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Abstract. In this paper, we introduced an advanced family of numerical composite integration
formulas of closed Newton–Cotes-type that uses the function values on uniformly spaced intervals
only without any derivative values. To increase the accuracy, we divide the given interval into
a number of equal subintervals and integrating on each interval by using integration rules with
abscissas outside integration interval. Since there are more unknowns when using including function
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of these numerical integration formulas is higher than the standard closed Newton-Cotes formulae.
These new formulae are obtained using the method of undetermined coefficients which are based on
the concept of the precision of the quadrature formula. The error terms are found using the concept of
precision. Also, we compared the errors in an advanced family of numerical composite integration
formulas with the errors in composite closed Newton–Cotes-type. Finally, we have presented some
examples and then mentioned the related MATLAB codes.
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1. Introduction

If f (x) is a real-valued function defined on the interval [a,b], the Lagrange interpolation
polynomial of degree n (or less) which agrees with f (x) at the equidistant nodes xk = a+hk,
k = 0,1,2, . . . ,n with space h = (b−a)/n will be denoted by Ln( f ,a,b; x). It is well-known [1,5]

http://dx.doi.org/10.26713/jims.v10i3.773


430 Advanced Family of Newton-Cotes Formulas: M. Chalpuri et al.

that

I[ f ]=
∫ b

a
f (x)dx =

∫ b

a
Ln( f ,a,b; x)dx+En+1[ f ,a,b]

=
n∑

j=0
w j f j +En+1[ f ,a,b]

or

I[ f ]= In+1[ f ,a,b]+En+1[ f ,a,b] , (1)

where w j ’s are weights, f j = f (x j) for all j and En+1[ f ,a,b] is error of numerical integration.
this formula is often called the Newton-Cotes integration formula.

Using Taylor’s series expansion of f (x) about the midpoint of the interval, the relationship
between the integral and the quadrature formula may be established for various quadrature
formula. The actual order of accuracy of the resulting closed Newton-Cotes quadrature formula
may be higher than expected, due to favorable cancellations. Several examples are shown below.

Trapezoid Rule (n= 1)

I2[ f ]= h
2

( f0 + f1)− h3

12
f ′′(ξ), ξ ∈ (a,b) . (2)

Simpson’s Rule (n= 2)

I3[ f ]= h
3

( f0 +4 f1 + f2)− h5

90
f (4)(ξ), ξ ∈ (a,b) . (3)

Simpson’s Three-Eighths Rule (n= 3)

I4[ f ]= 3h
8

( f0 +3 f1 +3 f2 + f3)− 3h5

80
f (4)(ξ), ξ ∈ (a,b) . (4)

Boole’s Rule (n= 4)

I5[ f ]= 2h
45

(7 f0 +32 f1 +12 f +32 f3 + f4)− 8h7

945
f (6)(ξ), ξ ∈ (a,b) . (5)

These stencils can be generated quickly via mathematical software programs. From these
results, one can observe that the order of accuracy for even n is n+3, whereas, the order of
accuracy for odd n is only n+2. For composite quadrature formula for integrals over general
intervals, using a multiple of n equally spaced subdivisions, the order of accuracy is reduced by
one. The precision of a numerical integration scheme is directly related to the number of linearly
independent equations that must be solved for the parameters within the scheme. For the
Newton–Cotes methods, the function evaluations are uniformly spaced so that the weights are
the only parameters to be determined. For Gauss–Legendre integration, both the locations and
the weights need to be specified. Using the same number of function evaluations, the precision
for the Gauss–Legendre integration is roughly twice that of the Newton-Cotes methods.

To avoid the use of higher order methods and still obtain accurate results, we use the
composite integration methods. We divide the interval [a,b] into a number of subintervals and
evaluate the integral in each subinterval by a particular method. If we divide the interval [a,b]
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into m equal subinterval namely A j , j = 1, . . . ,m. Then

I[ f ]=
m∑

j=1

∫
A j

f (x)dx . (6)

Each interval can be divide into n equal subintervals and apply n+1 points Newton-Cotes
formula in each integral, we get

I[ f ]=
m∑

i=1
(In+1[ f , xi−1, xi]+En+1[ f , xi−1, xi])

or simply

I[ f ]= I c
nm+1[ f ]+Ec

nm+1[ f ] (7)

this is called family of composite closed Newton-Cotes methods.

By taking of n = 1 in (7), we get

I c
m+1[ f ]= (b−a)

m

(
1
2

f (a)+
m−1∑
i=2

f (xi)+ 1
2

f (b)

)
. (8)

The sequence I c
2[ f ], I c

3[ f ],I c
4[ f ]. . . is called the trapezoidal method and the error term is

Ec
m+1[ f ]=− (b−a)3

12m2 f ′′(ξ)

if f and f ′are absolutely continuous and ξ in (a,b).

By taking of n = 2 in (7), we get

I c
2m+1[ f ]= h

3
( f (x0)+4 f (x1)++2 f (x2)+ . . .+4 f (x2m−1)+ f (x2m)) . (9)

The sequence I c
3[ f ], I c

5[ f ], I c
7[ f ]. . . is called the Simpson method. The error term of composite

Simpson method is

Ec
2m+1[ f ]=− (b−a)5

180m4 f (4)(ξ)

if f and f ′′′are absolutely continuous and ξ in (a,b).

For a long time, Simpson’s method was the most popular quadrature method, because
it combines reasonable exactness with low computational cost (as it involves almost no
multiplications). The importance of the latter advantage has diminished with the wide
availability of fast computers, but Simpson’s method retains its position as one of the classic
and most frequently applied methods for numerical integration.

The trapezoidal method results from this approach and, while converging slowly itself. The
Euler–Maclaurin formula gives rather precise information about En+1[ f ,a,b]. Gregory methods
use this information to improve the trapezoidal rule forms the basis of the more powerful
method of Gregory [1] is

IGr,r
n+1 [ f ]=

n−r−1∑
v=0

(∫ xv+1

xv

Lr( f , xv, xv+r; x)dx
)
+

∫ xn

xn−r

Lr−1( f , xn−r, xn; x)dx . (10)

If r = 1 in (10) then the method is called Durand method [8] and it is

IDu
n+1[ f ]= (b−a)

n

(
5

12
f (x0)+ 13

12
f (x1)+

n−1∑
i=2

f (xi)+ 13
12

f (xn−1)+ 5
12

f (xn)

)
(11)
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which yields better results than the trapezoidal method, at least asymptotically when
f ′(a)= f ′(b) and order of (11) is 3.

One of the integral method with equidistant method is Lacroix method (r = 2 in (10)) and it
is follows

ILa
n+1 =

∫ x1+h/2

x0

L2( f , x0, x2; x)dx+
n∑

i=1

(∫ xi+h/2

xi−h/2
L2( f , xi, xi+2; x)dx

)

+
∫ xn

xn−1+h/2
L2( f , xn−2, xn; x)dx (12)

or

ILa
n+1[ f ]= (b−a)

n

(
3
8

f0 + 7
6

f1 + 23
24

f2 +
n−3∑
i=3

f (xi)+ 23
24

fn−2 + 7
6

fn−1 + 3
8

fn

)
. (13)

One of the family of quadrature methods on uniformly spaced points is Derivative-based
closed Newton–Cotes numerical quadrature which is derived in [2] and [6]. Derivative-based
closed Newton–Cotes-type integration formulas are involved derivative values and function
values, therefore there is a number of evaluations of function values and derivative values
to solve numerical integral. But in this paper, new closed Composite Newton–Cotes-type
integration formula is presented that uses the function values on uniformly spaced intervals
only, without any derivative values. To increase the accuracy we divide the given interval into
a number of equal subintervals and integrating on each interval by integration rules with
abscissas outside Integration Interval. Since there are more parameters for a specified number
of intervals, the precision of the new scheme is higher than the standard closed Newton-Cotes
formula. These new schemes are presented in the next section.

Theorem 1.1 ([5]). If Peano kernel does not change its sign on [a,b] then truncation error of
In+1[ f ,a,b] is

En+1[ f ,a,b]= f (n+1)(ξ)
(n+1)!

Econst
n+1 [xn+1,a,b] , (14)

where ξ ∈ (a,b) and Econst
n+1 [xn+1,a,b] = I[xn+1] − In+1[xn+1,a,b] is called error constant of

In+1[ f ,a,b]. If Econst
n+1 [xn+1,a,b] also becomes zero, then the error term is obtained for f (x)= xn+2.

Theorem 1.2 ([1, 5]). Let In[ f ] be a fixed n-point rule such that In[1] = b− a. Let m× In[ f ]
designate the compound rule on [a,b] as defined in (6). Then, if f (x) is a bounded, Riemann-
integrable function,

lim
m→∞(m× In[ f ])=

∫ b

a
f (x)dx . (15)

2. Numerical Integration Methods

Before going to introduce an advanced family of numerical composite integration formulas
of closed Newton–Cotes-type that uses the function values on uniformly spaced intervals, we
follow the conditions
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(1) The number of abscissas in composite n-points closed Newton–Cotes method is equal to
the number of abscissas in advanced composite n-points closed Newton–Cotes method.

(2) Length of the each script of (6) is same as length of the each script in new composite closed
Newton–Cotes method.

(3) The number of script in (6) is same as in advanced composite closed Newton–Cotes method.

Follow these conditions, we can estimate the area of the first strip in (6) by fitting a 2r+k−2
degree polynomial through f0, . . . , f2r+k−2 and integrating between x0 and xk and similarly
for the last strip, estimate the area of the middle strips in (6) by fitting a 2r+ k−2 degree
polynomial through fki−r+1, . . . , fki+k+r−1 and integrating between xki andxki+k. That is

Ik,r
n+1[ f ]=

∫ xk

x0

L2r+k−2( f , x0, x2r+k−2; x)dx+
(n−2k)/k∑

i=1

(∫ xki+k

xki

L2r+k−2( f , xki−r+1, xki+k+r−1; x)dx
)

+
∫ xn

xn−k

L2r+k−2( f , xn−2r−k+2, xn; x)dx , (16)

where k and r (1≤ r ≤ k+1) are finite numbers and n is multiple of k. This methods are called
a family advanced composite Newton-Cotes methods of order 2r+k−2 if k is odd and is of order
2r+k if k is even. For k = 1, I1,2

n+1 is called advanced trapezoidal method of order 3 which yields
better results than the trapezoidal method.

Note. Use 1 ≤ r ≤ k+1 for all k and r, since if r = 3 then the point xi−r+1 does not exist in
[x0,, xn] for i = 1. If r = 1 then I1,1

n+1 is same as trapezoidal method.

Now, we will prove convergence of quadrature method (16).

Theorem 2.1. Let Ik,r
n+1[ f ] be an integral formula then for all Riemann integrable functions

f which are bounded in [a,b] then

lim
n→∞ Ik,r

n+1[ f ]= I[ f ]

if k and r are finite.

It’s clear from Theorem 1.2.

Theorem 2.2. Ik,1
kn+1[ f ]= I c

kn+1[ f ] for 1≤ k.

Proof. By substituting r by 1 and n by kn in (16), we get

Ik,1
kn+1 =

∫ xk

x0

Lk( f , x0, xk; x)dx+
(n−2)∑
i=1

(∫ xki+k

xki

Lk( f , xki, xki+k; x)dx
)

+
∫ xkn

xkn−k

Lk( f , xkn−k, xn; x)dx

= I c
kn+1[ f ] . (17)

Hence the theorem.

Theorem 2.3. Ik,k+1
3k+1 [ f ]= I3k+1[ f ] for finite.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 3, pp. 429–442, 2018



434 Advanced Family of Newton-Cotes Formulas: M. Chalpuri et al.

Proof. By substituting r by k+1 and n by 3k+1 in (16), we get

Ik,k+1
3k+1 [ f ]=

∫ xk

x0

L2(k+1)+k−2( f , x0, x2(k+1)+k−2; x)dx

+
(3k−2k)/k∑

i=1

(∫ xki+k

xki

L2r+k−2( f , xki−k−1+1, xki+k+k+1−1; x)dx
)

+
∫ x3k

x3k−k

L2(k+1)+k−2( f , x3k−2(k+1)−k+2, x3k; x)dx

=
∫ xk

x0

L3k( f , x0, x3k; x)dx+
1∑

i=1

(∫ xki+k

xki

L3k( f , xki−k, xki+2k; x)dx
)

+
∫ x3k

x2k

L3k( f , x0, x3k; x)dx

=
∫ xk

x0

L3k( f , x0, x3k; x)dx+
∫ x2k

xk

L3k( f , x0, x3k; x)dx+
∫ x3k

x2k

L3k( f , x0, x3k; x)dx

=
∫ x3k

x0

L3k( f , x0, x3k; x)dx

=I3k+1[ f ].

Now, we are going to derive methods.

For k = 1 and r = 2 then the integration method is

I1,2
n+1[ f ]=

∫ x1

x0

L3( f , x0, x3; x)dx+
n−2∑
i=1

(∫ xi+1

xi

L3( f , xi−1, xi+2; x)dx
)
+

∫ xn

xn−1

L3( f , xn−3, xn; x)dx. (18)

The formulas of
∫ x1

x0

L3( f , x0, x3; x)dx,
∫ xn

xn−1

L3( f , xn−3, xn; x)dx and
∫ xi+1

xi

L3( f , xi−1, xi+2; x)dx are

obtained using the method of undetermined coefficients which are based on the concept of the
precision of the quadrature formula. So, we get∫ x1

x0

L3( f , x0, x3; x)dx = 3h
8

f0 + 19h
24

f1 − 5h
24

f2 + h
24

f3 − 19
30.4!

h5 f (4)(ξ0), ξ0 ∈ (a,b), (19)∫ xn

xn−1

L3( f , xn−3, xn; x)dx = h
24

fn−3 − 5h
24

fn−2 + 19h
24

fn−1 + 3h
8

fn − 19
30.4!

h5 f (4)(ξn−1),

ξn−1 ∈ (a,b) (20)

and ∫ xi+1

xi

L3( f , xi−1, xi+2; x)dx =− h
24

f i−1 + 13h
24

f i + 13h
24

f i+1 − h
24

f i+2 + 11
30.4!

h5 f (4)(ξi),

ξi ∈ (a,b). (21)

Plug these values in (18), we get

I1,2
n+1[ f ]= h

3

(
f0 + 31

8
f1 + 5

2
f2 + 25

8
f3 + 25

8
fn−3 + 5

2
fn−2 + 31

8
fn−1 + fn

)

+h
n−4∑
i=4

f i + (
11n−60

30.4!
)h5 f (4)(ξ) , (22)
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where ξ ∈ (a,b) and this method is called an advanced trapezoidal method of the order of
accuracy 3, which yields better results than the trapezoidal method and it is a positive method.
In this method n is not less than 3 and any finite number. This formula gives equal weights to
all ordinates except the first four and last four.

Take k = 2 and r = 2 from (16) then the integration method is

I2,2
n+1[ f ]=

∫ x2

x0

L4( f , x0, x4; x)dx+
(n−4)/2∑

i=1

(∫ x2i+2

x2i

L4( f , x2i−1, x2i+3; x)dx
)
+

∫ xn

xn−2

L4( f , xn−4, xn; x)dx

(23)
But we know∫ x2

x0

L3( f , x0, x4; x)dx = 29h
90

f0 + 62h
45

f1 + 4h
15

f2 + 2h
45

f3 − h
90

f4 + 4
3.5!

h6 f (5)(ξ0), ξ0 ∈ (a,b),∫ xn

xn−2

L3( f , xn−4, xn; x)dx =− h
90

fn−4 + 2h
45

fn−3 + 4h
15

fn−2 + 62h
45

fn−1 + 29h
90

fn − 4
3.5!

h6 f (5)(ξn−2),

and ∫ x2i+2

x2i

L4( f , x2i−1, x2i+3; x)dx =− h
90

f2i−1 + 17h
45

f2i + 19h
15

f2i+1 + 17h
45

f2i+2

− h
90

f2i+3 + 20
21.5!

h7 f (6)(ξ2i) ,

where ξn−2 ∈ (a,b) and ξ2i ∈ (a,b). Here
∫ x2

x0

L3( f , x0, x4; x)dx and
∫ xn

xn−2

L3( f , xn−4, xn; x)dx are

integration methods of order 5 whose error constants are equal in magnitude but differ in

sign, then we have M =
∫ x2

x0

L3( f , x0, x4; x)dx+
∫ xn

xn−2

L3( f , xn−4, xn; x)dx is integration method of

order 6. Therefore, this method of M is exact for polynomials upto degree 6. The error of M is

−128h7

21.6!
f (7)(ξ),ξ ∈ (x0, xn).

Substituting these values in (23), we get

I2,2
n+1[ f ]= h

90
(29( f0 + fn)+123( f1 + fn−1)+58( f2 + fn−2)+117( f3 + fn−3)+67( f4 + fn−4))

+ h
45

(
56

(n−6)/2∑
i=2

f2i+1 +39
(n−8)/2∑

i=2
f2i+2

)
+− (20n+296)

42.6!
h7 f (6)(ξ) , (24)

where ξ ∈ (x0, xn), this method is called Advanced Simpson’s method of order os accuracy 6 and
in this method n is even and not less then 4.

For k = 2and r = 3 then the integration method is

I2,3
n+1[ f ]= h

3780

(
1144( f0 + fn)+5568( f1 + fn−1)+1541( f2 + fn−2)+5944( f3 + fn−3)

+2204( f4 + fn−4)+4808( f5 + fn−5)+4808( f5 + fn−5)+2979( f6 + fn−6)

+4544
n/2∑
i=7

f2i−7 +3016
n/2∑
i=8

f2i−8

)
− 5648

45.8!
(n−2)h9 f (8)(ξ) , (25)

where ξ ∈ (x0, xn), this method is called 2-Advanced Simpson’s method and in this method n is
even and not less then 6.
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3. Error Estimate

Some important notes of error are given bellow by without any proof.

Note. If Peano kernel does not change its sign on [a,b] and f ∈ C2r+k[a,b] then from
Theorem 1.1

(1) Truncation error of
∫ xk

x0

L2r+k−2( f , x0, x2r+k−2; x)dx is

E2r+k−1[ f , x0, xk]=


f (2r+k−1)(ξ)
(2r+k−1)!

Ec0[x2r+k−1] if k is odd,

f (2r+k)(ξ)
(2r+k)!

EC0[x2r+k] if k is even.

(26)

(2) Truncation error of
∫ xki+k

xki

L2r+k−2( f , xki−r+1, xki+k+r−1; x)dx is

E2r+k−1[ f , xki−r+1, xki+k+r−1]=


f (2r+k−1)(ξ)
(2r+k−1)!

Eci [x2r+k−1] if k is odd,

f (2r+k+1)(ξ)
(2r+k+1)!

ECi [x2r+k+1] if k is even.

(27)

(3) The error constant

Ec0[x2r+k−1]= Ecn=k [x2r+k−1] if k is odd (28)

and

EC0[x2r+k]=−ECn−k [x2r+k] if k is even. (29)

Theorem 3.1. If Peano kernel does not change its sign on [a,b], f ∈ C2r+k+1[a,b] and Ik,r
n+1[ f ] is

composite quadrature method on uniformly spaced points with space h then the error of Ik,r
n+1[ f ] is

Ek,r
n+1[ f ,a,b]≤


c(n,k, r)h2r+k f (2r+k−1)(ξ)

(2r+k−1)!
if k is odd

C(n,k, r)h2r+k+2 f (2r+k+1)(ζ)
(2r+k+1)!

if k is even

where ξ,ζ ∈ [a,b] and the constants c(n,k, r) and C(n,k, r) may depends on Ik,r
n+1[ f ] but are

independent of a, b, and f .

Proof. The error terms are found using the concept of precision. We have Peano kernel does not
change its sign on [a,b] and f ∈ C2r+k+1[a,b].

We have from (26) and (27), the error of (16) is

Ek,r
n+1[ f ,a,b]= E2r+k−1[ f , x0, xk]+

(n−2k)/k∑
i=1

E2r+k−1[ f , xki−r+1, xki+k+r−1]

+E2r+k−1[ f , xn−k, xn],
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Ek,r
n+1[ f ,a,b]=



f (2r+k−1)(ξ0)
(2r+k−1)!

Eco[x2r+k−1]+
(n−2k)/k∑

i=1

f (2r+k−1)(ξi)
(2r+k−1)!

Eci [x2r+k−1] if k is odd

+ f (2r+k−1)(ξn−k)
(2r+k−1)!

Ecn−k [x2r+k−1]

f (2r+k)(ζ0)
(2r+k)!

EC0[x2r+k]+ f (2r+k)(ζn−k)
(2r+k)!

EC0 ECn[x2r+k] if k is even

where ξi,ζi ∈ (xki, xki+k), i = 0,1, . . . ,n−k.

If k is even, from (29) the error constant of N =
∫ xk

x0

L2r+k−2( f , x0, x2r+k−2; x)dx +∫ xn

xn−k

L2r+k−2( f , xn−2r−k+2, xn; x)dx is zero. This mean this quadrature method is exact for upto

polynomial of degree 2r+k, then the error constant of N is EC0[x2r+k+1]++ECn[x2r+k+1]. Take

ξ= max
a≤ξi≤b

{
f (2r+k−1)(ξi), i = 0, . . . ,n−k

}
and

ζ= max
a≤ζi≤b

{
f (2r+k+1)(ζi), i = 0, . . . ,n−k

}
.

From (28) and (29), we get

Ek,r
n+1[ f ,a,b]=


f (2r+k−1)(ξ)
(2r+k−1)!

(
2Eco[x2r+k−1]+ n−2k

k
Eci [x2r+k−1]

)
if k is odd

f (2r+k+1)(ζ)
(2r+k+1)!

(
EC0[x2r+k+1]+ECn[x2r+k+1]+ n−2k

k
ECi [x2r+k+1]

)
if k is even

Ek,r
n+1[ f ,a,b]=


c(n,k, r)h2r+k f (2r+k−1)(ξ)

(2r+k−1)!
if k is odd

C(n,k, r)h2r+k+2 f (2r+k+1)(ζ)
(2r+k+1)!

if k is even

where

c(n,k, r)= 2Eco[x2r+k−1]+ n−2k
k

Eci [x2r+k−1]

and

C(n,k, r)= EC0[x2r+k+1]+ECn[x2r+k+1]+ n−2k
k

ECi [x2r+k+1].

Hence the theorem.

4. Test Results

We have used functions that are analytically integrable to test the methods. For the same
definite integral, we have used an increasing number of points, and 6 methods at each number
of points. When the results are very large or very small,therefore we used the absolute error.
The value is E given by the formula

E[ f ]= |In+1[ f ]− I[ f ]|
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where In+1[ f ] is the estimate, I[ f ] is the exact value, and E[ f ] is the absolutely error. E[ f ] will
be a measure of number of accurate digits, so E =−16 is the best we can attain using MATLAB.
There is no few absolute errors of Boole’s method for n like n = 10,50 and 30. Since n is multiple
of 4 in Boole’s method. We applied these methods to

Problem 1.
∫ π/2

0

1
1+cos(x)

dx = 1.

Problem 2.
∫ π/2

0
cos3(x)dx = 2

3
.

Problem 3.
∫ π/2

0

1
1+ x

dx =− ln(2)+ ln(π+2)= 0.94421570569605539178.

Problem 4.
∫ π/2

0

p
x dx =

(
1
6

)
∗
p

2∗π3/2 = 1.3124674954768683121.

Problem 5.
∫ 3

1

ex

x
dx = 8.0387147542694798025.

We get Table 1.

Table 1. Absolutely errors and computational cost for each of these methods was analyzed and compared
to the standard closed composite Newton-Cotes formula.

Integral n Trapezoidal Simpson Boole’s Advanced methods
Trapezoidal Simpsons 2-Simpson

Problem 1

10 0.002052 1.6338e-05 – 6.7607e-06 3.5064e-06 5.8674e-07
20 0.00051378 1.0476e-06 2.8264e-08 1.3412e-06 8.8264e-08 5.8589e-09
50 8.224e-05 2.7019e-08 – 5.564e-08 4.9228e-10 7.1483e-12

100 2.0561e-05 1.6905e-09 1.9336e-12 4.0302e-09 8.5691e-12 3.4861e-14
1000 2.0562e-07 1.6920e-13 4.4409e-16 4.5852e-13 -1.4433e-15 2.2204e-16

Problem 2

10 5.1034e-06 2.0904e-05 – 9.2599e-05 1.295e-05 2.0941e-06
20 3.1755e-07 1.2777e-06 3.0705e-08 5.425e-06 1.9007e-07 9.3247e-09
50 8.1193e-09 3.2508e-08 – 1.1348e-07 6.8674e-10 5.3803e-12

100 5.0737e-10 2.03e-09 1.9098e-12 6.3782e-09 1.0107e-11 1.8874e-14
1000 5.0959e-14 2.0328e-13 2.2204e-16 5.6655e-13 0 0

Problem 3

10 0.0017402 1.8752e-05 – 3.8455e-06 5.2787e-06 1.214e-06
20 0.00043595 1.2212e-06 5.2528e-08 1.2923e-06 1.4791e-07 1.4939e-08
50 6.9794e-05 3.1651e-08 – 6.0695e-08 8.9933e-10 2.2024e-11

100 1.745e-05 1.9817e-09 3.7814e-12 4.5597e-09 1.6193e-11 1.1668e-13
1000 1.7451e-07 1.9917e-13 0 5.3479e-13 4.4409e-16 2.2204e-16

Problem 4

10 0.012122 0.0050538 – 0.0049674 0.0047239 0.0042295
50 0.0011248 0.00045206 – 0.00044409 0.00042253 0.00037831

100 -0.00040106 0.00015983 -0.00014035 0.00015701 0.00014939 0.00013375
1000 1.286e-05 5.0542e-06 -4.4381e-06 4.9651e-06 4.7241e-06 4.2297e-06

10000 4.0845e-07 1.5983e-07 -1.4035e-07 1.5701e-07 1.4939e-07 1.3375e-07

Problem 5

20 0.0037184 4.5962e-06 2.1398e-07 -5.1938e-06 5.5329e-07 7.4436e-08
30 0.0016529 9.1621e-07 – -1.404e-06 6.2718e-08 4.8994e-09
40 0.00092981 2.9085e-07 3.8227e-09 -5.1637e-07 1.2778e-08 6.5033e-10
50 0.0005951 1.1931e-07 – -2.3122e-07 3.6425e-09 1.3022e-10

100 0.00014878 7.4724e-09 1.635e-11 -1.7243e-08 6.7741e-11 7.3719e-13
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From Table 1, we are observing the following below results.

(1) Advanced Trapezoidal yields better results than the trapezoidal method.

(2) Advanced Trapezoidal yields good or approximate equal results than the Simpson’s
method.

(3) Advanced Simpson’s gives the better results of trapezoidal, Simpson and Advanced
trapezoidal methods. Also, it gaves approximate equal results than the Boole’s method.

(4) And also 2-Advanced Simpson’s gives the best results of trapezoidal, Simpson’s, Boole’s,
Advanced trapezoidal, Advanced Simpson’s methods and Boole’s method.

We have Durand and Lacriox methods which yields better results than the trapezoidal
method. Now comparing these methods to Advanced trapezoidal method. Table 2 shows absolute
errors of Problem 1, Problem 3 and Problem 5 to different n values.

Table 2. Comparing absolute errors of Advanced trapezoidal method to Durand and Lacriox methods.

Integral n Durand method Lacriox methos Advanced Trapezoidal

problem 1

10 0.00032179 5.4576e-05 6.7607e-06
20 4.2675e-05 4.1172e-06 1.3412e-06
50 2.8341e-06 1.1855e-07 5.564e-08

100 3.5876e-07 7.7129e-09 4.0302e-09
1000 3.6289e-10 7.9958e-13 4.5852e-13

problem 3

10 0.00029448 5.9011e-05 3.8455e-06
20 3.9575e-05 4.6133e-06 1.2923e-06
50 2.6512e-06 1.3631e-07 6.0695e-08

100 3.3662e-07 8.9533e-09 4.5597e-09
1000 3.4145e-10 9.388e-13 5.3479e-13

Problem 5

10 0.0019663 0.00022718 2.3361e-05
20 0.00025626 1.7513e-05 5.1938e-06
50 1.6848e-05 5.1477e-07 2.3122e-07

100 2.1257e-06 3.3778e-08 1.7243e-08
1000 2.1439e-09 3.5332e-12 2.0197e-12

From Table 2, we observe, the advanced trapezoidal method gives the best results of Durand
and Lacriox methods.

5. Conclusion

A new family of the closed composite Newton-Cotes type of quadrature formula was presented,
that include the use of function values which are outside of interval in each script, to increase
the order of accuracy of the numerical approximations of definite integrals. Using the concept of
precision, where the quadrature formula exactly integrates monomials up to a certain degree, a
system of linear equations for the weights was created and solved. In general, the order of the
quadrature rule is 2r+k−2 if k is odd and is of order 2r+k if k is even.

The computational cost for each of these methods was analyzed and compared to the

standard closed composite Newton-Cotes formula for five different integrals
∫ π/2

0

1
1+cos(x)

dx,
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∫ π/2

0
cos3(x)dx,

∫ π/2

0

1
1+ x

dx,
∫ π/2

0

p
x dx and

∫ 3

1

ex

x
dx. The new composite quadrature formula

were superior computationally to the same order closed Newton–Cotes formula.

One of the closed composite Newton-Cotes formulae is Simpson’s method (order of accuracy
3), one of the new closed composite Newton-Cotes formulae is an advanced trapezoidal method
(order of accuracy 3). these two methods are the same order of accuracy 3 and give approximately
same values. In Simpson’s method n must be an even number and minimum number is 2, but in
advanced trapezoidal method n is any number and minimum number is 3, in computationally
n will take lodge number, so the minimum number of n is not considered in computational.
similarly, Boole’s method and advanced Simpson’s method are the same order of accuracy if
n = 10,50 then Boole’s method not applicable, since in Boole’s method n must be multiple of 4,
but advanced Simpson’s method is applicable for an even number. This is one of the advantage
of new family of closed composite Newton-Cotes formula. We have developed two advanced
Simpson’s methods which are applicable to any big even number.

The error bounds for the composite quadrature formula were originally derived by the author
using the concept of precision, by making certain unverifiable assumptions about the higher
order terms. Mentioned the related MATLAB [4] codes in Appendix A.

Appendix A. Few MATLAB Codes for Advanced Closed Newton–Cotes
Numerical Quadrature

The MATLAB codes for the composite quadrature formula were originally derived by the
authors.

A1. MATLAB Codes for Advanced Trapezoidal Method

function e = adtr(f,a,b,n)

% n is any number not less then 3

h = (b-a)/n;

p = 0;

i = 1:(n+1);

x(i) = a + (i-1)*h;

for i = 1:(n-2);

p = p+(-f(x(i))+13*f(x(i+1))+13*f(x(i+2))-f(x(i+3)));

end

I(3) =(1/24)*h*p;

I(1)=(h/24)*(9*f(x(1))+19*f(x(2))-5*f(x(3))+f(x(4)));

I(2)=(h/24)*(19*f(x(n))+9*f(x(n+1))-5*f(x(n-1))+f(x(n-2)));

x=I(1)+I(2)+I(3);

e=x-integral(f,a,b);

end
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A2. MATLAB Codes for Advanced Simpson’s method

function e = adsim(f,a,b,n)

% n must be multiple of 2 and not less then 4

h = (b-a)/n;

p = 0;

i = 1:(n+1);

x(i) = a + (i-1)*h;

for i = 2:2:(n-3);

p = p+(-f(x(i))+34*f(x(i+1))+114*f(x(i+2))+34*f(x(i+3))-f(x(i+4)));

end

I(3) =(1/90)*h*p;

I(1)=(h/90)*(29*f(x(1))+124*f(x(2))+24*f(x(3))+4*f(x(4))-f(x(5)));

I(2)=(h/90)*(4*f(x(n-2))-f(x(n-3))+24*f(x(n-1))+124*f(x(n))+29*f(x(n+1)));

x=I(3)+I(1)+I(2);

e=x-integral(f,a,b);

end

A3. MATLAB Codes for Second Advanced Simpson’s method

function e = p2p7m(f,a,b,n)

% n must be multiple of 2 and not less then 6

h = (b-a)/n;

p = 0;

i = 1:(n+1);

x(i) = a + (i-1)*h;

for i = 2:2:(n-4);

p = p+((1/756)*f(x(i-1))-(2/105)*f(x(i))+(167/420)*f(x(i+1))+(1172/945)*f(x(i+2))+(167/420)*f(x(i+3))-(2/105)*f(x(i+4))+(1/756)*f(x(i+5)));

end

I(3) =h*p;

I(1)=h*((1139/3780)*f(x(1))+(94/63)*f(x(2))+(11/1260)*f(x(3))+(332/945)*f(x(4))-(269/1260)*f(x(5))+(22/315)*f(x(6))-(37/3780)*f(x(7)));

I(2)=h*((1139/3780)*f(x(n+1))+(94/63)*f(x(n))+(11/1260)*f(x(n-1))+(332/945)*f(x(n-2))-(269/1260)*f(x(n-3))+(22/315)*f(x(n-4))-
(37/3780)*f(x(n-5)));

x=I(3)+I(1)+I(2);

e=x-integral(f,a,b);

end
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