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Abstract. The irrational number Φ= 1+p5
2 or φ= −1+p5

2 is well known as golden ratio. The binet
forms Ln =Φn + (−φ)n and Fn = Φn−(−φ)n

p
5

define the well known Lucas and Fibonacci numbers.

In the present paper, we generalize the binet forms Φn(x, y) = 1
y·p5

[(x + yΦ)n − (x − yφ)n] and
φn(x, y)= [(x+ yΦ)n + (x− yφ)n]. As a result we obtain a pair of two variable polynomial which are
new combinatorial entities. Many convolution identities of Ln and Fn are getting added to the recent
literature. A generalized convolution identities will be a worthy enrichment of such combinatorial
identities to the current literature.
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1. Introduction

In combinatorial Number Theory, Binet forms express naturally the following pair of two
variable polynomials (Pn(u,v),Qn(u,v)):

Pn(u,v)= un +vn, Qn(u,v)= un −vn

u−v
.

They produce many particular pairs of numbers or polynomials such as Fibonacci and Lucas
numbers [2], Tchebyshev polynomials of first and second kind [6] and so on.
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They satisfy the following pair of difference equations which is also quite interesting from
the point of combinatorial number theory:

Pn+1(u,v)= (u+v)Pn(u,v)−u ·vPn−1(u,v), (1.1)

P0(u,v)= 2, P1(u,v)= u+v, n = 1,2,3, · · ·
and

Qn+1(u,v)= (u+v)Qn(u,v)−u ·vQn−1(u,v) (1.2)

Q0(u,v)= 0, Q1(u,v)= 1, n = 1,2,3, · · · .

As an important special case, one can take u = Φ = 1+p5
2 and v = φ = −1+p5

2 . Then u+ v = 1,
−uv = 1 and u−v =p

5.

Pn(Φ,−φ)= Ln =Φn + (−φ)n, Qn(Φ,−φ)= Fn = Φ
n − (−φ)n

Φ− (φ)
are the well known Lucas and Fibonacci numbers given by the following pair of beautiful
difference equations:

Ln+1 = Ln +Ln−1,L0 = 2,L1 = 1, n = 1,2, · · · , (1.3)

Fn+1 = Fn +Fn−1,F0 = 2,F1 = 1, n = 1,2, · · · . (1.4)

Recently, a two variable generalization of Ln and Fn, called two variable Hybrid Lucas

and Fibonacci polynomials are studied in [7, 8]. They are also a special case with u = x+
p

x2+4y
2

and v = x−
p

x2+4y
2 , when x = y= 1, u =Φ and v =−φ. So that we get back Lucas and Fibonacci

numbers. Two variable hybrid Fibonacci and Lucas polynomials are given by

l(H)
n+1(x, y)= x l(H)

n (x, y)+ y l(H)
n−1(x, y), (1.5)

sl(H)
0 (x, y)= 2, l(H)

1 (x, y)= x, n = 1,2, · · ·
f (H)
n+1(x, y)= x f (H)

n (x, y)+ y f (H)
n−1(x, y), (1.6)

f (H)
0 (x, y)= 0, f (H)

1 (x, y)= 1,n = 1,2, · · ·
More recently, the authors with Rangaswamy have stated and proved convolution identities

of f (H)
n (x, y) and l(H)

n (x, y) ([9, 10]). The general case Pn(u,v) and Qn(u,v) has motivated us to
consider one more simple and interesting special case by choosing u = x+ y(Φ) and v = x+ y(−φ)
where x, y are two real variables, Φ= 1+p5

2 and φ= −1+p5
2 .

In the present paper, we introduce the following Binet form:

Pn(u,v)= Pn(x+ y(Φ), x+ y(−φ))=ψn(x, y)= (x+ y(Φ))n + (x+ y(−φ))n (1.7)

and

Qn(u,v)=Qn(x+ y(Φ), x+ y(−φ))=φn(x, y)= (x+ y(Φ))n + (x+ y(−φ))n

y ·p5
. (1.8)
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Let us note that

ψn(x, y)= ξn +ηn , (1.9)

φn(x, y)= ξn +ηn

ξ−η , (1.10)

ξ+η= (x+ y(Φ))+ (x+ y(−φ)= 2x+ y , (1.11)

ξ−η= (x+ y(Φ))− (x+ y(−φ)= y ·
p

5 , (1.12)

ξ ·η= (x+ y(Φ)) · (x+ y(−φ)= x2 + xy− y2 . (1.13)

Hence (φn(x, y),ψn(x, y)) are solutions of following difference equation.

φn+1(x, y)= (2x+ y) φn(x, y)− (x2 + xy− y2)φn−1(x, y), (1.14)

φ0(x, y)= 0, φ1(x, y)= 1 for n = 1,2,3, · · ·
ψn+1(x, y)= (2x+ y) ψn(x, y)− (x2 + xy− y2)ψn−1(x, y), (1.15)

ψ0(x, y)= 2, ψ1(x, y)= (2x+ y) for n = 1,2,3, · · ·
When x = 0 and y= 1, we get back φn(0,1)= Fn and ψn(0,1)= Ln. The generalized polynomials
φn(x, y) and ψn(x, y) does not include f (H)

n (x, y) and l(H)
n (x, y) as special case and also vice-versa.

Like f (H)
n (x, y) and l(H)

n (x, y), φn(x, y) and ψn(x, y) also exhibit many combinatorial identities
([11, 12]).

In the present paper we state and prove certain convolution identities of φn(x, y) and ψn(x, y)
which are of recent interest in the literature [4, 5, 7, 8]. In the second section, convolution
identities of φn(x, y) and ψn(x, y) with a fixed power m of the summing variable, m = 0,1,2,3 are
stated and proved. In the last section, Binomial convolution identities of φn(x, y) and ψn(x, y)
with a fixed power m of summing variable, m = 0,1,2,3 are stated and proved.

2. Convolution Identities with a Fixed Power of Expanding Variable

One of the remarkable identities is the following well known Bernoulli’s identity ([1, 9]):

If Sn(m)=
n∑

k=1
km.

In this section, convolution identities of the following polynomials in two variables with a
fixed power m of the summing variable, m = 0,1, are stated and proved and m = 2,3, are stated
without proving.

Theorem 1. The convolution identities at the level m = 0 are

(1a)
n∑

k=1
ψk(x, y)ψn−k(x, y)= nψn(x, y)+ (2x+ y) φn(x, y) ,

(1b)
n∑

k=1
φk(x, y)φn−k(x, y)= nψn(x, y)− (2x+ y) φn(x, y)

5 · y2 ,

(1c)
n∑

k=1
ψk(x, y)φn−k(x, y)= (n−1)φn(x, y) ,
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(1d)
n∑

k=1
φk(x, y) ψn−k(x, y)= (n+1)φn(x, y) .

Proof.

(1a)
n∑

k=1
ψk(x, y)ψn−k(x, y) =

n∑
k=1

(
ξk +ηk

)(
ξn−k +ηn−k

)
=

[
n(ξn +ηn))+

(
ξn −ηn

ξ−η
)
(ξ+η)

]
= nψn(x, y)+ (2x+ y)φn(x, y) ,

(1b)
n∑

k=1
φk(x, y)φn−k(x, y) =

n∑
k=1

(
ξk −ηk

ξ−η
)(
ξn−k −ηn−k

ξ−η
)
= 1

(ξ−η)2

[
n(ξn +ηn)−

(
ξn −ηn

ξ−η
)
(ξ+η)

]
= n ψn(x, y)− (2x+ y)φn(x, y)

5 · y2 .

The proofs of (1c) and (1d) are similar to that of (1a) and (1b) except in the final stages where we
need to apply a suitable recurrence relations (1.12) or (1.13) and apply (1.7) or (1.8) according
to the situation.

Theorem 2. The convolution identities at the level m = 1 are

(2a)
n∑

k=1
k ψk(x, y) ψn−k(x, y)

= n(n+1) ψn(x, y)
2

+ 1
5 · y2 [n (2x+ y) ψn+1(x, y) −2n(x2 + xy− y2)ψn(x, y)] ,

(2b)
n∑

k=1
k φk(x, y) ψn−k(x, y)

= n(n+1) ψn(x, y)
10 · y2 − 1

25 · y4 [n (2x+ y) ψn+1(x, y) −2n(x2 + xy− y2)ψn(x, y)] ,

(2c)
n∑

k=1
k ψk(x, y; t) φn−k(x, y; t)

= n(n+1)φn(x, y)
2

− 1
5 · y2

[
n(2x+ y) φn+1(x, y)− [(2n+2)(x2 + xy− y2)]φn(x, y)

]
,

(2d)
n∑

k=1
k φk(x, y; t) ψn−k(x, y; t)

= n(n+1)φn(x, y; t)
2

+ 1
5 · y2

[
n(2x+ y) φn+1(x, y)− [(2n+2)(x2 + xy− y2)]φn(x, y)

]
.

Proof.

(2a)
n∑

k=1
k ψk(x, y) ψn−k(x, y)

=
n∑

k=1
k (ξk +ηk)(ξn−k +ηn−k)

=
[

n(n+1)
2

(ξn +ηn)+ 1
(ξ−η)2

(
n(ξn+2 +ηn+2)− (n+1)(ξ ·η)(ξn +ηn)+ (ξ ·η)(ξn +ηn)

)]
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= n(n+1) ψn(x, y)
2

+ 1
5 · y2 [n (2x+ y) ψn+1(x, y)−2 n (x2 + xy− y2)ψn(x, y)]

(by repeated deductions using (1.12) and (1.13)).

(2b)
n∑

k=1
k φk(x, y) φn−k(x, y)

=
n∑

k=1
k

(
ξk −ηk

ξ−η
)(
ξn−k −ηn−k

ξ−η
)

= 1
(ξ−η)2

[
n(n+1)

2
ψn(x, y)− ξn+2

(ξ−η)2

(
n
ηn+2

ξn+2 − (n+1)
ηn+1

ξn+1 + η

ξ

)
− ηn+2

(ξ−η)2

(
n
ξn+2

ηn+2 − (n+1)
ξn+1

ηn+1 + ξ

η

)]
= 1

(ξ−η)2

[
n(n+1)

2
(ξn +ηn)− 1

(ξ−η)2

(
n(ξn+2 +ηn+2)− (n+1)(ξ ·η)(ξn +ηn)

+(ξ ·η)(ξn +ηn)
)]

= n(n+1) ψn(x, y)
10.y2 − 1

25 · y4 [n (2x+ y) ψn+1(x, y) −2n(x2 + xy− y2)ψn(x, y)]

(by repeated deductions using (1.12) and (1.13)).

The proofs of (2c) and (2d) are similar to that of (2a) and (2b) except in the final stages where we
need to apply a suitable recurrence relations (1.12) or (1.13) and apply (1.7) or (1.8) according
to the situation.

Theorem 3. The convolution identities at the level m = 2 are

(3a)
n∑

k=1
k2 ψk(x, y) ψn−k(x, y)

= n(n+1)(2n+1)ψn(x, y)
6

+ 1
5 · y2

[
[5n2 y2 −4n(x2 + xy− y2)]φn+1(x, y)

+[(2n+2)(2x3 +3x2 y− xy2 − y3)]φn(x, y)
]

,

(3b)
n∑

k=1
k2 φk(x, y) φn−k(x, y)

= n(n+1)(2n+1)ψn(x, y)
30 · y2 − 1

25 · y4

[
[5n2 y2 −4n(x2 + xy− y2)]φn+1(x, y)

+[(2n+2)(2x3 +3x2 y− xy2 − y3)]φn(x, y)
]

,

(3c)
n∑

k=1
k2 ψk(x, y) φn−k(x, y)

= n(n+1)(2n+1)φn(x, y)
6

− 1
25 · y4

[
[5n2 y2 −4n(x2 + xy− y2)]ψn+1(x, y)

+[2n(2x3 +3x2 y− xy2 − y3)]ψn(x, y)
]

,

(3d)
n∑

k=1
k2 φk(x, y) ψn−k(x, y)
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= n(n+1)(2n+1)φn(x, y)
6

+ 1
25 · y4

[
[5n2 y2 −4n(x2 + xy− y2)]ψn+1(x, y)

+[2n(2x3 +3x2 y− xy2 − y3)]ψn(x, y)
]

.

Theorem 4. The convolution identities at the level m = 3 are

(4a)
n∑

k=1
k3 ψk(x, y)ψn−k(x, y)

= n2(n+1)2ψn(x, y)
4

+ 1
25 · y4

[
[n3b31 + (−2n3 +6n)b32]ψn+1(x, y)

+[−n3b33 + (7n3 +12n2)b34 + (−n3 −3n2 −3n)b36]ψn(x, y)
]

,

(4b)
n∑

k=1
k3 φk(x, y)φn−k(x, y)

= n2(n+1)2ψn(x, y)
20.y2 − 1

125 · y6

[
[n3b31 + (−2n3 +6n)b32]ψn+1(x, y)

+[−n3b33 + (7n3 +12n2)b34 + (−n3 −3n2 −3n)b36]ψn(x, y)
]

,

(4c)
n∑

k=1
k3 ψk(x, y)φn−k(x, y)

= n2(n+1)2φn(x, y)
4

− 1
25 · y4

[
[n3b31 + (−2n3 +6n)b32]φn+1(x, y)

+[−n3b33 + (7n3 +12n2 −4)b35 + (−n3 −3n2 −3n−2)b36]φn(x, y)
]

,

(4d)
n∑

k=1
k3 φk(x, y)ψn−k(x, y)

= n2(n+1)2φn(x, y)
4

+ 1
25 · y4

[
[n3b31 + (−2n3 +6n)b32]φn+1(x, y)

+[−n3b33 + (7n3 +12n2 −4)b35 + (−n3 −3n2 −3n−2)(b36]φn(x, y)
]

.

Here b31 = (4x3+6x2 y+8xy2+3y3), b32 = (2x+y)(x2+xy−y2), b33 = (3x4+6x3 y+2x2 y2−xy3−2y4),
b34 = (x2 + xy− y2)2, b35 = (2x+ y)2(x2 + xy− y2)2 and b36 = (2x+ y)2(x2 + xy− y2).

Proof. The proofs of Theorems 3 and 4 are similar to that of Theorems 1 and 2 except in the
final stages where we need to apply a suitable recurrence relations and apply according to the
situation. The same procedure of employing generalized Bernoulli identity can be applied to
compute convolution identities at any level.

3. Binomial Convolution Identities

The following Bernoulli type identity for

Bn(m, x)=
n∑

k=0

(
n
k

)
km xk

([1, 10]) will be applied:
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In this section, Binomial convolution identities of the following polynomials in two variables
with a fixed power m of the summing variable, m = 0,1, are stated and proved and m = 2,3, are
stated without proving.

Theorem 5. The Binomial convolution identities at the level m = 0 are

(5a)
n∑

k=0

(
n
k

)
ψk(x, y) ψn−k(x, y)= 2nψn(x, y)+2(2x+ y)n ,

(5b)
n∑

k=0

(
n
k

)
φk(x, y) φn−k(x, y)= 2n ψn(x, y)−2(2x+ y)n

5.y2 ,

(5c)
n∑

k=0

(
n
k

)
ψk(x, y) φn−k(x, y)= 2nφn(x, y) ,

(5d)
n∑

k=0

(
n
k

)
φk(x, y) ψn−k(x, y)= 2nφn(x, y) ,

Proof. By using equations (1.7) to (1.11) will take us through the derivation step by step for all
four identities.

(5a)
n∑

k=0

(
n
k

)
ψk(x, y) ψn−k(x, y)=

n∑
k=0

(
n
k

)(
ξk +ηk

)(
ξn−k +ηn−k

)
=

[
2n (ξn +ηn)+ηn

(
1+ ξ

η

)n
+ξn

(
1+ η

ξ

)n]
=2n ψn(x, y)+2(2x+ y)n ,

(5b)
n∑

k=0

(
n
k

)
φk(x, y)φn−k(x, y) =

n∑
k=0

(
n
k

)(
ξk −ηk

ξ−η
)(
ξn−k −ηn−k

ξ−η
)

= 1
(ξ−η)2

[
2n (ξn +ηn)+ηn

(
1+ ξ

η

)n
++ξn

(
1+ η

ξ

)n]
=2n ψn(x, y)−2(2x+ y)n

5 · y2 .

The proofs of (5c) and (5d) are similar to that of (5a) and (5b) except in the final steps where we
need to apply (1.7) or (1.8) according to the situation.

Theorem 6. The Binomial convolution identities at the level m = 1 are

(6a)
n∑

k=0

(
n
k

)
k ψk(x, y) ψn−k(x, y)= n 2n−1ψn(x, y)+n(2x+ y)n ,

(6b)
n∑

k=0

(
n
k

)
k φk(x, y) φn−k(x, y)= n 2n−1 ψn(x, y)−n (2x+ y)n

5 · y2 ,

(6c)
n∑

k=0

(
n
k

)
k ψk(x, y) φn−k(x, y)= n 2n−1 φn(x, y)−n(2x+ y)n−1 ,

(6d)
n∑

k=0

(
n
k

)
k φk(x, y) ψn−k(x, y)= n 2n−1 φn(x, y)+n(2x+ y)n−1 .
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Proof. By using equations (1.7) to (1.11) will take us through the derivation step by step for all
four identities.

(6a)
n∑

k=0

(
n
k

)
k ψk(x, y) ψn−k(x, y)=

n∑
k=0

(
n
k

)
k

(
ξk +ηk

)(
ξn−k +ηn−k

)
=[

n 2n−1(ξn +ηn)+n(ξ+η)n−1(ξ+η)
]

=n 2n−1 ψn(x, y)+n(2x+ y)n ,

(6b)
n∑

k=0

(
n
k

)
k φk(x, y)φn−k(x, y) =

n∑
k=0

(
n
k

)
k

(
ξk −ηk

ξ−η
)(
ξn−k −ηn−k

ξ−η
)

= 1
(ξ−η)2

[
2n−1n (ξn +ηn)+n.ξ(ξ+η)n−1 +n ·η(ξ+η)n−1]

=n 2n−1 ψn(x, y)−n (2x+ y)n

5 · y2 .

The proofs of (6c) and (6d) are similar to that of (6a) and (6b) except in the final stages where we
need to apply a suitable recurrence relations (1.12) or (1.13) and apply (1.7) or (1.8) according
to the situation.

Theorem 7. The Binomial convolution identities at the level m = 2 are

(7a)
n∑

k=0

(
n
k

)
k2 ψk(x, y) ψn−k(x, y)

= 2n−2n(3n−1)ψn(x, y)+n(n−1)(2x+ y)n−2(2x2 +3y2 +2xy)+n (2x+ y)n ,

(7b)
n∑

k=0

(
n
k

)
k2 φk(x, y) φn−k(x, y)

= 1
5.y2

[
2n−2n(3n−1)ψn(x, y)− [n(n−1)(2x+ y)n−2(2x2 +3y2 +2xy)+n (2x+ y)n]

]
,

(7c)
n∑

k=0

(
n
k

)
k2 ψk(x, y) φn−k(x, y)= 2n−2n(3n−1)φn(x, y)−n2 (2x+ y)n−1 ,

(7d)
n∑

k=0

(
n
k

)
k2 φk(x, y) ψn−k(x, y)= 2n−2n(3n−1)φn(x, y)+n2 (2x+ y)n−1 .

Theorem 8. The Binomial convolution identities at the level m = 3 are

(8a)
n∑

k=0

(
n
k

)
k3 ψk(x, y) ψn−k(x, y)

= [
2n−3n2(n+3) ψn(x, y)+ [(n3 −3n2 +2n)(2x+ y)n−3(2x3 +3x2 y+9xy2 +4y3)

+3(n2 −n)(2x+ y)n−2(2x2 +2xy+3y2)+n(2x+ y)n]
]

,

(8b)
n∑

k=0

(
n
k

)
k3 φk(x, y) φn−k(x, y)

= 1
5. y2

[
2n−3n2(n+3) ψn(x, y)+ [(n3 −3n2 +2n)(2x+ y)n−3(2x3 +3x2 y+9xy2 +4y3)

+3(n2 −n)(2x+ y)n−2(2x2 +2xy+3y2)+n(2x+ y)n]
]

,
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(8c)
n∑

k=0

(
n
k

)
k3 ψk(x, y) φn−k(x, y)

= 2n−3n2(n+3)φn(x, y)−[(n3−3n2+2n)(2x+ y)n−3(x3+xy+4y2)+(3n2−2n)(2x+ y)n−1] ,

(8d)
n∑

k=0

(
n
k

)
k3 φk(x, y) ψn−k(x, y)

= 2n−3n2(n+3)φn(x, y)+[(n3−3n2+2n)(2x+ y)n−3(x3+xy+4y2)+(3n2−2n)(2x+ y)n−1] .

Proof. The proofs of Theorems 7 and 8 are similar to that of Theorems 5 and 6 except in the
final stages where we need to apply a suitable recurrence relations applied according to the
situation. The same procedure of employing generalized binomial summation can be applied to
compute convolution identities at any level.

4. Conclusion
The convolution identities with the power of expanding variable and binomial convolution
identities with the power of expanding variable are two important types of convolution identities.
They are very useful to analyze discrete dynamical systems. Computing such convolution
identities with the higher power of expanding variable by applying the Bernoulli’s identity at
any level is a challenging task for computer engineers.
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