Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 1, pp. 123–127 © RGN Publications

The Two-machine Flow-shop Scheduling Problem with a Single Server and Unit Server Times

Shi Ling and Cheng Xue Guang

Abstract. We consider the problem of two-machine flow-shop scheduling with a single server and unit server times, we show that this problem is *NP*-hard in the strong sense and present a simple greedy algorithm for it with worst-case bound $\frac{3}{2}$.

1. Introduction

In the two-machine flow-shop scheduling problem we study, the input instance consists of n jobs with a single server and unit server times. Each job J_i requires two operations $O_{1,j}$ and $O_{2,j}$, which are performed on machine M_1 and M_2 , respectively. The processing times of job J_i on machine M_i , i.e., the duration of operation $O_{i,j}$, is $p_{i,j}$. For each job, the second operation cannot be started before the first operation is completed. A unit setup times $s_{i,i}$ is needed before the first job is processed on machine M_i . Each setup operation must be performed by the server, which can only perform one operation at a time. The objective is to compute a non-preemptive schedule of those jobs on two machines that minimize makespan. In the standard scheduling notation, the problem can be described as the F2, $S1|s_{i,j} = 1|C_{\text{max}}$ problem. It is well known, S.M. Johnson [1], the F2 $||C_{\text{max}}|$ problem has a maximal polynomial solvable. P. Brucker [2] and C.A. Glass [3] proved that the F2, $S1|s_{i,j} = s|C_{\max}$ problem and the F2, $S1||C_{\max}$ problem are NP-hard in the strong sense. The F2, $S1|s_{i,j} = 1|C_{\max}$ problem is still open problem [4]. In this paper, we will show that this problem is NP-hard in the strong sense, and present a simple greedy algorithm for it.

²⁰¹⁰ Mathematics Subject Classification. 90B35.

Key words and phrases. Two-machine; Flow-shop; Single server; Complexity; NP-hardness, Worst-case analysis.

2. Complexity of the F2, $S1|s_{i,j} = 1|C_{max}$ problem

Lemma 1 ([4]). Consider the F2, $S1|s_{i,j} = 1|C_{\max}$ problem with processing times $p_{i,j}$ and server times $s_{i,j}$, where i = 1, 2 and j = 1, 2, ..., n. Then

$$C(\sigma,\tau) = \max_{1 \le k \le n} \bigg\{ \sum_{j \le \sigma^{-1}} (s_{1,\sigma(j)} + p_{1,\sigma(j)}) + \sum_{j \ge \tau^{-1}} (s_{2,\sigma(j)} + p_{2,\sigma(j)}) \bigg\},$$
(1)

where $\sigma^{-1} = \sigma^{-1}(k)$ and $\tau^{-1} = \tau^{-1}(k)$ denote the position of job J_k in sequence σ and τ , respectively.

Theorem 1. The F2, $S1|s_{i,i} = 1|C_{max}$ problem is NP-hard in the strong sense.

Proof. We prove that the F2, $S1|s_{i,j} = 1|C_{\text{max}}$ problem is *NP*-hard in the strong sense through a reduction from the Numerical Matching with Target Sums (*NMTS*) problem, which is known to be *NP*-hard in the strong sense [6], to the F2, $S1|s_{i,j} = 1|C_{\text{max}}$ problem. The *NMTS* problem is then stated as:

Given three sets $X = x_i, x_2, ..., x_r$, $Y = y_1, y_2, ..., y_r$ and $Z = z_1, z_2, ..., z_r$ of positive integers, where $\sum_{i=1}^r x_i = \sum_{i=1}^r y_i + \sum_{i=1}^r z_i$, does there exist permutation $y_{j_1}, y_{j_2}, ..., y_{j_r}$ and $z_{j_1}, z_{j_2}, ..., z_{j_r}$ such that $x_i = y_{j_r} + z_{j_r}$ for i = 1, 2, ..., r. Given any instance of *the NMTS* problem, we define the following instance of the *F*2, $S1|s_{i,j} = 1|C_{\max}$ problem with five types of jobs:

- (1) U-jobs: $s_{1,j} = 1$, $p_{1,j} = 1$; $s_{2,j} = 1$, $p_{2,j} = 3K + x_j + 3$, j = 1, 2, ..., r
- (2) V-jobs: $s_{1,j} = 1$, $p_{1,j} = 2K + y_{j-r}$; $s_{2,j} = 1$, $p_{2,j} = 1$, j = 1, 2, ..., r
- (3) W-jobs: $s_{1,j} = 1$, $p_{1,j} = K + z_{j-r}$; $s_{2,j} = 1$, $p_{2,j} = 1$, j = 1, 2, ..., r
- (4) P-jobs: $s_{1,j} = 1$, $p_{1,j} = 5$; $s_{2,j} = 1$, $p_{2,j} = 1$, j = 1, 2, ..., r
- (5) Q-jobs: $s_{1,4r+1} = 1$, $p_{1,4r+1} = 1$; $s_{2,4r+1} = 1$, $p_{2,4r+1} = 1$.

The threshold y = 10r + 3Kr + K + 3 and the corresponding decision problem are: Is there a schedule *S* with makespan *C*(*S*) not greater than y = 10r + 3Kr + K + 3? Observe that all processing times are equal to *b*. To prove the theorem we show that in this constructed instance of the *F*2, $S1|s_{i,j} = 1|C_{\max}$ problem a schedule S_0 satisfying $C_{\max}(S^0) \le y = 10n + 3Kn + K + 3$ exists if and only if *NMTS* has a solution. Suppose that *NMTS* has a solution. The desired schedule S_0 exists and can be described as follows. No machine has intermediate idle time. Machine M_1 process the *P*-jobs in order of the sequence σ , i.e., in the sequence

$$\sigma = \{\sigma_{U_{1,1}}, \sigma_{V_{1,1}}, \sigma_{W_{1,1}}, \sigma_{P_{1,1}}, \dots, \sigma_{U_{1,n}}, \sigma_{V_{1,n}}, \sigma_{W_{1,n}}, \sigma_{P_{1,n}}, \sigma_{1,4r+1}\}.$$

While machine M_2 process the jobs in the sequence

$$\tau = \{\tau_{U_{2,1}}, \tau_{V_{2,1}}, \tau_{W_{2,1}}, \tau_{P_{2,1}}, \dots, \tau_{U_{2,n}}, \tau_{V_{2,n}}, \tau_{W_{2,n}}, \tau_{P_{2,n}}, \tau_{2,4r+1}\}$$

as indicated in Figure 1.

Then we define sequences σ and τ shown in Figure 1. Obviously, these sequences σ and τ fulfills $C(\sigma, \tau) \leq y$. Conversely, assume that this flow-shop

124

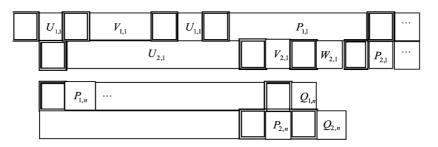


Figure 1. Gantt chart for the *F*2, $S1|s_{i,j} = 1|C_{\text{max}}$ problem

scheduling problem has a solution σ and τ with $C(\sigma, \tau) \leq y$. By setting in (1), we get for all sequences σ and τ :

$$C(\sigma,\tau) \ge s_{1,1} + \sum_{\lambda=1}^{n} (s_{2,\tau_{\lambda}} + p_{2,\tau_{\lambda}}) = 10n + 3Kn + K + 3 = y.$$

Thus, for sequences σ and τ with $C(\sigma, \tau) = y$. We may conclude that:

- (1) There is no idle time on machine M_1 until the completion of the last job on it. Machine M_1 process jobs in the interval [0, 10n + 3Kn + K + 2].
- (2) There is no idle time on machine M_2 until the completion of the last job on it. Machine M_2 process jobs in the interval [1, 10n + 3Kn + K + 3].
- (3) $Q_{1,1}$, $Q_{2,1}$ are the last jobs on machine M_1 , M_2 , respectively.

Now, we will prove that $x_1 = y_1 + z_1$, that is

$$s_{1,V_{1,1}} + p_{1,V_{1,1}} + s_{1,W_{1,2}} + p_{1,W_{1,2}} + s_{1,P_{1,1}} = p_{2,U_{2,1}}.$$

If $s_{1,V_{1,1}} + p_{1,V_{1,1}} + s_{1,W_{1,2}} + p_{1,W_{1,2}} + s_{1,P_{1,1}} > p_{2,U_{2,1}}$, then there is a idle time between $p_{2,U_{2,1}}$ and $s_{2,P_{2,1}}$, which contradicts (2), if $s_{1,V_{1,1}} + p_{1,V_{1,1}} + s_{1,W_{1,2}} + p_{1,W_{1,2}} + s_{1,P_{1,1}} < p_{2,U_{2,1}}$ then there is a idle time between $s_{1,P_{1,1}}$ and $p_{1,P_{1,1}}$, which contradicts (1). Thus, we have $s_{1,V_{1,1}} + p_{1,V_{1,1}} + s_{1,W_{1,2}} + p_{1,W_{1,2}} + s_{1,P_{1,1}} = p_{2,U_{2,1}}$. Since $s_{1,V_{1,1}} = s_{1,W_{1,1}} = 1$, $p_{1,U_{1,1}} = 2K + y_1$, $p_{1,V_{1,1}} = K + z_1$, $p_{2,P_{1,1}} = 3 + 3K + x_1$ then $1 + 2K + y_1 + K + z_1 = 3 + 3K + x_1$, that is $x_1 = y_1 + z_1$. This give a solution to *NMTS*. Analogously, we show that $x_j = y_j + z_j$, $j = 2, 3, \ldots, n$ defines a solution of the *NMTS*.

3. Algorithm for the F2, $S1|s_{i,j} = 1|C_{max}$ problem

For the F2, $S1|s_{i,j} = 1|C_{\text{max}}$ problem, we consider a simple greedy algorithm.

Algolrithm 1.

- (1) Schedule all jobs in shortest processing times (*SPT*) first on machine M_1 , that is increasing processing times order.
- (2) schedule all jobs in shortest processing times (*SPT*) first on machine M_2 , that is in increasing processing times order, too.

Theorem 2. The F2, $S1|s_{i,j} = 1|C_{\max}$ problem, let S_0 be a schedule created by Algorithm 1, S^* be the optimal solution for the F2, $S1|s_{i,j} = 1|C_{\max}$ problem, then $C_{\max}(S^0)/C_{\max}(S^*) \leq 3/2$. The bound is tight.

Proof. Let $T_{i,j}$, $I_{i,j}$ denote the start time and idle time of job J_j on the machine M_i , i = 1, 2 respectively. According to Algorithm 1, Schedule the jobs in increasing order of $p_{1,j}$ on the machine M_1 , with total idle time $I_{1,j}$. Schedule the jobs in increasing order of $p_{2,j}$ on the machine M_2 with the total idle time $I_{2,j}$. For any $j(1 \le j \le n)$, we have

$$\begin{split} C_{j} &= T_{1,j} + s_{1,j} + p_{1,j} + s_{2,j} + p_{2,j} \\ &= \sum_{i=1}^{j-1} (s_{1,i} + p_{1,i}) + I_{1,j} + s_{1,j} + p_{1,j} + s_{2,j} + p_{2,j} \\ &= \sum_{i=1}^{j} (s_{1,i} + p_{1,i} + I_{1,j} + s_{2,j} + p_{2,j}) \\ &\leq j + j p_{1,j} + I_{1,j} + 1 + p_{2,j} , \\ C_{j} &= T_{2,j} + s_{2,j} + p_{2,j} \\ &= \sum_{i=1}^{j-1} (s_{2,j} + p_{2,j}) + I_{2,j} + s_{2,j} + p_{2,j} \\ &= \sum_{i=1}^{j} (s_{2,j} + p_{2,j}) + I_{2,j} \\ &\leq (j + j p_{2,n} + I_{2,j}), \\ 2C_{\max}(S^{0}) &\leq n + n p_{1,n} + I_{1,j} + n + n p_{2,n} + I_{2,n} + 1 + p_{2,n} \\ &= (n + n p_{1,n} + I_{1,j}) + (n + n p_{2,n} + I_{2,n}) + (1 + p_{2,n}) \\ &\leq 3C_{\max}(S^{*}) \\ C_{\max}(S^{0})/C_{\max}(S^{*}) &\leq 3/2 \,. \end{split}$$

To prove the bound is tight, introduce the following example as shown in Figure 2 and Figure 3.

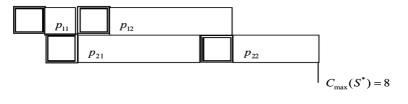
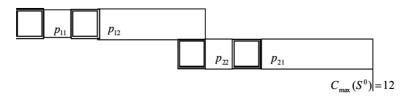
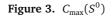


Figure 2. $C_{\max}(S^*)$





So we have $C_{\text{max}}(S^0)/C_{\text{max}}(S^*) = 12/8 = 3/2$, the bound is tight.

References

- [1] P. Brucker, S. Knust and G.Q. Wang et al., Complexity results for flow-shop problems with a single server, *European J. Oper. Res.* **165**(2) (2005), 398–407.
- [2] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flow-shop and job-shop scheduling, *Math. Oper. Res.* 1(2) (1976), 17–129.
- [3] C.A. Glass, Y.M. Shafransky and V.A. Strusevich, Scheduling for parallel dedicated machines with a single server, *Naval Research Logistics* **47** (2000), 304–328.
- [4] W.C. Yu, *The two-machine flow shop problem with delays and the one machine total tardiness problem*, Technische Universiteit Eindhoven, 1996.
- [5] http:www.mathematik.uni-osnabruckde/research/OR.class
- [6] M.R. Garey and D.S. Johnson, Complexity and Intractability: A Guide to The Theory of NP-Completeness, W.H.Freeman, San Francisco, CA, 1979.

Shi Ling, Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China. E-mail: shiling59@126.com

Cheng Xue Guang, School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China. E-mail: chengxueguang6011@msn.com

Received May 13, 2011 Accepted October 23, 2011