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1. Introduction
Linear matrix differential equations play important roles in various branches of science which
including mathematical physics, statistics, game theory, econometrics, control and system
theory (see e.g., [5,6,12,13]). Theory of linear matrix differential equations has been developed
by many researchers (see e.g., [1–3,7,8,10,11,14] and references therein). The simplest form of
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non-homogeneous matrix differential equation is the equation

X ′(t)= AX (t)+U(t). (1)

Here, A is a given square matrix, U(t) is a given integrable matrix-valued function and X (t) is
an unknown integrable matrix-valued function. In fact, (1) has a general solution given by a
one-parameter matrix-valued function [4]

X (t)= e(t−t0)A X (t0)+ e(t−t0)A ∗U(t),

here ∗ denotes the matrix convolution product. A non-homogeneous Sylvester differential
equation

X ′(t)= AX (t)+ X (t)B+U(t)

was investigated in [1] under the situation that X (t) is diagonal.
A system of coupled linear matrix differential equations generally takes the form

X ′(t)= AX (t)B+CY (t)D+U(t),

Y ′(t)= EX (t)F +GY (t)H+V (t).
(2)

Here, A, B, C, D, E, F , G, H are given constant square matrices, U(t),V (t) are given integrable
matrix-valued functions and X (t), Y (t) are unknown integrable matrix-valued functions. The
general solution of the system (2) when E = A, F = D, G = A, H = B was obtained in [1] under
the assumptions X (t), Y (t) are diagonal and (A ◦BT)(C ◦BT)= (C ◦BT)(A ◦BT).

In this paper, we investigate the linear system (2) when E = D, F = C, G = B, H = A and
the unknowns X (t) and Y (t) are diagonal. Our strategy is to reduce our problem to the simplest
form (1) by applying the diagonal extraction operator. Under certain assumptions on constant
matrices, an explicit formula of the general solution to this system is obtained in terms of matrix
series concerning exponentials and hyperbolic functions. Moreover, we discuss certain special
cases of the main system when initial conditions are imposed.

This paper is structured as follows. We provide tools for solving a system of matrix differential
equations in Section 2. These includes Hadamard product, the diagonal extraction operator,
functions of matrices defined by power series, and matrix convolution product. The main results
of the paper will be discussed in Section 3. Conclusion is provided in Section 4.

2. Preliminaries
For any natural numbers m and n, denote by Mm,n the set of m-by-n real matrices. When
m = n, the set Mn,n will be written as Mn.

2.1 Hadamard Product and Diagonal Extraction Operator
The Hadamard product of two matrices A = [ai j] ∈ Mm,n and B = [bi j] ∈ Mm,n is defined to be
the entry wise product

A ◦B = [ai jbi j] ∈ Mm,n.
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In contrast to the usual product, the Hadamard product is commutative. The diagonal extraction
operator of A is defined by

Vecd(A)= [a11 a22 . . . ann]T .

This operator is linear, and it is injective on the set of diagonal matrices.

Lemma 1 (see e.g., [1]). Let A,B, X ∈ Mn be such that X is diagonal. Then

Vecd(AXB)= (A ◦BT)Vecd(X ).

2.2 Functions of Matrices Defined by Power Series
Let A be a complex square matrix and let f be an analytic function defined on a region
containing the origin and all eigenvalues of A. Then there exists a radius R > 0 such that for
any |z| < R, the following McLaurin series converges:

f (z)=
∞∑

n=0
αnzn,

where αn = f (n)(0)
n! for any n ∈N∪ {0}. It follows that the matrix series

f (A) :=
∞∑

n=0
αn An

converges. Since the exponential function and the hyperbolic sine/cosine functions are entire
functions, each of the following matrix series converges:

eA :=
∞∑

n=0

1
n!

An,

sinh(A) :=
∞∑

n=0

1
(2n+1)!

A2n+1,

cosh(A) :=
∞∑

n=0

1
(2n)!

A2n.

Lemma 2 (see e.g., [15]). If (X ,Y ) is a pair of commuting complex square matrices, then
eX+Y = eX eY .

2.3 Matrix Convolution Product
In what follows, let Ω be any interval of the form [0,∞) or [0,b] for some b > 0. Recall that a
matrix-valued function A :Ω→ Mm,n, A(t)= [ai j(t)] is said to be integrable if the real-valued
function ai j is integrable for each i = 1, . . . ,m and j = 1, . . . ,n. The convolution of two integrable
functions f :Ω→R and g :Ω→R is defined by

( f ∗ g)(t)=
∫ t

0
f (τ)g(t−τ)dτ, t ∈Ω .

Definition 1. The (usual) convolution product of two integrable matrix-valued functions
A :Ω→ Mm,n, A(t)= [ai j(t)] and B :Ω→ Mn,p , B(t)= [bi j(t)] is defined to be the matrix-valued
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function A∗B :Ω→ Mm,p ,

(A∗B)(t)=
[

n∑
k=1

aik(t)∗bk j(t)

]
∈ Mm,p , for each t ∈Ω.

For convenience, we may write A(t)∗B(t) instead of (A∗B)(t).

See more information about matrix convolution product in [4,9].

3. Main Results
In this section, we investigate a system of coupled non-homogeneous linear matrix differential
equations. By applying the diagonal extraction operator, this system is reduced to a simple
vector-matrix differential equation. Under certain assumptions of constant matrices, an explicit
formula of the general solution is obtained in terms of matrix convolution product and
elementary matrix functions. Moreover, we discuss certain special cases of the main system
when initial conditions are imposed. In such case, its solution is uniquely determined.

To begin with, we consider the general system (2).

Lemma 3. The general solution of the system (2) satisfies[
Vecd X (t)
VecdY (t)

]
= e(t−t0)Q

[
Vecd X (t0)
VecdY (t0)

]
+ e(t−t0)Q ∗

[
VecdU(t)
VecdV (t)

]
, (3)

where Q =
[

A ◦BT C ◦DT

E ◦FT G ◦HT

]
.

Proof. From the system (2), we obtain by Lemma 1 that

Vecd X ′(t)=Vecd{AX (t)B+CY (t)D+U(t)}

= (A ◦BT)Vecd X (t)+ (C ◦DT)VecdY (t)+VecdU(t) ,

VecdY ′(t)=Vecd{EX (t)F +GY (t)H+V (t)}

= (E ◦FT)Vecd X (t)+ (G ◦HT)VecdY (t)+VecdV (t).

By denoting

z(t)=
[
Vecd X (t)
VecdY (t)

]
and w(t)=

[
VecdU(t)
VecdV (t)

]
,

we have z′(t)=Qz(t)+w(t). Hence, we get

z(t)= e(t−t0)Q z(t0)+ e(t−t0)Q ∗w(t),

and the formula (3) follows.

The following lemma is useful for deriving an explicit formula of the solution in the main
theorem.

Lemma 4. For any A ∈ Mn and B ∈ Mm, we have

e

[
0 A
B 0

]
=

[
cosh(A) sinh(A)
sinh(B) cosh(B)

]
. (4)
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Proof. Standard techniques in matrix analysis reveal that

e

[
0 A
B 0

]
= ∑

k is even

1
k!

[
Ak 0
0 Bk

]
+ ∑

k is odd

1
k!

[
0 Ak

Bk 0

]

=


∑

k is even

1
k! Ak ∑

k is odd

1
k! Ak

∑
k is odd

1
k!B

k ∑
k is even

1
k!B

k



= 1
2


∞∑

k=0

(1+(−1)k)Ak

k!

∞∑
k=0

(1−(−1)k)Ak

k!

∞∑
k=0

(1−(−1)k)Bk

k!

∞∑
k=0

(1+(−1)k)Bk

k!

=
[
cosh(A) sinh(A)
sinh(B) cosh(B)

]
.

From now on, let A,B,C,D,E,F ∈ Mn be given matrices. We wish to solve certain systems of
linear matrix differential equations. In these problems, we are given integrable matrix-valued
functions U ,V :Ω→ Mn. Unknown matrix-valued functions X ,Y :Ω→ Mn are assumed to be
integrable and diagonal.

Theorem 1. Assume that
(A ◦BT)(C ◦DT)= (C ◦DT)(AT ◦B),

(AT ◦B)(CT ◦D)= (CT ◦D)(A ◦BT).
(5)

Then the general solution of the following non-homogeneous system

X ′(t)= AX (t)B+CY (t)D+U(t),

Y ′(t)= DX (t)C+BY (t)A+V (t)
(6)

is given by

Vecd X (t)=e(t−t0)(A◦BT ){P1(t)Vecd X (t0)+P2(t)VecdY (t0)

+P1(t)∗VecdU(t)+P2(t)∗VecdV (t)},

VecdY (t)=e(t−t0)(AT◦B){P2(t)T Vecd X (t0)+P1(t)T VecdY (t0)

+P2(t)T ∗VecdU(t)+P1(t)T ∗VecdV (t)}.

(7)

Here, P1(t)= cosh(t− t0)(C ◦DT) and P2(t)= sinh(t− t0)(C ◦DT).

Proof. For simplicity, let us denote

z(t)=
[
Vecd X (t)
VecdY (t)

]
, w(t)=

[
VecdU(t)
VecdV (t)

]
.

By Lemma 3, the general solution of the system (6) is given by

z(t)= e(t−t0)Q z(t0)+ e(t−t0)Q ∗w(t).

In order to obtain an explicit formula of e(t−t0)Q , denote

R =
[

A ◦BT 0
0 AT ◦B

]
and S =

[
0 C ◦DT

CT ◦D 0

]
.

Observe that

RS =
[

0 (A ◦BT)(C ◦DT)
(AT ◦B)(CT ◦D) 0

]
, SR =

[
0 (C ◦DT)(AT ◦B)

(CT ◦D)(A ◦BT) 0

]
.
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The assumption (5) now implies that RS = SR. Since Q = R+S, it follows from Lemmas 2
and 4 that

e(t−t0)Q = e(t−t0)R e(t−t0)S

=
[

e(t−t0)(A◦BT ) 0
0 e(t−t0)(AT◦B)

][
P1(t) P2(t)

P2(t)T P1(t)T

]

=
[

e(t−t0)(A◦BT )P1(t) e(t−t0)(A◦BT )P2(t)
e(t−t0)(AT◦B)P2(t)T e(t−t0)(AT◦B)P1(t)T

]
.

Thus, an explicit formula for e(t−t0)Q ∗w(t) is given by[
e(t−t0)(A◦BT ) {P1(t)∗VecdU(t)+P2(t)∗VecdV (t)}

e(t−t0)(AT◦B) {P2(t)T ∗VecdU(t)+P1(t)T ∗VecdV (t)
}]

Therefore, the general solution of the system (6) is given by (7)

Once we know Vecd X (t), we can obtain X (t) due to the injectivity of the diagonal extraction
operator. When U(t) = V (t) = 0, the system (6) becomes a homogeneous one, and its general
solution is simplified to

Vecd X (t)= e(t−t0)(A◦BT ){[cosh(t− t0)(C ◦DT)]Vecd X (t0)+ [sinh(t− t0)(C ◦DT)]VecdY (t0)},

VecdY (t)= e(t−t0)(AT◦B){[sinh(t− t0)(CT ◦D)]Vecd X (t0)+ [cosh(t− t0)(CT ◦D)]VecdY (t0)}.

In the rest of paper, we discuss certain initial value problems related to the system (7).

Corollary 1. The solution of the initial value problem

X ′(t)= X (t)+CY (t)D+U(t),

Y ′(t)= DX (t)C+Y (t)+V (t),

X (0)= E,Y (0)= F

is given by

Vecd X (t)=et{[cosh t(C ◦DT)]VecdE+ [sinh t(C ◦DT)]VecdF

+ [cosh t(C ◦DT)]∗VecdU(t)+ [sinh t(C ◦DT)]∗VecdV (t)},

VecdY (t)=et{[sinh t(CT ◦D)]VecdE+ [cosh t(CT ◦D)]VecdF

+ [sinh t(CT ◦D)]∗VecdU(t)+ [cosh t(CT ◦D)]∗VecdV (t)}.

Proof. This is a special case of Theorem 1 when A = B = In and t0 = 0.

Corollary 2. Assume that (AT ◦ A)(D ◦ In) = (D ◦ In)(AT ◦ A). Then, the solution of the initial
value problem

X ′(t)= AX (t)A+Y (t)D+U(t),

Y ′(t)= DX (t)+ AY (t)A+V (t),

X (0)= E,Y (0)= F

is given by

Vecd X (t)=et(AT◦A){K1(t)VecdE+K2(t)VecdF +K1(t)∗VecdU(t)+K2(t)∗VecdV (t)},
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VecdY (t)=et(AT◦A){K2(t)VecdE+K1(t)VecdF +K2(t)∗VecdU(t)+K1(t)∗VecdV (t)}.

Here, K1(t)= diag(cosh tc11, . . . ,cosh tcnn) and K2(t)= diag(sinh tc11, . . . ,sinh tcnn).

Proof. This is a special case of Theorem 1 when A = B, C = In and t0 = 0. Note that
cosh t(D ◦ In)= K1(t) and sinh t(D ◦ In)= K2(t).

Corollary 3. Assume that (AT ◦ A)(In ◦C) = (In ◦C)(AT ◦ A). Then, the solution of the initial
value problem

X ′(t)= AX (t)A+CY (t)+U(t),

Y ′(t)= X (t)C+ AY (t)A+V (t),

X (0)= E,Y (0)= F

is given by

Vecd X (t)=et(AT◦A){K1(t)VecdE+K2(t)VecdF +K1(t)∗VecdU(t)+K2(t)∗VecdV (t)},

VecdY (t)=et(AT◦A){K2(t)VecdE+K1(t)VecdF +K2(t)∗VecdU(t)+K1(t)∗VecdV (t)}.

Here, K1(t) and K2(t) are defined as in the previous corollary.

Proof. This is a special case of Theorem 1 when A = B, D = In and t0 = 0. Note that
cosh t(C ◦ In)=K1(t) and sinh t(C ◦ In)= K2(t).

Corollary 4. The solution of the initial value problem

X ′(t)= CY (t)+U(t),

Y ′(t)= X (t)C+V (t),

X (0)= E,Y (0)= F

is given by

Vecd X (t)=K1(t)VecdE+K2(t)VecdF +K1(t)∗VecdU(t)+K2(t)∗VecdV (t),

VecdY (t)=K2(t)VecdE+K1(t)VecdF +K2(t)∗VecdU(t)+K1(t)∗VecdV (t).

Here, K1(t)= diag(cosh tc11, . . . ,cosh tcnn) and K2(t)= diag(sinh tc11, . . . ,sinh tcnn).

Proof. This is a special case of Corollary 3 when A = 0.

4. Conclusion
We investigate the following system of coupled non-homogeneous linear matrix differential
equations:

X ′(t)= AX (t)B+CY (t)D+U(t), Y ′(t)= DX (t)C+BY (t)A+V (t),

where (A ◦BT)(C ◦DT) = (C ◦DT)(AT ◦B) and (AT ◦B)(CT ◦D) = (CT ◦D)(A ◦BT). We obtain
an explicit formula of the general solution of this system in terms of the matrix convolution
product, the diagonal extraction operator, and elementary matrix functions as follows:

Vecd X (t)= e(t−t0)(A◦BT ){P1(t)Vecd X (t0)+P2(t)VecdY (t0)
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+P1(t)∗VecdU(t)+P2(t)∗VecdV (t)},

VecdY (t)= e(t−t0)(AT◦B){P2(t)T Vecd X (t0)+P1(t)T VecdY (t0)

+P2(t)T ∗VecdU(t)+P1(t)T ∗VecdV (t)}.

Here, P1(t) = cosh(t− t0)(C ◦DT) and P2(t) = sinh(t− t0)(C ◦DT). In particular, many
interesting special cases of the main system are studied.

Acknowledgements
This research was supported by King Mongkut’s Institute of Technology Ladkrabang Research
Fund.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] Z. Al-Zhour, A computationally-efficient solutions of coupled matrix differential equations for

diagonal unknown matrices, J. Math. Sci. Adv. Appl. 1(2) (2008), 373 – 387.

[2] Z. Al-Zhour, Efficient solutions of coupled matrix and matrix differential equations, Intell. Cont.
Autom. 3(2) (2012), 176 – 187.

[3] Z. Al-Zhour, The general (vector) solution of such linear (coupled) matrix fractional differential
equations by using Kronecker structures, Appl. Math. Comp. 232 (2014), 498 – 510.

[4] Z. Al-Zhour and A. Kilicman, Some applications of the convolution and Kronecker products of
matrices, in Proceedings of the Simposium Kebangsaan Sains Matematik ke XIII, 551 – 562 (2005).

[5] G. N. Boshnakov, The asymptotic covariance matrix of the multivariate serial correlations, Stoch.
Proc. Appl. 65 (1996), 251 – 258.

[6] T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems, Springer, London (1995).

[7] L. Jódar and H. Abou-Kandil, Kronecker products and coupled matrix Riccati differential systems,
Linear Algebra Appl. 121 (1989), 39 – 51.

[8] A. Kilicman and Z. Al-Zhour, The general common exact solutions of coupled linear matrix and
matrix differential equations, J. Anal. Comput. 1(1) (2005), 15 – 30.

[9] A. Kilicman and Z. Al-Zhour, On the connection between Kronecker and Hadamard convolution
products of matrices and some applications, Abstr. Appl. Anal. 2009 (2009), 10 pages,
doi:10.1155/2009/736243.

[10] A. Kilicman and Z. Al-Zhour, Note on the numerical solutions of the general matrix convolution
equations by using the iterative methods and box convolution products, Abstr. Appl. Anal. 2010
(2010), 16 pages, doi:10.1155/2010/106192.

[11] R. Kongyaksee and P. Chansangiam, Solving systems of nonhomogeneous coupled linear matrix
differential equations in terms of Mittag-Leffler matrix functions, J. Comp. Appl. Anal. 27(7) (2019),
1150 – 1160.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 237–245, 2018

http://dx.doi.org/10.1155/2009/736243
http://dx.doi.org/10.1155/2010/106192


Solving Non-Homogeneous Coupled Linear Matrix Differential Equations. . . : S. Saechai and P. Chansangiam 245

[12] J.R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and
Econometrics, John Wiley & Sons, Chichester (2007).

[13] C.R. Rao and M.B. Rao, Matrix Algebra and Its Applications to Statistics and Econometrics, World
Scientific, Singapore (1998).

[14] S. Saechai and P. Chansangiam, General exact solution to a system of coupled linear matrix
differential equations, Adv. Appl. Math. Sci. 16(5) (2017), 151 – 161.

[15] W.H. Steeb and Y. Hardy, Matrix Calculus and Kronecker Product: A Practical Approach to Linear
and Multilinear Algebra, World Scientific, Singapore (2011).

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 1 & 2, pp. 237–245, 2018


	Introduction
	Preliminaries
	Hadamard Product and Diagonal Extraction Operator
	Functions of Matrices Defined by Power Series
	Matrix Convolution Product

	Main Results
	Conclusion
	References

