(C) RGN Publications

Robin's Inequality for Sum of Divisors Function and the Riemann Hypothesis

Aleksander Grytczuk
Dedicated to the memory of Professor Włodzimierz Staś

Abstract

Let $\sigma(n)$ denote the sum of divisors function. In this paper we give a simple proof of the Robin inequality (R): $\sigma(n)<e^{\gamma} n \log \log n$, for all positive integers $n \geq 5041$.

The Robin inequality (\mathbf{R}) implies Riemann Hypothesis

1. Introduction

The Riemann zeta function $\zeta(s)$ for $s=\sigma+i t$ is defined by the Dirichlet series $\varsigma(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, which converges for $\sigma>1$ and it has analytic continuation to the complex plane with one singularity a simple pole with residue 1.

The Riemann Hypothesis ([8]), is intimately connected with the distribution of prime numbers.The Riemann zeta-function is a special case of L-functions.

These L-functions are connected with many important and difficult problems in number theory, algebraic geometry, topology, representation theory and modern physics, see; Berry and Keating [1], Katz and Sarnak [5], and Murty [7].

In 1984 Robin [9] proved very interesting and important criterion:
Robin's criterion. The Riemann Hypothesis is true if and only if
(R) $\quad \sigma(n)<e^{\gamma} n \log \log n$,
for all positive integers $n \geq$ 5041, where $\sigma(n)=\sum_{d \mid n} d$ and γ is Euler's constant.
In 2002 Lagarias [6] proved some extension of the Robin criterion. Many others criteria and important results connected with the Riemann Hypothesis have been

[^0]proved and these results have been described by Conrey in his elegant article [3]. Recently, Choie, Lichardopol, Moree and Sole' in the paper [2] proved that if $n \geq 37$ does not satisfy Robin's criterion it must be even and is neither squarefree nor squarefull, moreover that n must be divisible by fifth power >1.

In our paper [4]; see, Theorem 1, p. 70 has been proved of the following result:
R.1. Let $n=2 m,(2, m)=1$. Then for all odd positive integers $m>\frac{3^{9}}{2}$ we have
(1.1) $\sigma(2 m)<\frac{39}{40} e^{\gamma} 2 m \log \log 2 m$,
and
(1.2) $\quad \sigma(m)<e^{\gamma} m \log \log m$.

It is easy to see that from the result of $\mathbf{R} .1$ follows that for complete proof of the Robin inequality (\mathbf{R}) it suffices to prove that inequality (\mathbf{R}) is true for all positive integers n such that $n=2^{\alpha} m,(2, m)=1$ and $\alpha \geq 2$.

In this connection in the paper [4] has been proved the following theorem (see, Theorem 2, p. 71):
R.2. If there exists an positive integer m_{0} such that for every odd positive integer $m>m_{0}$, we have
(1.3) $\sigma(2 m)<\frac{3}{4} e^{\gamma} 2 m \log \log 2 m$,
then for all integers $n=2^{\alpha} m,(2, m)=1, m>m_{0}$ and every fixed integer $\alpha \geq 2$ we have
(1.4) $\quad \sigma\left(2^{\alpha} m\right)<e^{\gamma} 2^{\alpha} m \log \log 2^{\alpha} m$.

The result described in R. 1 is cited by M. Weber in his monograph [11] on page 541.

From the result of R. 2 follows that for complete proof of the Robin inequality (R) it suffices to prove the following theorem:
Theorem. For all integers $n=2 m,(2, m)=1$ such that $m>\frac{1}{2} e^{e^{9}}$ we have
(*) $\quad \sigma(2 m)<\frac{3}{4} e^{\gamma} 2 m \log \log 2 m$.
We prove this Theorem in part 3 of this paper by using basic lemmas given in next part of our paper.

2. Basic Lemmas

Lemma 1. Let $n=2^{\alpha} m,(2, m)=1$ and let $\omega(m)$ denote the number of distinct primes divisors of m. If $\omega(m)=1$, then for every odd positive integer $m>\frac{1}{4} e^{e^{2}}$ and each fixed integer $\alpha \geq 2$, we have
(2.1) $\quad \sigma\left(2^{\alpha} m\right)<e^{\gamma} 2^{\alpha} m \log \log 2^{\alpha} m$.

Proof. By the assumption of Lemma 1 it follows that $m=p^{\beta}$, where $p \geq 3$ is an odd prime and $\beta \geq 1$ is positive integer.

Moreover,by the assumption that $m>\frac{1}{4} e^{e^{2}}$ it follows that

$$
\begin{equation*}
m=p^{\beta}>\frac{1}{4} e^{e^{2}} . \tag{2.2}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)=\sigma\left(2^{\alpha} p^{\beta}\right)=\sigma\left(2^{\alpha}\right) \sigma\left(p^{\beta}\right)=\left(2^{\alpha+1}-1\right) \frac{p^{\beta+1}-1}{p-1} \tag{2.3}
\end{equation*}
$$

Since $p-1 \geq \frac{2}{3} p$ and $2^{\alpha+1}-1<2^{\alpha+1}$, then from (2.3) and (2.2) it follows that

$$
\begin{equation*}
\sigma\left(2^{\alpha} m\right)<2^{\alpha+1} \cdot \frac{p^{\beta+1}}{\frac{2}{3} p}=3 \cdot 2^{\alpha} m \tag{2.4}
\end{equation*}
$$

From the assumption follows that $2^{\alpha} m \geq 2^{2} m>e^{e^{2}}$, hence

$$
\begin{equation*}
e^{\gamma} \log \log 2^{\alpha} m>1.6 \log \log e^{e^{2}}>1.6 \times 2>3 \tag{2.5}
\end{equation*}
$$

By (2.5) and (2.4) it follows that the inequality (2.1) holds and the proof of Lemma 1 is finished.

Lemma 2. Let $n=2 m_{1},\left(2, m_{1}\right)=1$ and $\omega\left(m_{1}\right)=2$. Then for every odd positive integer m_{1} such that $m_{1}>\frac{1}{2} e^{e^{3}}$, we have

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{4} e^{\gamma} \log \log 2 m_{1} . \tag{2.6}
\end{equation*}
$$

Proof. By the assumption of Lemma 2 it follows that $m_{1}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$. Therefore by the properties of the function σ we get,

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}=\frac{\sigma(2) \sigma\left(p_{1}^{\alpha_{1}}\right) \sigma\left(p_{2}^{\alpha_{2}}\right)}{2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}}=\frac{3}{2} \frac{\left(p_{1}^{\alpha_{1}+1}-1\right)\left(p_{2}^{\alpha_{2}+1}-1\right)}{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}\left(p_{1}-1\right)\left(p_{2}-1\right)} . \tag{2.7}
\end{equation*}
$$

Since $p_{1} \geq 3$ and $p_{2} \geq 5$ then we have,

$$
\begin{equation*}
p_{1}-1 \geq \frac{2}{3} p_{1}, \quad p_{2}-1 \geq \frac{4}{5} p_{2} . \tag{2.8}
\end{equation*}
$$

From (2.7) and (2.8) we obtain

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{5}{4}=\frac{3}{4} \cdot \frac{15}{4} \tag{2.9}
\end{equation*}
$$

Since $e^{\gamma}>1.6$ and $2 m_{1}>e^{e^{3}}$, then we get
(2.10) $e^{\gamma} \log \log 2 m_{1}>1.6 \log \log e^{e^{3}}=1.6 \times 3=4.8>\frac{15}{4}$.

From (2.10) and (2.9) we obtain the inequality (2.6) and the proof of Lemma 2 is complete.

Lemma 3. Let $n=\prod_{j=1}^{k} p_{j}^{\alpha_{j}}$ and let $I(n)=\prod_{j=1}^{k}\left(1-\frac{1}{p_{j}^{1+\alpha_{j}}}\right)$, where p_{j} are primes and $\alpha_{j} \geq 1$ are integers for $j=1,2, \ldots, k$ and let σ, φ be the sum of divisors function and Euler's totient function, respectively. Then we have
(2.11) $\frac{\sigma(n)}{n}=I(n) \frac{n}{\varphi(n)}$.

The proof of Lemma 3 is given in our paper [4], see; Lemma 2 on page 69.
Lemma 4 (Rosser-Schoenfeld's inequality [1], Theorem 15; Cf. [4], Lemma 1, p. 69). Let φ be the Euler's totient function. Then for all positive integers $n \geq 3$, the following inequality is true

$$
\begin{equation*}
\frac{n}{\varphi(n)} \leq e^{\gamma}\left(\log \log n+\frac{2.5}{e^{\gamma} \log \log n}\right) \tag{R-S}
\end{equation*}
$$

except, when $n=3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23=223092870$
and this case the constant $c=2.5$ must be replaced by the constant $c_{1}=2.50637<$ 2.51.

Now, we prove the following Lemma:
Lemma 5. Let $n=2 m_{1},\left(2, m_{1}\right)=1$ and $\omega\left(m_{1}\right)=2$. Then for all integers $2 m_{1}>e^{e^{9}}$ we have
(2.12) $I\left(m_{1}\right)<\frac{50}{51}$.

Proof. From Lemma 3 and the definition of the function $I(n)$ for case $n=2 m_{1}=$ $2 \cdot p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}}$, we have
(2.13) $I(n)=I\left(2 m_{1}\right)=\left(1-\frac{1}{2^{1+1}}\right)\left(1-\frac{1}{p_{1}^{1+\alpha_{1}}}\right)\left(1-\frac{1}{p_{2}^{1+\alpha_{2}}}\right)=I(2) \cdot I\left(m_{1}\right)$.

By (2.13) it follows that

$$
\begin{equation*}
0<I\left(m_{1}\right)<1 \Leftrightarrow I\left(m_{1}\right) \in(0,1)=\left(0, \frac{50}{51}\right) \cup\left[\frac{50}{51}, 1\right) \tag{2.14}
\end{equation*}
$$

From (2.14) and the assumption of Lemma 5 and Lemma 3 follows that the inequality (2.6) is true, so denote that we have
(2.15) If $\sigma\left(2 m_{1}\right)<\frac{3}{4} e^{\gamma} 2 m_{1} \log \log 2 m_{1}$, then $I\left(m_{1}\right) \in\left(0, \frac{50}{51}\right)$ or $I\left(m_{1}\right) \in\left[\frac{50}{51}, 1\right)$. Suppose that
(2.16) If $\sigma\left(2 m_{1}\right)<\frac{3}{4} e^{\gamma} 2 m_{1} \log \log 2 m_{1}$, then $I\left(m_{1}\right) \in\left[\frac{50}{51}, 1\right)$, so denote that (2.16) is equivalent to
(2.17) If $\sigma\left(2 m_{1}\right)<\frac{3}{4} e^{\gamma} 2 m_{1} \log \log 2 m_{1}$, then $\frac{50}{51} \leq I\left(m_{1}\right)<1$.

Applying to (2.17) well-known the law of contraposition we get,

$$
\text { if } I\left(m_{1}\right)<\frac{50}{51}, \text { then } \sigma\left(2 m_{1}\right) \geq \frac{3}{4} e^{\gamma} 2 m_{1} \log \log 2 m_{1}
$$

From the identity (2.11) of Lemma 3 and the fact that the function $I(n)$ is multiplicative function, we obtain

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}=\left(1-\frac{1}{2^{2}}\right) I\left(m_{1}\right) \frac{2 m_{1}}{\varphi\left(2 m_{1}\right)}=\frac{3}{4} I\left(m_{1}\right) \frac{2 m_{1}}{\varphi\left(2 m_{1}\right)}, \tag{2.18}
\end{equation*}
$$

because, in this case $n=2 m_{1}$.
Applying to the $\frac{2 m_{1}}{\varphi\left(2 m_{1}\right)}$ of (2.18) the Rosser-Schoenfeld's inequality (R-S) from Lemma 4, with constant $c_{1}<2.51$ we get,

$$
\begin{equation*}
\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{4} I\left(m_{1}\right) e^{\gamma} \log \log 2 m_{1}\left(1+\frac{2.51}{e^{\gamma}\left(\log \log 2 m_{1}\right)^{2}}\right) \tag{2.19}
\end{equation*}
$$

Since $2 m_{1}>e^{e^{9}}$ then we have
$(2.20) \quad e^{\gamma}\left(\log \log 2 m_{1}\right)^{2}>1.6 \times 81=129.6>125.5=50 \times 2.51$.
From (2.20) we obtain
(2.21) $1+\frac{2.51}{e^{\gamma}\left(\log \log 2 m_{1}\right)^{2}}<1+\frac{2.51}{50 \times 2.51}=1+\frac{1}{50}=\frac{51}{50}$.

By (2.19) and (2.21) it follows that
(2.22) $\frac{\sigma\left(2 m_{1}\right)}{2 m_{1}}<\frac{3}{4} I\left(m_{1}\right) \frac{51}{50} e^{\gamma} \log \log 2 m_{1}$.

From the assumption that $I\left(m_{1}\right)<\frac{50}{51}$ and (2.22) we get that the (2.16) is impossible.

The proof of Lemma 5 is complete.

3. Proof of the Theorem

The proof of the Theorem we give by the induction with respect to $k=\omega(m)$.
From Lemma 2 it follows that the Theorem is true when $k=2$. Suppose that the Theorem is true for all m such that $\omega(m)<k$.

We prove our Theorem for m, when $\omega(m)=k$.
Let $n=2 m=2 m_{1} \cdot M,(2, m)=1, m=m_{1} \cdot M ;\left(m_{1}, M\right)=1$, where $\omega\left(m_{1}\right)=2, \omega(m)=\omega\left(m_{1} \cdot M\right)=k>2$.

Then from the identity (2.11) of Lemma 3 and the Rosser-Schoenfeld's inequality ($R-S$) of Lemma 4 we obtain

$$
\begin{align*}
\frac{\sigma(n)}{n} & =\frac{\sigma\left(2 m_{1} \cdot M\right)}{2 m_{1} \cdot M} \tag{3.1}\\
& <\frac{3}{4} \cdot I\left(m_{1} \cdot M\right) e^{\gamma} \log \log 2 m_{1} \cdot M\left(1+\frac{2,51}{e^{\gamma}\left(\log \log 2 m_{1} \cdot M\right)^{2}}\right)
\end{align*}
$$

By Lemma 5 and the formula (2.11) of Lemma 3 it follows that

$$
\begin{equation*}
I(m)=I\left(m_{1} \cdot M\right)=I\left(m_{1}\right) \cdot I(M)<\frac{50}{51} \tag{3.2}
\end{equation*}
$$

because the function $I(m)$ is multiplicative function. Hence, from (3.1) and (3.2) follows that
(3.3) $\frac{\sigma(n)}{n}=\frac{\sigma(2 m)}{2 m}<\frac{3}{4} e^{\gamma} \cdot \frac{50}{51}\left(1+\frac{2,51}{e^{\gamma}(\log \log 2 m)^{2}}\right) \log \log 2 m$.

From (3.3) and (2.21) it follows that for all integers m, such that $2 m>e^{e^{9}}$, we have
(3.4) $\frac{\sigma(2 m)}{2 m}<\frac{3}{4} e^{\gamma} \log \log 2 m$,
and the proof of the Theorem is complete.
Remark. By Proposition 1 and 4 of [9] it is enough, to prove RH, to derive Robin inequality (R) for n large enough and therefore no need of computer check.

References

[1] M.V. Berry and J.P. Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Review 41 (1999), 236-226.
[2] Y.J. Choie, N. Lichardopol, P. Moree and P. Sole', On the Robin's criterion for the Riemann hypothesis, J. Theorie des Nombres de Bordeax 19 (2007), 357-372.
[3] J.B. Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341-353.
[4] A. Grytczuk, Upper bound for sum of divisors function and the Riemann hypothesis, Tsukuba J. Math. 31(1) (2007), 67-75.
[5] N. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1-26.
[6] J.C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534-543.
[7] M.R. Murty, A motivated introduction to the Laglands program, in Advances in Nunmber Theory, Oxford University Press, 1993, 37-66.
[8] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsber. Akad. Berlin (1859), 671-680.
[9] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
[10] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6(1962), 64-94.
[11] M. Weber, Dynamical Systems and Processes, European Math. Soc., 2009.

Aleksander Grytczuk, Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul.Prof.Szafrana 4a, 65-516 Zielona Góra, Poland; and
Jan Paweł II Western Higher School of International Commerce and Finance, ul.Plac Słowiański 9, 65-069 Zielona Góra, Poland.
E-mail: A.Grytczuk@wmie.uz.zgora.pl, algrytczuk@onet.pl

Received April 20, 2011
Accepted September 16, 2011

[^0]: 2010 Mathematics Subject Classification. 11A25, 11M26.
 Key words and phrases. Sum of divisor function; Robin's criterion; Riemann hypothesis.

