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Robin’s Inequality for Sum of Divisors Function and
the Riemann Hypothesis
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Dedicated to the memory of Professor Włodzimierz Staś

Abstract. Let σ(n) denote the sum of divisors function. In this paper we give
a simple proof of the Robin inequality (R): σ(n) < eγn log log n, for all positive
integers n≥ 5041.

The Robin inequality (R) implies Riemann Hypothesis.

1. Introduction

The Riemann zeta function ζ(s) for s = σ+ i t is defined by the Dirichlet series

ς(s) =
∞∑

n=1

1

ns , which converges for σ > 1 and it has analytic continuation to the

complex plane with one singularity a simple pole with residue 1.
The Riemann Hypothesis ([8]), is intimately connected with the distribution of

prime numbers.The Riemann zeta-function is a special case of L-functions.
These L-functions are connected with many important and difficult problems in

number theory, algebraic geometry, topology, representation theory and modern
physics, see; Berry and Keating [1], Katz and Sarnak [5], and Murty [7].

In 1984 Robin [9] proved very interesting and important criterion:

Robin’s criterion. The Riemann Hypothesis is true if and only if

(R) σ(n)< eγn log log n,

for all positive integers n≥ 5041, where σ(n) =
∑
d|n

d and γ is Euler’s constant.

In 2002 Lagarias [6] proved some extension of the Robin criterion. Many others
criteria and important results connected with the Riemann Hypothesis have been
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proved and these results have been described by Conrey in his elegant article
[3]. Recently, Choie, Lichardopol, Moree and Sole’ in the paper [2] proved that if
n ≥ 37 does not satisfy Robin’s criterion it must be even and is neither squarefree
nor squarefull, moreover that n must be divisible by fifth power > 1.

In our paper [4]; see, Theorem 1, p. 70 has been proved of the following result:

R.1. Let n= 2m, (2, m) = 1. Then for all odd positive integers m>
39

2
we have

σ(2m)<
39

40
eγ2m log log 2m,(1.1)

and

σ(m)< eγm log log m.(1.2)

It is easy to see that from the result of R.1 follows that for complete proof of the
Robin inequality (R) it suffices to prove that inequality (R) is true for all positive
integers n such that n= 2αm, (2, m) = 1 and α≥ 2.

In this connection in the paper [4] has been proved the following theorem (see,
Theorem 2, p. 71):

R.2. If there exists an positive integer m0 such that for every odd positive integer
m> m0, we have

σ(2m)<
3

4
eγ2m log log2m,(1.3)

then for all integers n = 2αm, (2, m) = 1, m > m0 and every fixed integer α ≥ 2 we
have

σ(2αm)< eγ2αm log log 2αm.(1.4)

The result described in R.1 is cited by M. Weber in his monograph [11] on
page 541.

From the result of R.2 follows that for complete proof of the Robin inequality
(R) it suffices to prove the following theorem:

Theorem. For all integers n= 2m, (2, m) = 1 such that m>
1

2
ee9

we have

(∗) σ(2m)<
3

4
eγ2m log log 2m.

We prove this Theorem in part 3 of this paper by using basic lemmas given in
next part of our paper.



Robin’s Inequality for Sum of Divisors Function and the Riemann Hypothesis 17

2. Basic Lemmas

Lemma 1. Let n = 2αm, (2, m) = 1 and let ω(m) denote the number of distinct

primes divisors of m. If ω(m) = 1, then for every odd positive integer m >
1

4
ee2

and

each fixed integer α≥ 2, we have

σ(2αm)< eγ2αm log log 2αm.(2.1)

Proof. By the assumption of Lemma 1 it follows that m = pβ , where p ≥ 3 is an
odd prime and β ≥ 1 is positive integer.

Moreover,by the assumption that m>
1

4
ee2

it follows that

m= pβ >
1

4
ee2

.(2.2)

On the other hand we have

σ(2αm) = σ(2αpβ) = σ(2α)σ(pβ) = (2α+1 − 1)
pβ+1 − 1

p− 1
.(2.3)

Since p−1≥ 2

3
p and 2α+1−1< 2α+1, then from (2.3) and (2.2) it follows that

σ(2αm)< 2α+1 · pβ+1

2
3

p
= 3 · 2αm.(2.4)

From the assumption follows that 2αm≥ 22m> ee2
, hence

eγ log log 2αm> 1.6 log log ee2
> 1.6× 2> 3.(2.5)

By (2.5) and (2.4) it follows that the inequality (2.1) holds and the proof of
Lemma 1 is finished. ¤

Lemma 2. Let n = 2m1, (2, m1) = 1 and ω(m1) = 2. Then for every odd positive

integer m1 such that m1 >
1

2
ee3

, we have

σ(2m1)
2m1

<
3

4
eγ log log2m1.(2.6)

Proof. By the assumption of Lemma 2 it follows that m1 = pα1
1 pα2

2 . Therefore by
the properties of the function σ we get,

σ(2m1)
2m1

=
σ(2)σ(pα1

1 )σ(p
α2
2 )

2pα1
1 pα2

2

=
3

2

(pα1+1
1 − 1)(pα2+1

2 − 1)

pα1
1 pα2

2 (p1 − 1)(p2 − 1)
.(2.7)

Since p1 ≥ 3 and p2 ≥ 5 then we have,

p1 − 1≥ 2

3
p1, p2 − 1≥ 4

5
p2.(2.8)
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From (2.7) and (2.8) we obtain

σ(2m1)
2m1

<
3

2
· 3

2
· 5

4
=

3

4
· 15

4
.(2.9)

Since eγ > 1.6 and 2m1 > ee3
, then we get

eγ log log2m1 > 1.6 log log ee3
= 1.6× 3= 4.8>

15

4
.(2.10)

From (2.10) and (2.9) we obtain the inequality (2.6) and the proof of Lemma 2
is complete. ¤

Lemma 3. Let n =
k∏

j=1
p
α j

j and let I(n) =
k∏

j=1

�
1− 1

p
1+α j

j

�
, where p j are primes and

α j ≥ 1 are integers for j = 1, 2, . . . , k and let σ, ϕ be the sum of divisors function and
Euler’s totient function, respectively. Then we have

σ(n)
n
= I(n)

n

ϕ(n)
.(2.11)

The proof of Lemma 3 is given in our paper [4], see; Lemma 2 on page 69.

Lemma 4 (Rosser-Schoenfeld’s inequality [1], Theorem 15; Cf. [4], Lemma 1,
p. 69). Let ϕ be the Euler’s totient function. Then for all positive integers n ≥ 3, the
following inequality is true

(R-S)
n

ϕ(n)
≤ eγ

�
log log n+

2.5

eγ log log n

�
,

except, when n= 3× 5× 7× 11× 13× 17× 19× 23= 223 092 870
and this case the constant c = 2.5 must be replaced by the constant c1 = 2.50637 <
2.51.

Now, we prove the following Lemma:

Lemma 5. Let n = 2m1, (2, m1) = 1 and ω(m1) = 2. Then for all integers
2m1 > ee9

we have

I(m1)<
50

51
.(2.12)

Proof. From Lemma 3 and the definition of the function I(n) for case n = 2m1 =
2 · pα1

1 · p
α2
2 , we have

I(n) = I(2m1) =
�

1− 1

21+1

��
1− 1

p1+α1
1

��
1− 1

p1+α2
2

�
= I(2) · I(m1).(2.13)

By (2.13) it follows that

0< I(m1)< 1 ⇔ I(m1) ∈ (0, 1) =
�

0,
50

51

�
∪
�

50

51
, 1
�

.(2.14)
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From (2.14) and the assumption of Lemma 5 and Lemma 3 follows that the
inequality (2.6) is true, so denote that we have

If σ(2m1)<
3

4
eγ2m1 log log 2m1, then I(m1) ∈

�
0,

50

51

�
or I(m1) ∈

�
50

51
, 1
�

.(2.15)

Suppose that

If σ(2m1)<
3

4
eγ2m1 log log2m1, then I(m1) ∈

�
50

51
, 1
�

,(2.16)

so denote that (2.16) is equivalent to

If σ(2m1)<
3

4
eγ2m1 log log2m1, then

50

51
≤ I(m1)< 1.(2.17)

Applying to (2.17) well-known the law of contraposition we get,

if I(m1)<
50

51
, then σ(2m1)≥

3

4
eγ2m1 log log2m1.

From the identity (2.11) of Lemma 3 and the fact that the function I(n) is
multiplicative function, we obtain

σ(2m1)
2m1

=
�

1− 1

22

�
I(m1)

2m1

ϕ(2m1)
=

3

4
I(m1)

2m1

ϕ(2m1)
,(2.18)

because, in this case n= 2m1.

Applying to the
2m1

ϕ(2m1)
of (2.18) the Rosser-Schoenfeld’s inequality (R-S) from

Lemma 4, with constant c1 < 2.51 we get,

σ(2m1)
2m1

<
3

4
I(m1)e

γ log log 2m1

�
1+

2.51

eγ(log log2m1)2

�
.(2.19)

Since 2m1 > ee9
then we have

eγ(log log2m1)
2 > 1.6× 81= 129.6> 125.5= 50× 2.51.(2.20)

From (2.20) we obtain

1+
2.51

eγ(log log 2m1)2
< 1+

2.51

50× 2.51
= 1+

1

50
=

51

50
.(2.21)

By (2.19) and (2.21) it follows that

σ(2m1)
2m1

<
3

4
I(m1)

51

50
eγ log log 2m1.(2.22)

From the assumption that I(m1) <
50

51
and (2.22) we get that the (2.16) is

impossible.
The proof of Lemma 5 is complete. ¤
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3. Proof of the Theorem

The proof of the Theorem we give by the induction with respect to k =ω(m).
From Lemma 2 it follows that the Theorem is true when k = 2. Suppose that

the Theorem is true for all m such that ω(m)< k.
We prove our Theorem for m, when ω(m) = k.
Let n = 2m = 2m1 · M , (2, m) = 1, m = m1 · M ; (m1, M) = 1, where

ω(m1) = 2,ω(m) =ω(m1 ·M) = k > 2.

Then from the identity (2.11) of Lemma 3 and the Rosser-Schoenfeld’s
inequality (R-S) of Lemma 4 we obtain

σ(n)
n
=
σ(2m1 ·M)

2m1 ·M
(3.1)

<
3

4
· I(m1 ·M)eγ log log 2m1 ·M

�
1+

2, 51

eγ(log log2m1 ·M)2
�

.

By Lemma 5 and the formula (2.11) of Lemma 3 it follows that

I(m) = I(m1 ·M) = I(m1) · I(M)<
50

51
,(3.2)

because the function I(m) is multiplicative function. Hence, from (3.1) and (3.2)
follows that

σ(n)
n
=
σ(2m)

2m
<

3

4
eγ · 50

51

�
1+

2, 51

eγ(log log2m)2

�
log log2m.(3.3)

From (3.3) and (2.21) it follows that for all integers m, such that 2m > ee9
, we

have
σ(2m)

2m
<

3

4
eγ log log 2m,(3.4)

and the proof of the Theorem is complete.

Remark. By Proposition 1 and 4 of [9] it is enough, to prove RH, to derive Robin
inequality (R) for n large enough and therefore no need of computer check.
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