Journal of Informatics and Mathematical Sciences Volume 4 (2012), Number 1, pp. 15–21 © RGN Publications

Robin's Inequality for Sum of Divisors Function and the Riemann Hypothesis

http://www.rgnpublications.com

Aleksander Grytczuk

Dedicated to the memory of Professor Włodzimierz Staś

Abstract. Let $\sigma(n)$ denote the sum of divisors function. In this paper we give a simple proof of the Robin inequality **(R)**: $\sigma(n) < e^{\gamma} n \log \log n$, for all positive integers $n \ge 5041$.

The Robin inequality (R) implies Riemann Hypothesis.

1. Introduction

The Riemann zeta function $\zeta(s)$ for $s = \sigma + it$ is defined by the Dirichlet series $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, which converges for $\sigma > 1$ and it has analytic continuation to the complex plane with one singularity a simple pole with residue 1.

The Riemann Hypothesis ([8]), is intimately connected with the distribution of prime numbers. The Riemann zeta-function is a special case of *L*-functions.

These *L*-functions are connected with many important and difficult problems in number theory, algebraic geometry, topology, representation theory and modern physics, see; Berry and Keating [1], Katz and Sarnak [5], and Murty [7].

In 1984 Robin [9] proved very interesting and important criterion:

Robin's criterion. The Riemann Hypothesis is true if and only if

(**R**) $\sigma(n) < e^{\gamma} n \log \log n$,

for all positive integers $n \ge 5041$, where $\sigma(n) = \sum_{d|n} d$ and γ is Euler's constant.

In 2002 Lagarias [6] proved some extension of the Robin criterion. Many others criteria and important results connected with the Riemann Hypothesis have been

²⁰¹⁰ Mathematics Subject Classification. 11A25, 11M26.

Key words and phrases. Sum of divisor function; Robin's criterion; Riemann hypothesis.

proved and these results have been described by Conrey in his elegant article [3]. Recently, Choie, Lichardopol, Moree and Sole' in the paper [2] proved that if $n \ge 37$ does not satisfy Robin's criterion it must be even and is neither squarefree nor squarefull, moreover that *n* must be divisible by fifth power > 1.

In our paper [4]; see, Theorem 1, p. 70 has been proved of the following result:

R.1. Let n = 2m, (2, m) = 1. Then for all odd positive integers $m > \frac{3^9}{2}$ we have

(1.1)
$$\sigma(2m) < \frac{39}{40} e^{\gamma} 2m \log \log 2m,$$

and

(1.2)
$$\sigma(m) < e^{\gamma} m \log \log m$$
.

It is easy to see that from the result of **R.1** follows that for complete proof of the Robin inequality **(R)** it suffices to prove that inequality **(R)** is true for all positive integers *n* such that $n = 2^{\alpha}m$, (2, m) = 1 and $\alpha \ge 2$.

In this connection in the paper [4] has been proved the following theorem (see, Theorem 2, p. 71):

R.2. If there exists an positive integer m_0 such that for every odd positive integer $m > m_0$, we have

(1.3)
$$\sigma(2m) < \frac{3}{4}e^{\gamma}2m\log\log 2m,$$

then for all integers $n = 2^{\alpha}m$, (2, m) = 1, $m > m_0$ and every fixed integer $\alpha \ge 2$ we have

(1.4) $\sigma(2^{\alpha}m) < e^{\gamma}2^{\alpha}m\log\log 2^{\alpha}m.$

The result described in **R.1** is cited by M. Weber in his monograph [11] on page 541.

From the result of **R.2** follows that for complete proof of the Robin inequality **(R)** it suffices to prove the following theorem:

Theorem. For all integers n = 2m, (2, m) = 1 such that $m > \frac{1}{2}e^{e^9}$ we have

(*)
$$\sigma(2m) < \frac{3}{4}e^{\gamma}2m\log\log 2m.$$

We prove this Theorem in part 3 of this paper by using basic lemmas given in next part of our paper.

2. Basic Lemmas

Lemma 1. Let $n = 2^{\alpha}m$, (2, m) = 1 and let $\omega(m)$ denote the number of distinct primes divisors of m. If $\omega(m) = 1$, then for every odd positive integer $m > \frac{1}{4}e^{e^2}$ and each fixed integer $\alpha \ge 2$, we have

(2.1) $\sigma(2^{\alpha}m) < e^{\gamma}2^{\alpha}m\log\log 2^{\alpha}m.$

Proof. By the assumption of Lemma 1 it follows that $m = p^{\beta}$, where $p \ge 3$ is an odd prime and $\beta \ge 1$ is positive integer.

Moreover, by the assumption that $m > \frac{1}{4}e^{e^2}$ it follows that

(2.2)
$$m = p^{\beta} > \frac{1}{4}e^{e^2}.$$

On the other hand we have

(2.3)
$$\sigma(2^{\alpha}m) = \sigma(2^{\alpha}p^{\beta}) = \sigma(2^{\alpha})\sigma(p^{\beta}) = (2^{\alpha+1}-1)\frac{p^{\beta+1}-1}{p-1}$$

Since $p-1 \ge \frac{2}{3}p$ and $2^{\alpha+1}-1 < 2^{\alpha+1}$, then from (2.3) and (2.2) it follows that

(2.4)
$$\sigma(2^{\alpha}m) < 2^{\alpha+1} \cdot \frac{p^{\beta+1}}{\frac{2}{3}p} = 3 \cdot 2^{\alpha}m.$$

From the assumption follows that $2^{\alpha}m \ge 2^2m > e^{e^2}$, hence

(2.5) $e^{\gamma} \log \log 2^{\alpha} m > 1.6 \log \log e^{e^2} > 1.6 \times 2 > 3.$

By (2.5) and (2.4) it follows that the inequality (2.1) holds and the proof of Lemma 1 is finished. $\hfill \Box$

Lemma 2. Let $n = 2m_1$, $(2, m_1) = 1$ and $\omega(m_1) = 2$. Then for every odd positive integer m_1 such that $m_1 > \frac{1}{2}e^{e^3}$, we have

(2.6)
$$\frac{\sigma(2m_1)}{2m_1} < \frac{3}{4}e^{\gamma}\log\log 2m_1.$$

Proof. By the assumption of Lemma 2 it follows that $m_1 = p_1^{\alpha_1} p_2^{\alpha_2}$. Therefore by the properties of the function σ we get,

(2.7)
$$\frac{\sigma(2m_1)}{2m_1} = \frac{\sigma(2)\sigma(p_1^{\alpha_1})\sigma(p_2^{\alpha_2})}{2p_1^{\alpha_1}p_2^{\alpha_2}} = \frac{3}{2}\frac{(p_1^{\alpha_1+1}-1)(p_2^{\alpha_2+1}-1)}{p_1^{\alpha_1}p_2^{\alpha_2}(p_1-1)(p_2-1)}.$$

Since $p_1 \ge 3$ and $p_2 \ge 5$ then we have,

(2.8)
$$p_1 - 1 \ge \frac{2}{3}p_1, \quad p_2 - 1 \ge \frac{4}{5}p_2.$$

Aleksander Grytczuk

From (2.7) and (2.8) we obtain

(2.9)
$$\frac{\sigma(2m_1)}{2m_1} < \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{5}{4} = \frac{3}{4} \cdot \frac{15}{4}$$

Since $e^{\gamma} > 1.6$ and $2m_1 > e^{e^3}$, then we get

(2.10)
$$e^{\gamma} \log \log 2m_1 > 1.6 \log \log e^{e^3} = 1.6 \times 3 = 4.8 > \frac{15}{4}.$$

From (2.10) and (2.9) we obtain the inequality (2.6) and the proof of Lemma 2 is complete. $\hfill \Box$

Lemma 3. Let $n = \prod_{j=1}^{k} p_j^{\alpha_j}$ and let $I(n) = \prod_{j=1}^{k} \left(1 - \frac{1}{p_j^{1+\alpha_j}}\right)$, where p_j are primes and $\alpha_j \ge 1$ are integers for j = 1, 2, ..., k and let σ , φ be the sum of divisors function and Euler's totient function, respectively. Then we have

(2.11)
$$\frac{\sigma(n)}{n} = I(n)\frac{n}{\varphi(n)}.$$

The proof of Lemma 3 is given in our paper [4], see; Lemma 2 on page 69.

Lemma 4 (Rosser-Schoenfeld's inequality [1], Theorem 15; Cf. [4], Lemma 1, p. 69). Let φ be the Euler's totient function. Then for all positive integers $n \ge 3$, the following inequality is true

(**R-S**)
$$\frac{n}{\varphi(n)} \le e^{\gamma} \left(\log \log n + \frac{2.5}{e^{\gamma} \log \log n} \right),$$

except, when $n = 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 = 223\ 092\ 870$ and this case the constant c = 2.5 must be replaced by the constant $c_1 = 2.50637 < 2.51$.

Now, we prove the following Lemma:

Lemma 5. Let $n = 2m_1$, $(2, m_1) = 1$ and $\omega(m_1) = 2$. Then for all integers $2m_1 > e^{e^9}$ we have

$$(2.12) \quad I(m_1) < \frac{50}{51}.$$

Proof. From Lemma 3 and the definition of the function I(n) for case $n = 2m_1 = 2 \cdot p_1^{\alpha_1} \cdot p_2^{\alpha_2}$, we have

(2.13)
$$I(n) = I(2m_1) = \left(1 - \frac{1}{2^{1+1}}\right) \left(1 - \frac{1}{p_1^{1+\alpha_1}}\right) \left(1 - \frac{1}{p_2^{1+\alpha_2}}\right) = I(2) \cdot I(m_1).$$

By (2.13) it follows that

(2.14)
$$0 < I(m_1) < 1 \iff I(m_1) \in (0,1) = \left(0,\frac{50}{51}\right) \cup \left[\frac{50}{51},1\right].$$

18

From (2.14) and the assumption of Lemma 5 and Lemma 3 follows that the inequality (2.6) is true, so denote that we have

(2.15) If
$$\sigma(2m_1) < \frac{3}{4}e^{\gamma}2m_1\log\log 2m_1$$
, then $I(m_1) \in \left(0, \frac{50}{51}\right)$ or $I(m_1) \in \left[\frac{50}{51}, 1\right)$

Suppose that

(2.16) If
$$\sigma(2m_1) < \frac{3}{4}e^{\gamma}2m_1\log\log 2m_1$$
, then $I(m_1) \in \left[\frac{50}{51}, 1\right]$,

so denote that (2.16) is equivalent to

(2.17) If
$$\sigma(2m_1) < \frac{3}{4}e^{\gamma}2m_1\log\log 2m_1$$
, then $\frac{50}{51} \le I(m_1) < 1$

Applying to (2.17) well-known the law of contraposition we get,

if
$$I(m_1) < \frac{50}{51}$$
, then $\sigma(2m_1) \ge \frac{3}{4}e^{\gamma}2m_1\log\log 2m_1$.

From the identity (2.11) of Lemma 3 and the fact that the function I(n) is multiplicative function, we obtain

(2.18)
$$\frac{\sigma(2m_1)}{2m_1} = \left(1 - \frac{1}{2^2}\right)I(m_1)\frac{2m_1}{\varphi(2m_1)} = \frac{3}{4}I(m_1)\frac{2m_1}{\varphi(2m_1)},$$

because, in this case $n = 2m_1$.

Applying to the $\frac{2m_1}{\varphi(2m_1)}$ of (2.18) the Rosser-Schoenfeld's inequality (R-S) from Lemma 4, with constant $c_1 < 2.51$ we get,

(2.19)
$$\frac{\sigma(2m_1)}{2m_1} < \frac{3}{4}I(m_1)e^{\gamma}\log\log 2m_1\left(1+\frac{2.51}{e^{\gamma}(\log\log 2m_1)^2}\right).$$

Since $2m_1 > e^{e^9}$ then we have

(2.20)
$$e^{\gamma} (\log \log 2m_1)^2 > 1.6 \times 81 = 129.6 > 125.5 = 50 \times 2.51.$$

From (2.20) we obtain

$$(2.21) \quad 1 + \frac{2.51}{e^{\gamma} (\log \log 2m_1)^2} < 1 + \frac{2.51}{50 \times 2.51} = 1 + \frac{1}{50} = \frac{51}{50}.$$

By (2.19) and (2.21) it follows that

(2.22)
$$\frac{\sigma(2m_1)}{2m_1} < \frac{3}{4}I(m_1)\frac{51}{50}e^{\gamma}\log\log 2m_1.$$

From the assumption that $I(m_1) < \frac{50}{51}$ and (2.22) we get that the (2.16) is impossible.

The proof of Lemma 5 is complete.

3. Proof of the Theorem

The proof of the Theorem we give by the induction with respect to $k = \omega(m)$.

From Lemma 2 it follows that the Theorem is true when k = 2. Suppose that the Theorem is true for all *m* such that $\omega(m) < k$.

We prove our Theorem for *m*, when $\omega(m) = k$.

Let $n = 2m = 2m_1 \cdot M$, (2,m) = 1, $m = m_1 \cdot M$; $(m_1,M) = 1$, where $\omega(m_1) = 2$, $\omega(m) = \omega(m_1 \cdot M) = k > 2$.

Then from the identity (2.11) of Lemma 3 and the Rosser-Schoenfeld's inequality (R-S) of Lemma 4 we obtain

$$(3.1) \qquad \frac{\sigma(n)}{n} = \frac{\sigma(2m_1 \cdot M)}{2m_1 \cdot M}$$
$$< \frac{3}{4} \cdot I(m_1 \cdot M) e^{\gamma} \log \log 2m_1 \cdot M \left(1 + \frac{2,51}{e^{\gamma} (\log \log 2m_1 \cdot M)^2}\right).$$

By Lemma 5 and the formula (2.11) of Lemma 3 it follows that

(3.2)
$$I(m) = I(m_1 \cdot M) = I(m_1) \cdot I(M) < \frac{50}{51}$$

because the function I(m) is multiplicative function. Hence, from (3.1) and (3.2) follows that

(3.3)
$$\frac{\sigma(n)}{n} = \frac{\sigma(2m)}{2m} < \frac{3}{4}e^{\gamma} \cdot \frac{50}{51} \left(1 + \frac{2,51}{e^{\gamma}(\log\log 2m)^2} \right) \log\log 2m.$$

From (3.3) and (2.21) it follows that for all integers *m*, such that $2m > e^{e^9}$, we have

$$(3.4) \qquad \frac{\sigma(2m)}{2m} < \frac{3}{4}e^{\gamma}\log\log 2m,$$

and the proof of the Theorem is complete.

Remark. By Proposition 1 and 4 of [9] it is enough, to prove RH, to derive Robin inequality (R) for *n* large enough and therefore no need of computer check.

References

- M.V. Berry and J.P. Keating, The Riemann zeros and eigenvalue asymptotics, SIAM Review 41 (1999), 236–226.
- [2] Y.J. Choie, N. Lichardopol, P. Moree and P. Sole', On the Robin's criterion for the Riemann hypothesis, *J. Theorie des Nombres de Bordeax* **19** (2007), 357–372.
- [3] J.B. Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341-353.
- [4] A. Grytczuk, Upper bound for sum of divisors function and the Riemann hypothesis, *Tsukuba J. Math.* **31**(1) (2007), 67–75.
- [5] N. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1–26.
- [6] J.C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), 534–543.

20

- [7] M.R. Murty, A motivated introduction to the Laglands program, in *Advances in Nunmber Theory*, Oxford University Press, 1993, 37–66.
- [8] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsber. Akad. Berlin (1859), 671–680.
- [9] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.
- [10] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, *Illinois J. Math.* **6**(1962), 64–94.
- [11] M. Weber, Dynamical Systems and Processes, European Math. Soc., 2009.

Aleksander Grytczuk, Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul.Prof.Szafrana 4a, 65-516 Zielona Góra, Poland; and

Jan Paweł II Western Higher School of International Commerce and Finance, ul.Plac Słowiański 9, 65-069 Zielona Góra, Poland.

E-mail: A.Grytczuk@wmie.uz.zgora.pl, algrytczuk@onet.pl

Received April 20, 2011 Accepted September 16, 2011