([X ,Y ])

=φ((Xα)Y − (Yα)X )

= (Xα)φY − (Yα)φX

= ρ[η(X )φY −η(Y )φX ]= 0.

By definition of ρ Since ξ is normal to M for X ,Y ∈ TM R⊥(X ,Y )ξ= 0.

Lemma 4.5. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ is
normal to M. Then

AφY X = Pσ(X ,Y ), (4.7)

∇⊥
X (φY )=αg(X ,Y )ξ−Qσ(X ,Y )−φ∇X Y , (4.8)

(AφN X )+P(∇⊥
X N)=−αη(N)X , (4.9)

∇⊥
X (φN)+φ(AN X )=φ(∇⊥

X N), (4.10)

for X ,Y ∈ TM.

Proof. Using (2.10), we have

∇̄XφY =−AφY X +∇⊥
XφY

⇒ (∇̄Xφ)Y −φ(∇̄X Y )=−AφY X +∇⊥
XφY . (4.11)

Using (2.9), (2.6) and hypothesis in the above

α[g(X ,Y )ξ]−φ(∇X Y )−φ(σ(X ,Y ))=−AφY X +∇⊥
XφY .

Further using (2.12) in the above

α[g(X ,Y )ξ]−φ(∇X Y )−Pσ(X ,Y )−Qσ(X ,Y )= AφY X +∇⊥
XφY .
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Equating the tangential and normal components we obtain (4.7). Again using (2.10), we have

(∇̄XφN)−φ(∇̄X N)=αη(N)X .

Using (2.9), we have

− AφN X +∇⊥
XφN −φ(−AN X +∇⊥

X N)=αη(N)X

− AφN X +∇⊥
XφN +φ(AN X )−P(∇⊥

X N)−Q(∇⊥
X N)=αη(N)X

Equating the tangential and normal components, we have the (4.9) and (4.10)

Proposition 4.1. Let M be an anti-invariant submanifold of (LCS)n-manifold M̄ such that ξ
is normal to M. Then M is flat in the normal direction if and only if M̄ is a space of curvature
−(α2 −ρ).

Proof. Using (2.4), (2.7), (3.8), (4.6), (4.8) and simplifying we have

φR̄(X ,Y )Z+ (α2 −ρ)[g(Y , Z)φ(X )− g(X , Z)φ(Y )]= R⊥(X ,Y )φZ

for any X ,Y , Z ∈ TM. From (4.11), if M is flat in the normal direction then, R⊥ = 0. Thus M̄ is
a space of curvature-(α2 −ρ).

Conversely, if M̄ is a space of curvature −(α2−ρ), then from (4.11), we have R⊥(X ,Y )φZ = 0.

Thus M is flat in the normal direction.

Corollary 4.1. If α= constant then ρ = 0, it is seen that M is flat in the normal direction if and
only if M̄ is a space of constant curvature-α2.

Remark 4.1. If α= 1, (LCS)n-manifold reduces to LP-Sasakian manifold and the results proved
are also true for LP-Sasakian manifold.
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