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Abstract. The topological structure of an interconnection network can be modelled by a connected,
simple and undirected graph G = (V ,E) where V represents the set of processors and E represents
the set of communication links. Interconnection networks are used to interconnect the processors
of data centres and cluster computers. The study of Hamiltonicity and the related areas such as
Hamiltonian laceability and Hamiltonian connectedness has lot of significance in computer networks.
A network (graph) is Hamiltonian connected if it contains a Hamiltonian path between two distinct
nodes (vertices). In this paper we shall study the laceability properties associated with Hanoi graphs
Hn. To be more specific we shall explore Hamiltonian-t∗-connectedness of Hanoi graphs Hn for n ≥ 3.
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1. Introduction
The Hanoi graph Hn corresponds to the allowed moves in the tower of Hanoi problem. The tower
of Hanoi puzzle invented in 1883 by the French mathematician Edouard Lucas, has become
a classic example in the analysis of algorithms and discrete mathematical structures. The
Hanoi graph can be constructed by taking the vertices to be the odd binomial coefficients of
Pascal’s triangle computed on the integers from 0 to 2n −1 and drawing an edge whenever
coefficients are adjacent diagonally or horizontally. The graph Hn has 3n vertices and 3(3n)−1

2
edges. The diameter of Hn is 2n − 1. Each Hanoi graph has exactly two distinct directed
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Hamiltonian cycles. Hn has 3n −1 small triangles, each of which can contain atmost one vertex
in an independent vertex set. But the triangles are arranged in a plane in such a way that
choosing the apex of each, gives a maximum independent vertex set. Hanoi graphs are perfect.
Klavzar and Milutinovic [15], and Aumann et al. have explored [14], some classical numbers of
Hanoi graphs. Xuemiao [12] has introduced the notion of Hanoi graph for the towers of Hanoi
puzzle which greately helps investigate the problem. In [13] Kumar and Maheshwari have
discussed about the Matrix representation of Hanoi graphs. The tower of Hanoi problem on path
graphs have been discussed by Berend et al. [5]. Also, they have discussed about the diameter
of Hanoi graphs. Hamiltonian-t-laceability in the brick product of even cycles was studied by
Shenoy and Murali [11]. In [7] Girisha and Murali have studied Hamiltonian-t∗-laceability of 4
regular graphs.

A connected graph G is termed as Hamiltonian t∗0 (t∗e ) connected if there exists in G, a
Hamiltonian path between atleast one pair of its vertices u and v with the property d(u,v)= t
for all odd (even) t such that 1 ≤ t ≤ diam(G) where diam(G) is the diameter of a graph G.
A connected graph G is termed as Hamiltonian-t∗-connected if there exists in G, a Hamiltonian
path between atleast one pair of its vertices u and v with the property d(u,v)= t for all t such
that 1≤ t ≤ diam(G). The Hanoi graph H3 is illustrated in Figure 1.

Figure 1

Definition 1.1. Let Pα and Pβ respectively be the paths from ai to a j and a j to ak in G.
Then the path Pα ∪ Pβ is the path obtained by extending the path Pα from ai to a j and
from a j to ak through the common vertex a j . That is if Pα : ai → a j and Pβ : a j → ak then
Pα∪Pβ : ai → a j → ak.
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2. Results
Lemma 2.1. The graph H3 is (t∗o) connected for odd t such that 1≤ t ≤ diamG.

Proof. Let G = Hn, n = 3. Clearly, diam(G) = 23 −1 = 7. Let the vertex set of H3 be V (H3) =
{ai j; i = 1;1 ≤ j ≤ 3n−1}∪ {ai j; i = 2;1 ≤ j ≤ 3n−1}∪ {ai j; i = 3;1 ≤ j ≤ 3n−1} and the edge set of
H3 be E(H3) =

{
bi,1≤ i ≤ 3n+1−9

6

}
∪

{
b′

i,1≤ i ≤ 3n+1−9
6

}
∪

{
b′′,1≤ i ≤ 3n+1−9

6

}
∪ {E3} where {E3} =

{e1, e2, e3} such that e1 = (a(i)( j−m) −a(i+1)( j)), e2 = (a(i+1)( j−m) −a(i+2)( j)), e3 = (a(i+2)( j−m) −a(i)( j))
and m = 2(n−1) −1.

Now to establish the result we consider the following cases.

In each case, we take i = 1, j = 3n−1.

Case (i): Let t = 1. In G, d(a12,a11) = 1 and the Hamiltonian path between the two vertices
a12 and a11 is P1 : {P1∪P2∪P3∪P4}∪ {E3}, where P1 : a(i)( j−7)−a(i)( j−5)−a(i)( j−2)−a(i)( j−3), P2 :
a(i+1)( j)−a(i+1)( j−1)−a(i+1)( j−4)−a(i+1)( j−6)−a(i+1)( j−8)−a(i+1)( j−7)−a(i+1)( j−5)−a(i+1)( j−2)−a(i+1)( j−3),
P3 : a(i+2)( j) − a(i+2)( j−1) − a(i+2)( j−4) − a(i+2)( j−6) − a(i+2)( j−8) − a(i+2)( j−7) − a(i+2)( j−5) − a(i+2)( j−2) −
a(i+2)( j−3), P4 : a(i)( j) −a(i)( j−1) −a(i)( j−4) −a(i)( j−6) −a(i)( j−8) and {E3}= {e1, e2, e3}.

Case (ii): In G, d(a17,a11) = 3 and the Hamiltonian path between the vertices a17 and
a11 is P : {P1 ∪ P2 ∪ P3 ∪ P4} ∪ {E3} where P1 : a(i)( j−2) − a(i)( j−5) − a(i)( j−3), P2 : a(i+1)( j) −
a(i+1)( j−1) −a(i+1)( j−4) −a(i+1)( j−6) −a(i+1)( j−8) −a(i+1)( j−7) −a(i+1)( j−5) −a(i+1)( j−2) −a(i+1)( j−3), P3 :
a(i+2)( j)−a(i+2)( j−1)−a(i+2)( j−4)−a(i+2)( j−6)−a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3),
P4 : a(i)( j) −a(i)( j−1) −a(i)( j−4) −a(i)( j−6) −a(i)( j−7) −a(i)( j−8) and {E3}= {e1, e2, e3}.

Case (iii): Let t = 5. In G, d(a28,a11) = 5 and the Hamiltonian path between the vertices
a28 and a11 is P : {P1 ∪P2 ∪P3}∪ {E2} where P1 : a(i+1)( j−1) − a(i+1)( j) − a(i+1)( j−4) − a(i+1)( j−6) −
a(i+1)( j−8) − a(i+1)( j−7) − a(i+1)( j−5) − a(i+1)( j−2) − a(i+1)( j−3),P2 : a(i+2)( j) − a(i+2)( j−1) − a(i+2)( j−4) −
a(i+2)( j−6)−a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3), P3 : a(i)( j)−a(i)( j−4)−a(i)( j−1)−
a(i)( j−2) −a(i)( j−3) −a(i)( j−5) −a(i)( j−7) −a(i)( j−6) −a(i)( j−8) and {E2}= {e2, e3}.

Case (iv): Let t = 7. In G, d(a22,a11)= 7 and the Hamiltonian path between the vertices a22 and
a11 is P : {P1∪P2∪P3}∪ {E2} where P1 : a(i+1)( j−7)−a(i+1)( j−8)−a(i+1)( j−6)−a(i+1)( j−4)−a(i+1)( j)−
a(i+1)( j−1) − a(i+1)( j−2) − a(i+1)( j−5) − a(i+1)( j−3), P2 : a(i+2)( j) − a(i+2)( j−1) − a(i+2)( j−4) − a(i+2)( j−6) −
a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3),P3 : a(i)( j)−a(i)( j−4)−a(i)( j−1)−a(i)( j−2)−
a(i)( j−3) −a(i)( j−5) −a(i)( j−7) −a(i)( j−6) −a(i)( j−8) and {E2}= {e2, e3}.

From the above cases, it is obvious that the graph of H3 is (t∗o) connected.

Lemma 2.2. The graph H3 is (t∗e ) connected for even t such that 2≤ t ≤ diam(G).

Proof. Let G = Hn, n = 3. Clearly, diam(G) = 23 −1 = 7. The vertex set and the edge set of H3

are same as in Lemma 2.1. We have the following cases. In each case, we take i = 1, j = 3n−1.
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Case (i): Let t = 2. In G, d(a14,a11) = 2 and the Hamiltonian path between the two vertices
a14 and a11 is P : {P1 ∪P2 ∪P3 ∪P4}∪ {E3} where P1 : a(i)( j−5) −a(i)( j−2) −a(i)( j−3), P2 : a(i+1)( j) −
a(i+1)( j−1) −a(i+1)( j−4) −a(i+1)( j−6) −a(i+1)( j−8) −a(i+1)( j−7) −a(i+1)( j−5) −a(i+1)( j−2) −a(i+1)( j−3), P3 :
a(i+2)( j)−a(i+2)( j−1)−a(i+2)( j−4)−a(i+2)( j−6)−a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3),
P4 : a(i)( j) −a(i)( j−1) −a(i)( j−4) −a(i)( j−6) −a(i)( j−7) −a(i)( j−8) and {E3}= {e1, e2, e3}.

Case (ii): Let t = 4. In G, d(a29,a11)= 4 and the Hamiltonian path between the vertices a29 and
a11 is P : {P1∪P2∪P3}∪ {E2} where P1 : a(i+1)( j)−a(i+1)( j−1)−a(i+1)( j−4)−a(i+1)( j−6)−a(i+1)( j−8)−
a(i+1)( j−7) − a(i+1)( j−5) − a(i+1)( j−2) − a(i+1)( j−3),P2 : a(i+2)( j) − a(i+2)( j−1) − a(i+2)( j−4) − a(i+2)( j−6) −
a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3), P3 : a(i)( j)−a(i)( j−4)−a(i)( j−1)−a(i)( j−2)−
a(i)( j−3) −a(i)( j−5) −a(i)( j−7) −a(i)( j−6) −a(i)( j−8) and {E2}= {e2, e3}.

Case (iii): Let t = 6. In G, d(a27,a11)= 6 and the Hamiltonian path between the vertices a27

and a11 is P : {P1 ∪ P2 ∪ P3}∪ {E2} where P1 : a(i+1)( j−2) − a(i+1)( j−1) − a(i+1)( j−4) − a(i+1)( j−6) −
a(i+1)( j−8) − a(i+1)( j−7) − a(i+1)( j−5) − a(i+1)( j−3),P2 : a(i+2)( j) − a(i+2)( j−1) − a(i+2)( j−4) − a(i+2)( j−6) −
a(i+2)( j−8)−a(i+2)( j−7)−a(i+2)( j−5)−a(i+2)( j−2)−a(i+2)( j−3), P3 : a(i)( j)−a(i)( j−4)−a(i)( j−1)−a(i)( j−2)−
a(i)( j−3) −a(i)( j−5) −a(i)( j−7) −a(i)( j−6) −a(i)( j−8) and {E2}= {e2, e3}.

From the above cases it is obvious that the graph of H3 is (t∗e ) connected.

Lemma 2.1 and Lemma 2.2 leads to the following theorem.

Theorem 2.3. The graph H3 is t∗ connected for every t such that 1≤ t ≤ diam(G).

Lemma 2.4. The graph H4 is (t∗o) connected for odd t such that 1≤ t ≤ diam(G).

Proof. Let G = Hn, n = 4. Clearly, diam(G)= 24 −1= 15. The graph of H4 contains three copies
of H3 namely C1, C2 and C3 connected to each other by three unique edges {ECd } for d = 1,2,3.
The edge {EC1} connects C1 and C2, {EC2} connects C2 and C3 and {EC3} connects C3 and C1.
Let the vertex set of H4 be V (H4)= {xk,1≤ k ≤ q}∪ {yk,1≤ k ≤ q}∪ {zk,1≤ k ≤ q} and the edge
set of H4 be E(H4)=

{
Eg,1≤ i ≤ 3n+1−9

6

}
∪

{
E′

g,1≤ i ≤ 3n+1−9
6

}
∪

{
E′′

g,1≤ i ≤ 3n+1−9
6

}
∪{ECd } where

d = 1,2,3 such that {EC1} = (xp, yq), {EC2} = (yp, zq), {EC3} = (zp, xq) for p = 3n−1 −m, q = 3n−1,
m = 2n−1 −1, r = s = 2n−2 −1.

Case (i): For (xi, x j) ∈ C1, 1 < i < q, j = 1, the Hamiltonian path between xi and x j for
d(xi, x j) = t where t = 1,3,5,7 is Hp : {P1 ∪P2 ∪P3 ∪P4}∪ {ECd }. Here P1 : (xi → xp+r → xp),
P2 : (yq → yi → yp), P3 : (zq → z j → yp), P4 : (xq → xq−s → x j) and (ECd ) where d = 1,2,3 such
that {EC1}= (xp, yq){EC2}= (yp, zq), {EC3}= (zp, xq).

Case (ii): Let yi ∈ C2 and x j ∈ C1 where 1 ≤ i ≤ q, j = 1. Then the Hamiltonian path
between (yi, x j) for d(yi, x j) = t where t = 9,11,13,15 is Hp : {P1 ∪ P2 ∪ P3}∪ {ECd } where
P1 : (yi → yq−s → yp+r → yp), P2 : (zq → zq−s → zp+r → zp), P3 : (xq → xq−s → xp+r → x j), and
(ECd ) where d = 2,3 such that {EC2}= (yp, zq), {EC3}= (zp, xq).
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Figures 2 and 3 depicts the Hamiltonian paths between xi and x j for d(xi, x j) = t where
t = 1,3,5,7 and yi and x j for d(yi, x j)= t where t = 9,11,13,15.

Figure 2

Figure 3

Lemma 2.5. The graph H4 is (t∗e ) connected for even t such that 2≤ t ≤ diam(G).

Proof. Case (i): Let (xi; x j) ∈ C1, 1 < i < q, j = 1. Then the Hamiltonian path between the
two vertices xi and x j for d(xi, x j) = t where t = 2,4,6 is P1 : (xi → xp+r → xp)∪P2 : (yq → yi →
yp)∪P3 : (zq → z j → yp)∪P4 : (xq → xq−s → x j)∪ (ECd ) where d = 1,2,3 such that {EC1}= (xp, yq),
{EC2}= (yp, zq), {EC3}= (zp, xq) for p = 3n−1 −m, q = 3n−1, m = 2n−1 −1, r = s = 2n−2 −1.

Case (ii): Let yi ∈ C2 and x j ∈ C1 where 1≤ i ≤ q, j = 1. Then the Hamiltonian path between
(yi, x j) for d(yi, x j) = t where t = 8,10,12,14 is P1 : (yi → yq−s → yp+r → yp)∪P2 : (zq → zq−s →
zp+r → zp)∪ P3 : (xq → xq−s → xp+r → x j)∪ (ECd ) where d = 2,3 such that {EC2} = (yp, zq),
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{EC3} = (zp, xq) for p = 3n−1 −m, q = 3n−1, m = 2n−1 −1, r = s = 2n−2 −1. This proves that the
graph of H4 is (t∗e ) connected.

Lemma 2.4 and Lemma 2.5 leads to the following theorem.

Theorem 2.6. The graph H4 is t∗ connected for every t such that 1≤ t ≤ diam(G).

Theorem 2.7. The graph of Hn is t∗ connected for all n > 4 with d(u,v) = t such that
1≤ t ≤ diam(G).

Proof. Let G = Hn, n > 4 be the Hanoi graph where n is a positive integer. Clearly, diam(G)=
2n − 1. The graph of Hn contains three copies of Hn − 1 namely C1, C2 and C3 connected
to each other by three unique edges {ECd } for d = 1,2,3. The edge {EC1} connects C1 and
C2, {EC2} connects C2 and C3 and {EC3} connects C3 and C1. The vertex set of Hn is
V (Hn) = {xk ∪ yk ∪ zk} where xk ∈ C1, yk ∈ C2, zk ∈ C3 and 1 ≤ k ≤ q, q = 3n−1. The edge
set of Hn is E(Hn)=

{
Eg/1≤ g ≤ 3n+1−9

6 ∪Eg′ /1≤ g′ ≤ 3n+1−9
6 ∪Eg′′ /1≤ g′′ ≤ 3n+1−9

6

}
∪ {ECd } where

d = 1,2,3 such that {EC1} = (xp, yq), {EC2} = (yp, zq), {EC3} = (zp, xq) for p = 3n−1 −m, q = 3n−1,
m = 2n−1 −1, r = s = 2n−2 −1.

To establish the result, we consider the following cases.

Case (i): For the vertices (xi, x j) ∈ C1 where 1 < i < q, j = 1 and d(xi, x j) = t for every odd t,
1≤ t ≤ diam(G), the Hamiltonian path is P : {P1∪P2∪P3∪P4}∪{ECd } as in Case (i) of Lemma 2.4.

Case (ii): For the vertices yi ∈ C2 and x j ∈ C1 where 1 ≤ i ≤ q, j = 1 and d(x j, yi) = t for every
odd t, 1 ≤ t ≤ diam(G), the Hamiltonian path is P : {P1 ∪P2 ∪P3}∪ {ECd } as in Case (ii) of
Lemma 2.4.

Case (iii): For the vertices (xi, x j) ∈ C1 where 1 < i < q, j = 1 and d(xi, x j) = t for every even
t, 2 ≤ t ≤ diam(G), the Hamiltonian path is P : {P1 ∪ P2 ∪ P3 ∪ P4}∪ {ECd } as in Case (i) of
Lemma 2.5.

Case (iv): For the vertices yi ∈ C2 and x j ∈ C1 where 1≤ i ≤ q, j = 1 and d(x j, yi)= t for every
even t, 2 ≤ t ≤ diam(G), the Hamiltonian path is P : {P1 ∪P2 ∪P3}∪ {ECd } as in Case (ii) of
Lemma 2.5.

3. Conclusion
In this paper we have shown that the Hanoi graphs Hn are Hamiltonian t∗ connected for all
n ≥ 3. This concludes that the existence of Hamiltonian path in such networks (graphs) suffice
to solve data communication problems.
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