Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 1, pp. 77–83 © RGN Publications

Inference on Reliability for Cascade Model

http://www.rgnpublications.com

Jonali Gogoi and Munindra Borah

Abstract. In this paper we consider two cases to obtain the system reliability for cascade model. For the first case we consider one-parameter exponential strength and two-parameter gamma stress. Under this assumption the reliability of the system in general terms is obtained. Secondly we consider two-parameter exponential strength and one-parameter gamma stress to obtain an expression for the reliability of a 3-cascade system. For both the cases all stress-strengths are random variables with given density. In all these cases numerical integration is used to evaluate the reliability for cascade system. Some numerical values of R(1), R(2), R(3) and R_3 for particular values of the parameters involved are tabulated at the end.

1. Introduction

The strength of a component ([3], [4], [5]) can obviously be defined as the minimum stress required causing the component (or system) failure by considering the situation where a component works under the impact of stresses. If the stress equals or exceeds the strength of the component, it fails; otherwise it works. In practical situations, the magnitude of the stress is random, with considerable variations. Imperfections in the manufacture and non-uniformity in the materials give a random character to the component's strength, which is also a random variable. The reliability R of the component is given by

 $R = P[X \ge Y].$

By cascade redundancy [2] we mean a standby redundancy where a standby component taking the place of a failed component is subjected to a modified value of the preceding stress. We assume that this modified value of stress is equal to 'k' times the stress on the preceding (failed) component. k is called attenuation factor. Here we shall assume that k is a constant through it may be changing from component to component or even it may be a random variable.

²⁰¹⁰ Mathematics Subject Classification. Primary 90B25.

Key words and phrases. Stress-strength model; Cascade model; One and two-parameter exponential and gamma distributions; Standby redundancy; Reliability.

Studies of a 3-cascade reliability for cascade redundancy using different distributions have been considered by many persons, e.g. Sriwastav and Kakati [6], etc. But there have been no studies where exponential and gamma distributions are for two-parameters.

The aim of this paper is to estimate the system reliability for the following two cases.

- 1. Strength follows one-parameter exponential distribution and stress follows two-parameter gamma distribution.
- 2. Strength follows two-parameter exponential distribution and stress follows one-parameter gamma distribution.

For both the cases we obtain the system reliability for 3-cascade system.

2. The Model

An *n*-cascade system is a special type of *n*-standby system [2]. Let $X_1, X_2, X_3, \ldots, X_n$ be the strengths of *n*-components in the order of activation and let $Y_1, Y_2, Y_3, \ldots, Y_n$ are the stresses working on them. In cascade system after every failure the stress is modified by a factor *k* which is called attenuation factor such that

$$Y_2 = kY_1$$
, $Y_3 = kY_2 = k^2Y_1$,..., $Y_i = k^{i-1}Y_1$ etc.

In stress-strength model the reliability R, of a component (or system) is defined as the probability that the strength of the component, say X (a random variable) is not less than the stress, say Y (another random variable), on it. Symbolically,

$$R = \Pr(X \ge Y) = \Pr(X - Y \ge 0)$$

Then the reliability R_n of the system is defined as

$$R_n = R(1) + R(2) + \ldots + R(n), \tag{2.1}$$

where $R(r) = P[X_1 < Y_1, X_2 < kY_1, \dots, X_{r-1} < k^{r-2}Y_1, X_r \ge k^{r-1}Y_1]$, R(r) is the marginal reliability due to the *r*th component. Or we can write for cascade system,

$$R(r) = \int_{-\infty}^{\infty} [F_1(y_1)F_2(ky_1)F_3(k^2y_1)\dots\overline{F}_r(k^{r-1}y_1)]g(y_1)dy_1.$$

2.1. One-parameter exponential strength and two-parameter gamma stress

Let $X_1, X_2, X_3, ..., X_n$ be one-parameter exponential strength [1], i.e., $f_i(x)$ with mean $\frac{1}{\lambda_i}$ and Y_1 be a two-parameter gamma stress then we have the following probability density functions

$$f_i(x_i) = \begin{cases} \lambda_i e^{-\lambda_i x_i}, & x_i \ge 0, \ \lambda_i \ge 0\\ 0, & \text{otherwise} \end{cases}$$

78

and

$$g_i(y;\mu,\theta) = \begin{cases} \frac{1}{\theta^{\mu}\Gamma\mu} y^{\mu-1} e^{-\frac{y}{\theta}}, & y,\mu,\theta > 0\\ 0, & \text{otherwise}. \end{cases}$$

Then,

$$R(1) = \int_{0}^{\infty} \overline{F}_{1}(y_{1})g_{1}(y_{1})dy_{1} = \frac{1}{(1+\lambda_{1}\theta)^{\mu}},$$

$$R(2) = \int_{0}^{\infty} F_{1}(y_{1})\overline{F_{2}}(ky_{1})g_{1}(y_{1})dy_{1}$$

$$= \frac{1}{(1+\lambda_{2}k\theta)^{\mu}} - \frac{1}{(1+\lambda_{1}\theta+\lambda_{2}k\theta)^{\mu}},$$

$$R(3) = \int_{0}^{\infty} F_{1}(y_{1})F_{2}(ky_{1})\overline{F}_{3}(k^{2}y_{1})g_{1}(y_{1})dy_{1}$$

$$= \frac{1}{(1+\lambda_{3}k^{2}\theta)^{\mu}} - \frac{1}{(1+\lambda_{2}k\theta+\lambda_{3}k^{2}\theta)^{\mu}} - \frac{1}{(1+\lambda_{1}\theta+\lambda_{3}k^{2}\theta)^{\mu}}$$

$$+ \frac{1}{(1+\lambda_{1}\theta+\lambda_{2}k\theta+\lambda_{3}k^{2}\theta)^{\mu}}.$$

In general,

$$R(n) = \frac{1}{(1+\lambda_n k^{n-1}\theta)^{\mu}} - \frac{1}{(1+\lambda_1\theta+\lambda_n k^{n-1}\theta)^{\mu}} - \dots + (-1)^{n+1} \frac{1}{(1+\lambda_1\theta+\lambda_2 k\theta+\dots+\lambda_{n-1} k^{n-2}\theta+\lambda_n k^{n-1}\theta)^{\mu}}.$$

Then the system reliability R_3 for a 3-cascade system from (1) is given by

$$R_3 = R(1) + R(2) + R(3).$$

2.1.A. Special case

When $X_1, X_2, X_3, \ldots, X_n$ are one-parameter i.i.d. exponential strength with parameter λ then we have,

$$R(1) = \frac{1}{(1+\lambda\theta)^{\mu}},$$

$$R(2) = \frac{1}{(1+\lambda k\theta)^{\mu}} - \frac{1}{(1+\lambda\theta+\lambda k\theta)^{\mu}},$$

$$R(3) = \frac{1}{(1+\lambda k^{2}\theta)^{\mu}} - \frac{1}{(1+\lambda k\theta+\lambda k^{2}\theta)^{\mu}} - \frac{1}{(1+\lambda\theta+\lambda k^{2}\theta)^{\mu}},$$

$$+ \frac{1}{(1+\lambda\theta+\lambda k\theta+\lambda k^{2}\theta)^{\mu}}.$$

Jonali Gogoi and Munindra Borah

Then in general,

$$R(n) = \frac{1}{(1+\lambda k^{n-1}\theta)^{\mu}} - \frac{1}{(1+\lambda\theta+\lambda k^{n-1}\theta)^{\mu}} - \dots + (-1)^{n+1} \frac{1}{(1+\lambda\theta+\lambda k\theta+\dots+\lambda k^{n-2}\theta+\lambda k^{n-1}\theta)^{\mu}}.$$

Then the system reliability R_3 for a 3-cascade system from (1) is given by

$$R_3 = R(1) + R(2) + R(3).$$

2.2. Two-parameter exponential strength and one-parameter gamma stress

Let $X_1, X_2, X_3, \ldots, X_n$ be two-parameter exponential strength and Y_1 be oneparameter gamma stress then we have the following probability density functions

$$f_i(x;\mu,\theta) = \begin{cases} \frac{1}{\theta_i} e^{-\frac{(x_i-\mu_i)}{\theta_i}}, & x_i > \mu_i, \ \mu_i \ge 0, \ \theta_i > 0\\ 0, & \text{otherwise} \end{cases}$$

and

$$g_i(y) = \begin{cases} \frac{1}{\Gamma_m} e^{-y} y^{m-1}, & y \ge 0, \ m \ge 1\\ 0, & \text{otherwise}. \end{cases}$$

Then

$$\begin{split} R(1) &= \int_{0}^{\infty} \overline{F}_{1}(y_{1})g_{1}(y_{1})dy_{1} = 1 - e^{\frac{\mu_{1}}{\theta_{1}}} \left(1 - \frac{1}{\left(1 + \frac{1}{\theta_{1}}\right)^{m}}\right), \\ R(2) &= \int_{0}^{\infty} F_{1}(y_{1})\overline{F}_{2}(ky_{1})g_{1}(y_{1})dy_{1} \\ &= e^{\frac{\mu_{1}}{\theta_{1}}} \left[1 - \frac{1}{\left(1 + \frac{1}{\theta_{1}}\right)^{m}}\right] \\ &- e^{\frac{\mu_{1}}{\theta_{1}} + \frac{\mu_{2}}{\theta_{2}}} \left[1 - \frac{1}{\left(1 + \frac{1}{\theta_{1}}\right)^{m}} - \frac{1}{\left(1 + \frac{k}{\theta_{2}}\right)^{m}} + \frac{1}{\left(1 + \frac{1}{\theta_{1}} + \frac{k}{\theta_{2}}\right)^{m}}\right], \\ R(3) &= \int_{0}^{\infty} F_{1}(y_{1}) F_{2}(ky_{1}) \overline{F}_{3}(k^{2}y_{1}) g_{1}(y_{1}) dy_{1} \end{split}$$

$$\int_{0} = e^{\frac{\mu_{1}}{\theta_{1}} + \frac{\mu_{2}}{\theta_{2}}} \left[1 - \frac{1}{\left(1 + \frac{k}{\theta_{2}}\right)^{m}} - \frac{1}{\left(1 + \frac{1}{\theta_{1}}\right)^{m}} + \frac{1}{\left(1 + \frac{1}{\theta_{1}} + \frac{k}{\theta_{2}}\right)^{m}} \right]$$

80

Inference on Reliability for Cascade Model

$$-e^{\frac{\mu_{1}}{\theta_{1}}+\frac{\mu_{2}}{\theta_{2}}+\frac{\mu_{3}}{\theta_{3}}}\left[1-\frac{1}{\left(1+\frac{k^{2}}{\theta_{3}}\right)^{m}}-\frac{1}{\left(1+\frac{k}{\theta_{2}}\right)^{m}}+\frac{1}{\left(1+\frac{k}{\theta_{2}}+\frac{k^{2}}{\theta_{3}}\right)^{m}}-\frac{1}{\left(1+\frac{1}{\theta_{1}}\right)^{m}}\right]$$
$$+\frac{1}{\left(1+\frac{1}{\theta_{1}}+\frac{k^{2}}{\theta_{3}}\right)^{m}}+\frac{1}{\left(1+\frac{1}{\theta_{1}}+\frac{k}{\theta_{2}}\right)^{m}}-\frac{1}{\left(1+\frac{1}{\theta_{1}}+\frac{k}{\theta_{2}}+\frac{k^{2}}{\theta_{3}}\right)^{m}}\right].$$

Then the system reliability R_3 for a 3-cascade system from (1) is given by

 $R_3 = R(1) + R(2) + R(3)$

Table 1. Reliability R_3 for one-parameter exponential (λ) strength and two-parameter gamma (μ , θ) stress, where $\lambda_1 = a$, $\lambda_2 = b$, $\lambda_3 = c$, $\theta = f$, $\mu = g$

b	С	k	g	R(1)	R(2)	R(3)	R ₃
1	.5	.1	2	.2500	.5997	.1480	.9977
		.3		.2500	.4027	.3057	.9584
		.5		.2500	.2844	.3351	.8695
		.7		.2500	.2088	.2977	.7565
		.9		.2500	.1581	.2370	.6451
5	.5	.1	2	.2500	.2844	.4592	.9936
		.3		.2500	.0784	.6018	.9302
		.5		.2500	.0322	.5393	.8216
		.7		.2500	.0163	.4326	.6989
		.9		.2500	.0094	.3260	.5854
7	.5	.1	2	.2500	.2088	.5340	.9928
		.3		.2500	.0446	.6337	.9283
		.5		.2500	.0163	.5535	.8199
		.7		.2500	.0077	.4398	.6976
		.9		.2500	.0042	.3300	.5843
1	1.5	.1	1	.5000	.4329	.0649	.9978
		.3		.5000	.3344	.1265	.9609
		.5		.5000	.2667	.1207	.8874
		.7		.5000	.2179	.0912	.8090
		.9		.5000	.1815	.0624	.7439
5	1.5	.1	1	.5000	.2667	.2265	.9932
		.3		.5000	.1143	.3083	.9226
		.5		.5000	.0635	.2533	.8168
		.7		.5000	.0404	.1801	.7205
		.9		.5000	.0280	.1211	.6491
7	1.5	.1	1	.5000	.2179	.2742	.9920
		.3		.5000	.0787	.3397	.9184
		.5		.5000	.2667	.1207	.8874
		.7		.5000	.0246	.1910	.7156
		.9		.5000	.0165	.1281	.6446

Table 1 is also self explanatory. With some fixed values of $\lambda_1 = a = 1$, $\theta = f = 1$ if $\lambda_2 = b$, $\lambda_3 = c$ and $\mu = g$ increases with increasing k (i.e., k = .1, .3, .5, .7, .9) reliability decreases.

а	k	g	R(1)	R(2)	R(3)	R_3
1	.1	1	.5000	.4329	.0656	.9985
	.2		.5000	.3788	.1113	.9901
	.3		.5000	.3344	.1379	.9724
	.4		.5000	.2976	.1487	.9463
	.5		.5000	.2667	.1478	.9144
3	.1	3	.0156	.4426	.4871	.9453
	.2		.0156	.2339	.5105	.7600
	.3		.0156	.1373	.3847	.5376
	.4		.0156	.0868	.2509	.3533
	.5		.0156	.0580	.1522	.2258
5	.1	5	.0001	.1316	.6717	.8034
	.2		.0001	.0312	.3824	.4137
	.3		.0001	.0102	.1515	.1618
	.4		.0001	.0041	.0516	.0558
	.5		.0001	.0019	.0169	.0189

Table 2. Reliability R_3 for Special Case: where $\lambda_1 = \lambda_2 = \lambda_3 = a$ (identical), $\theta = f$, $\mu = g$

Here also the change in the values of reliability is as expected. If $\lambda = a$, $\mu = g$, and k increases then reliability deceases with fixed values of $\theta = f = 1$.

m	k	R(1)	R(2)	R(3)	R_3
1	.2	.6496	.3121	.0374	.9990
	.4	.6496	.2794	.0641	.9931
	.6	.6496	.2513	.0794	.9803
	.8	.6496	.2269	.0846	.9611
	1	.6496	.2057	.0820	.9373
	1.2	.6496	.1871	.0744	.9111
2	.2	.4160	.4896	.0912	.9967
	.4	.4160	.4134	.1486	.9780
	.6	.4160	.3513	.1724	.9396
	.8	.4160	.3001	.1697	.8857
	1	.4160	.2575	.1502	.8236
	1.2	.4160	.2218	.1227	.7604
3	.2	.2602	.5827	.1501	.9931
	.4	.2602	.4631	.2323	.9556
	.6	.2602	.3706	.2522	.8830
	.8	.2602	.2981	.2290	.7874
	1	.2602	.2407	.1841	.6850
	1.2	.2602	.1947	.1336	.5885

Table 3. Reliability R_3 for two-parameter exponential (μ, θ) strength and one-parameter gamma (m) stress

Here we obtain the reliability for $\mu_i < \theta_i$, i = 1, 2, 3 and we take $\mu_1 = a = 0.1$, $\mu_2 = b = 0.2$, $\mu_3 = c = 0.3$, $\theta_1 = d = 2$, $\theta_2 = d = 2$, $\theta_3 = f = 4$.

It is noted from the above Table 3, that if m and k increases (k = .2, .4, .6, .8, 1, 1.2) reliability R_3 decreases for certain fixed values of μ_1 , μ_2 , θ_1 , θ_2 , θ_3 .

References

- [1] M.C. Kakati (1983), Unpublished Ph.D. Thesis, Dibrugarh University, India.
- [2] S.N.N. Pandit and G.L. Sriwastav (1975), Studies in cascade reliability-I, *IEEE Trans. on Reliability* **24**(1), 53–56.
- [3] A.C.N. Raghava Char, R. Kesava Rao and S.N.N. Pandit (1983), Survival function under stress attenuation in cascade reliability, *Opsearch* **20**, 190–207.
- [4] A. Rekha and T. Shyam Sunder (1997), Reliability of a cascade system with exponential strength and gamma stress, *Microelectronics Reliability* **37**(4), 683–685.
- [5] M.L. Shooman (1986), Probabilistic Reliability, An Engineering Approach, McGraw-Hill, New York.
- [6] G.L. Sriwastav and M.C. Kakati (1981), Stress-strength model with redundancy, IAPQR Trans. 6(1), 21–27.

Jonali Gogoi, Department of Mathematical Sciences, Tezpur University, Napaam 784028, India. E-mail: jonalig@tezu.ernet.in

Munindra Borah, Department of Mathematical Sciences, Tezpur University, Napaam 784028, India. E-mail: mborah@tezu.ernet.in

Received March 23, 2011 Accepted September 27, 2011