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Extensions of Lattice Set Functions to Regular Borel Measures

P. Maritz

Abstract. This paper deals with the unique extension of a finite regular set
function from the δ-lattice of all compact Gδ-subsets of a locally compact
Hausdorff space to a finite regular measure on the δ-ring of all relatively compact
Borel subsets of the space. This extension is a two-step method because it is
performed (without density assumptions) via the δ-ring of all relatively compact
Baire subsets of the space.

1. Introduction

Throughout the paper (X ,G ) denotes a completely regular Hausdorff space, and
C(X ) the set of all continuous functions f : X → [0, 1]. The classes

G ∗ = {{x ∈ X : f (x) 6= 0} : f ∈ C(X )}
and

F ∗ = {{x ∈ X : f (x) = 0} : f ∈ C(X )}
are the classes of the co-zero (or, functionally open) and zero (or, functionally
closed) subsets of X , respectively.

The σ-algebra generated by G is denoted byB and the σ-algebra generated by
G ∗ is denoted by B∗. The elements of B and B∗ are the Borel and Baire subsets
of X , respectively. (In sections 2 and 3, the terms Borel and Baire will be used
in a more restrictive sense.) Of course, B∗ ⊆ B , and B∗ 6= B in general, see
[15, p. 108]. This definition of Baire sets is apparently due to Hewitt [8]. Unless
otherwise specified, measures are non-negative and countably additive. A Baire
(Borel) measure on X is a measure defined on the σ-algebra B∗ (B). The Borel
extension problem asks: Given a Baire measure, when can it be extended to a Borel
measure?

Recall that a topological space X is called countably paracompact if X is a
Hausdorff space and every countable open cover of X has a locally finite open
refinement, see [6, p. 392]. In 1956, Mařík [9] proved that all normal countably
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paracompact spaces have the following property: Every finite Baire measure on
X admits a unique extension to a regular Borel measure on X . (The main results
of that paper appeared in 1957 in a shorter English version [10]). In [15, § 9],
Wheeler fully reviewed a number of interesting topics relating to the problem of
when a Baire measure can be extended to a regular Borel measure. He defined
([15, p. 131, Definition 9.1]) a completely regular Hausdorff space X to be a Mařík
space if every Baire measure on X admits an extension to a regular Borel measure,
and asked several questions thereupon. In [12], Ohta and Tamano answered the
questions about Mařík spaces asked by Wheeler [15] and studied their topological
properties. While answering these questions, Ohta and Tamano [12, p. 401],
introduced the notion of quasi-Mařík spaces: A space X is called a quasi-Mařík space
if each Baire measure on X admits an extension to a (not necessarily regular) Borel
measure on X . Neglecting the regularity of the extension allowed Ohta and Tamano
to get much stronger results, and they also posed the following open question, [12,
p. 401]: Is every quasi-Mařík space a Mařík space? In [1, p. 277, Theorem 2.1],
Aldaz proved that a countably metacompact quasi-Mařík space is Mařík, where
a space X is called countably metacompact if X is Hausdorff and every countable
open cover of X has a point-finite open refinement, see also [6, p. 399]. Every
paracompact space is metacompact, but not conversely; when normal, countable
metacompactness is equivalent to countable paracompactness, [6, p. 399].

In order to search for an example of a quasi-Mařík space which is not
Mařík, Aldaz [1] worked among the class of spaces that are not countably
metacompact. A space X is called a Dowker space if X is normal a nd not countably
paracompact, see [14, p. 765, Theorem 1.2]. Such a space is, of course, also not
countably metacompact. A space is almost Dowker if it is regular but not countably
metacompact. In order to give an example of a quasi-Mařík space which is not
Mařík, Aldaz [1] used the special set-theoretic hypothesis ♣ from [14, p. 768]:
For every limit ordinal α < ω1, there is a sequence Sα (order isomorphic with ω),
cofinal in α, such that every uncountable subset of ω1 contains some Sα. Then,
Aldaz used the Dowker space appearing in [14, pp. 768–769], to prove that, under
the assumption ♣, there exists a normal quasi-Mařík space which is not Mařík.

In [12], Ohta and Tamano gave an example of a locally compact space which is
not quasi-Mařík. The result is that the Borel extension problem, as phrased above,
is not in general applicable to a locally compact space X , unless one deals with
Borel and Baire subsets of X in a more restrictive sense. That is what we shall be
dealing with in the remainder of this paper.

2. Terminology and Basic Results

We shall need the following detail from [5, §5], about the extension of
measures. LetD be a ring of subsets of X and ρ : D → R a finite measure. Extend ρ
from D to the hereditary σ-ringH (D) generated by D by the usual Carathéodory
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method to obtain an outer measure ρ∗ on H (D). Let T (ρ) be the σ-ring of all
sets E ∈ H (D) having the property ρ∗(A) = ρ∗(A∩ E) + ρ∗(A \ E) for every set
A ∈ H (D). Then ρ∗ is a unique σ-finite measure on T (ρ) and D ⊆ T (ρ). Let
M (ρ) be the class of all sets E ∈ P that are locally in T (ρ), that is, E ∈M (ρ) if
and only if E ∩ A ∈ T (ρ) for every set A ∈ T (ρ). ThenM (ρ) is the σ-algebra of
all ρ-measurable subsets of X , and T (ρ)⊆M (ρ). The following extension of the
measure ρ∗ on T (ρ) to a measure onM (ρ) is due to I. Segal. Let ν = ρ∗|T (ρ).
Then ν is a measure on T (ρ) and its variation ν is a measure onM (ρ), and by [5,
p. 39, Corollary 2], satisfies ν(E) = ν(E) = ρ∗(E) for E ∈ T (ρ) and, for E ∈ P ,

ν(E) = sup{ρ∗(A) : A⊆ E and A∈ T (ρ)}.
Extend the measure ρ∗ on T (ρ) to a measure, again denoted by ρ∗, onM (ρ):

ρ∗(E) = sup{ρ∗(A) : A⊆ E and A∈ T (ρ)}
for every set E ∈M (ρ).

Unless specifically stated otherwise, (X ,G ) will henceforth be a locally compact
Hausdorff space. Of course, (X ,G ) is then a completely regular space. The symbols
P ,F and K denote the classes of all subsets, all closed subsets and all compact
subsets of X , respectively. If A∈ P , then its G -closure will be denoted by A. Clearly,
G ∗ ⊆ G and F ∗ ⊆F . The class G ∗ (which is a lattice) is a base for G , since (X ,G )
is a completely regular Hausdorff space, see [6, p. 65]. Denote the δ-lattice of all
compact Gδ-subsets of X by Kδ and let B0 be the δ-ring generated by Kδ. Then
Kδ ⊆ F ∗, see [7, p. 217, Theorem C]. The class of all open Fσ-subsets of X is
denoted by Gσ, and the class of all closed Gδ-subsets of X is denoted by Fδ. If
A ∈ F ∗, then A = f −1({0}) =

⋂∞
n=1 f −1��− 1

n
, 1

n

��
, which shows that A ∈ Fδ.

Consequently, Kδ ⊆F ∗ ⊆Fδ ⊆F .
For every pair (K , G) ∈ Kδ × G ∗, let I(K , G) = {A ∈ P : K ⊆ A ⊆ G} and

let I = {I(K , G) : (K , G) ∈ Kδ ×G ∗}. Following [5, p. 302], the class I(K , G) is
called an interval with origin K and extremity G. Note that: P = I(;, X ) ∈ I ;
I(K , G) = ; ⇔ K 6⊆ G; I(K , G) 6= ; ⇔ K ⊆ G. It is clear that I is a base
for a topology, say U , on P . A subcollection C ⊆ P is U -dense in (P ,U ) if
for every pair (K , G) ∈ Kδ × G ∗, where K ⊆ G, there exists a set A ∈ C such
that K ⊆ A ⊆ G. A set A ∈ Kδ is said to be U -regular on the left (right) with
respect to a set function α : Kδ → R if α is continuous on the left (right) in A
for the topology U , that is, if for every number ε > 0 there exists a set K ∈ Kδ,
where K ⊆ A (a set G ∈ G ∗, where G ⊇ A) such that for every set A′ ∈ Kδ with
K ⊆ A′ ⊆ A (A ⊆ A′ ⊆ G) we have | α(A)− α(A′) |< ε. A set A ∈ Kδ is said to be
U -regular with respect to a set function α :Kδ→ R if α is continuous in A for the
topology U , that is, if for every number ε > 0 there exists an interval I(K , G) ∈ I
such that α(I(K , G)∩Kδ) ⊆ (α(A)− ε,α(A) + ε). The set function α :Kδ → R is
said to beU -regular onKδ if every set A∈Kδ isU -regular with respect to α, that
is, if α is continuous on Kδ for the topology U .
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The above can be repeated for the class J = {I(K , G) : (K , G) ∈K ×G}, which
in turn is also a base for a topology, say V , on P . Regularity (left, right) of a
set function α : K → R with respect to the topology V , is treated as above, with
the appropriate changes being made, that is, use K , G and V instead of Kδ, G ∗
and U , respectively; this case shall be referred to as V -regularity. We know that
U ⊆ V , therefore a set function α : Kδ → R that is U -regular on Kδ is also
V -regular on Kδ.

Denote the δ-ring generated by the latticeK by the symbolB1. If A∈B1 then
A ⊆ ∪n

i=1Ki , with Ki ∈ K for i = 1, 2, . . . , n; see [5, p. 6, Proposition 10]. Since
every set A ∈ B1 is contained in a compact set, B1 consists of relatively compact
subsets of X . The δ-ringB1 also contains all the relatively compact open subsets of
X , see [5, p. 287, Corollary]; the classB1 will be called the δ-ring of the relatively
compact Borel subsets of X . Obviously,B0 ⊆B1, hence the sets ofB0 are relatively
compact Borel sets, andB0 will be called the δ-ring of the relatively compact Baire
subsets of X . (In Halmos [7], the Borel sets of X are the sets belonging to the σ-
ring generated by K , and the Baire sets of X are the sets belonging to the σ-ring
generated by K0. The definition of Baire sets used by Ross and Stromberg [13,
p. 151] is consistent with that of Halmos whenever X is σ-compact and locally
compact.)

The following results will be employed in section 3.

Lemma 2.1 ([5, p. 294, Proposition 11]). Let X be a locally compact Hausdorff
space, K ∈ K and G ∈ G with K ⊆ G. There exists a set K0 ∈ Kδ and a set
G0 ∈ Gσ ∩B0 such that

K ⊆ G0 ⊆ K0 ⊆ G.

Proof. By the hypothesis on X , there is a set U ∈ G with U compact that satisfies
K ⊆ U ⊆ U ⊆ G. Since X is Tychonoff, the exists a function f ∈ C(X ) such that
f (x) = 1 on K and f (x) = 0 on X \ U . Put G0 =

�
x ∈ X : f (x) > 1

2

	
. Then G0 =

∪∞n=1

�
x ∈ X : f (x) ≥ 2+ 1

n

	
, so that G0 ∈ Gσ. Let K0 =

�
x ∈ X : f (x) ≥ 1

2

	
. Then

K0 is a closed Gδ-set, see [7, p. 217, Theorem C]. Clearly, K ⊆ G0 ⊆ K0 ⊆ U ⊆ G.
This means that K0 is compact. The sets Cn =

�
x ∈ X : f (x)≥ 1

2
+ 1

n

	
are closed Gδ-

sets for every n ∈ N, and because Cn ⊆ K0 for every n ∈ N, it follows that Cn ∈ Kδ
for every n ∈ N. Since Cn ∈B0 for every n ∈ N and Cn ⊆ K0 ∈Kδ ⊆B0, it follows
from [5, p. 4, Definition 3(4)] that G0 ∈B0. This completes the proof. ¤

Lemma 2.2 ([11, p. 360; 3.2]). Let X be a completely regular Hausdorff space and
Gn ∈ G ∗ for n= 1, 2, 3, . . .. Then ∪∞n=1 Gn ∈ G ∗.

Proof. Let fn ∈ C(X ) and Gn = f −1
n (R\{0}) for n= 1, 2, 3, . . .. Let f =

∑∞
n=1 2−n fn.

Then f ∈ C(X ) and
⋃∞

n=1 Gn =
⋃∞

n=1 f −1
n ((−∞, 0)∪ (0,∞)) = f −1

n (R \ {0}) ∈ G ∗.
Consequently, F ∗ is closed under countable intersections. ¤



Extensions of Lattice Set Functions to Regular Borel Measures 5

3. Extensions of Regular Set Functions

The two results of this section are based on [5, p. 339, Theorem 1 and p. 347,
Theorem 2], both adapted considerably to fit the objectives of this paper. The
hypotheses of both of these theorems in [5] have been simplified. Furthermore,
the density assumptions in both theorems mentioned above are redundant since
Lemma 2.1 of the present paper guarantees all that is needed about density for our
results in this section.

Theorem 3.1. Let X be a locally compact Hausdorff space and α : Kδ → R a
finite set function. If α is (1) monotone; (2) finitely subadditive; (3) finitely additive;
(4) U -regular on Kδ, then

(a) α is countably additive on Kδ;
(b) α can be extended uniquely to a U -regular measure µ on the δ-ringB0;
(c) for every µ-measurable set A∈M (µ), we have

µ∗(A) = sup{µ(K) : K ⊆ A and K ∈Kδ}
and for every set A∈B0, we have

µ(A) = inf{µ∗(G) : A⊆ G and G ∈ G ∗}.

Proof. The uniqueness of the extension follows from [5, p. 24, Proposition 6]. By
the finite subadditivity of α it follows that if K ∈Kδ, then α(;∪K) = α(;)+α(K),
and we deduce that α(;) = 0. If K , K ′ ∈Kδ then it follows from conditions (1) and
(2) that α(K ′) ≤ α(K ∪ K ′) ≤ α(K) + α(K ′), so that α(K) ≥ 0 for every K ∈ Kδ.
The rest of the proof is subdivided into eleven parts.

(i) Denote the variation of α on P by ᾱ. Since Kδ is a lattice on which α is
positive and finitely additive, it follows from [5, p. 38, Proposition 6] that for
every set A∈ P

ᾱ(A) = sup{α(K) : K ⊆ A and K ∈Kδ}.
Since α is increasing it follows that

ᾱ(K) = α(K) for every set K ∈Kδ,

therefore, ᾱ is an extension of α from Kδ to P . It follows from [5, §3] that
ᾱ is positive, increasing and superadditive.

We want to show that ᾱ is countably additive and U -regular on B0, so
that the restriction µ= ᾱ | B0 is the measure we need.

(ii) For every set K ∈Kδ we claim that

α(K) = inf{ᾱ(G) : K ⊆ G and G ∈ G ∗}.
To establish this equality, let K ∈ Kδ and let ε > 0. By condition (4),

there exists a set G ∈ G ∗ with K ⊆ G such that for every set K ′ ∈ Kδ with
K ⊆ K ′ ⊆ G, we have α(K ′)− α(K) < ε, that is, α(K ′) < α(K) + ε. Let K ′′
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be any set in Kδ with K ′′ ⊆ G. Then, if K ′ = K ∪ K ′′, then K ⊆ K ′ ⊆ G, and
α(K ′′)< α(K) + ε, therefore

ᾱ(G) = sup{α(B) : B ⊆ G and B ∈Kδ}
≤ α(K) + ε,

whence

α(K) = inf{ᾱ(G) : K ⊆ G and G ∈ G ∗}.
(iii) To establish the countable subadditivity of ᾱ on G ∗, we consider first a finite

subclass {G1, G2, . . . , Gn} of G ∗ and their union G; then G ∈ G ∗. Let K ⊆ G,
with K ∈ Kδ. Let x be any element of K; then {x} ∈ K , and {x} is a subset
of one of the sets Gi , 1 ≤ i ≤ n. By Lemma 2.1, there exists a set K x

0 ∈ Kδ
and a set G x

0 ∈ Gσ ∩B0 such that

{x} ⊆ G x
0 ⊆ K x

0 ⊆ Gi

for some i, 1 ≤ i ≤ n. Then K can be covered by a finite subclass {K x j

0 :
j = 1, 2, . . . , m} of the class {K x

0 : x ∈ K}. Let Ki be the union of all those
sets K

x j

0 which are contained in Gi . Then Ki ∈ Kδ, i = 1, 2, . . . , n, and also,
∪n

i=1 Ki ∈Kδ because Kδ is a lattice and

K ⊆
n⋃

i=1

Ki ⊆
n⋃

i=1

Gi = G,

and

α(K)≤ α
 

n⋃

i=1

Ki

!
≤

n∑

i=1

α(Ki)≤
n∑

i=1

ᾱ(Gi).

Then

ᾱ(G) = sup{α(K) : K ⊆ G and K ∈Kδ} ≤
n∑

i=1

ᾱ(Gi).

Let now {Gn : n ∈ N} be a subclass of G ∗ and put G = ∪∞i=1 Gi . Then G ∈ G ∗
by Lemma 2.2. Let K ∈ Kδ such that K ⊆ G. Then K is covered by a finite
subclass, {G1, G2, ..., Gr}, say, of the given class {Gn : n ∈ N}. Then

α(K)≤ ᾱ
 

r⋃

i=1

Gi

!
≤

r∑

i=1

ᾱ(Gi)≤
∞∑

i=1

ᾱ(Gi)

by what have been established above, whence,

ᾱ(G)≤
∞∑

i=1

ᾱ(Gi),

showing that ᾱ is countably subadditive on G ∗. Since ᾱ is also countably
superadditive on G ∗, we deduce that ᾱ is countably additive on G ∗.
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(iv) We now show that for every set K ∈ Kδ and for every set G ∈ G ∗ for which
K ⊆ G, we have

ᾱ(G \ K) = ᾱ(G)−α(K).
For this purpose, let ε > 0. By part (ii), there exists a set Gε ∈ G ∗, such that
K ⊆ Gε and

α(K)≤ ᾱ(Gε)< α(K) + ε.
Now, G \ K = G ∩ (X \ K) ∈ G ∗, because Kδ ⊆ F ∗. Also, G = (G \ K)∪ K ⊆
(G \ K)∪ Gε. Since ᾱ is increasing and subadditive on the class G ∗, we have

ᾱ(G)≤ ᾱ(G \ K) + ᾱ(Gε)< ᾱ(G \ K) +α(K) + ε.

Then

ᾱ(G)≤ ᾱ(G \ K) +α(K),

and from the superadditivity of ᾱ,

ᾱ(G) = ᾱ(G \ K) +α(K).

Therefore,

ᾱ(G \ K) = ᾱ(G)−α(K).
(v) Let

Φ = {A⊆ T : ᾱ(A)<∞ and ᾱ(A) = inf{ᾱ(G) : A⊆ G and G ∈ G ∗}}.
Since ᾱ is increasing,

ᾱ(A) = inf{ᾱ(G) : A⊆ G and G ∈ G ∗}
for every set A∈ G ∗. Then a set A∈ G ∗ belongs to Φ if and only if ᾱ(A)<∞.
From parts (i) and (ii), Kδ ⊆ Φ. By part (i), for every set A∈ Φ,

ᾱ(A) = sup{α(K) : K ⊆ A and K ∈Kδ}.
Therefore, a set A belongs to Φ if and only if for every ε > 0, there exists a
set Kε ∈Kδ and a set Gε ∈ G ∗ such that Kε ⊆ A⊆ Gε and ᾱ(Gε)− ᾱ(Kε)< ε.
By part (iv), ᾱ(Gε \ Kε)< ε. This shows that ᾱ is U -regular on Φ.

(vi) We show that Φ is a δ-ring containing B0. Let A1, A2 ∈ Φ and let ε > 0 be
arbitrary. Then ᾱ(A1) <∞, ᾱ(A2) <∞, and there are sets K1, K2 ∈ Kδ and
G1, G2 ∈ G ∗ such that Ki ⊆ Ai ⊆ Gi , ᾱ(Gi) < ∞ and ᾱ(Gi \ Ki) <

ε

2
for

i = 1, 2. Then K = K1 \ G2 = K1 ∩ (X \ G2) ∈ Kδ, because Kδ ⊆ F ∗ ⊆ Fδ,
see section 2; also, if G = G1 \ K2, then G ∈ G ∗, and ᾱ(G) ≤ ᾱ(G1) < ∞.
Also, K = K1 \ G2 = K1 ∩ (X \ G2)⊆ A1 ∩ (X \ G2)⊆ A1 ∩ (X \ A2) = A1 \ A2 ⊆
G1∩(X\A2)⊆ G1∩(X\K2) = G1\K2 = G, and G\K ⊆ (G1\K1)∪(G2\K2). Since
G1 \K1, G2 \K2 ∈ G ∗, we deduce that ᾱ(G \K)≤ ᾱ(G1 \K1)+ ᾱ(G2 \K2)< ε.
By part (v), A1 \A2 ∈ Φ. Furthermore, K ′ = K1 ∪ K2 ∈Kδ, G′ = G1 ∪G2 ∈ G ∗
and K ′ ⊆ A1∪A2 ⊆ G′, and G′\K ′ ⊆ (G1\K1)∪(G2\K2), so that ᾱ(G′\K ′)< ε.
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This means that A1 ∪A2 ∈ Φ. We now invoke [5, p. 5, Proposition 8] to show
that Kδ is closed under countable intersections. Firstly, let (Ai : i ∈ N) be a
sequence in Φ contained in a set B ∈ Φ, and let A = ∪∞i=1Ai . We show that
A∈ Φ. Put B1 = A1, B2 = A2 \ B1, . . . , Bi = Ai \ ∪i−1

j=1B j , . . . , i ≥ 3. Then Bi ∈ Φ,
Bi ∩ B j = ; if i 6= j and ∪∞i=1Bi = ∪∞i=1Ai = A. Let U ∈ G ∗ with ᾱ(U)<∞ such
that B ⊆ U . Then Bi ⊆ U for all i ∈ N. Let ε > 0. For every i ∈ N, there exist
a set Ki ∈Kδ and a set Gi ∈ G ∗ such that

Ki ⊆ Bi ⊆ Gi , ᾱ(Gi)<∞ and ᾱ(Gi \ Ki)<
ε

2i+1 ,

by part (v). We can choose the sets Gi to be contained in U . Then G =
∪∞i=1Gi ⊆ U and therefore, ᾱ(G) ≤ ᾱ(U) < ∞. The sets Ki are disjoint, so
by the countable superadditivity and monotonicity of ᾱ on P ,

∞∑

i=1

ᾱ(Ki)≤ ᾱ
 ∞⋃

i=1

Ki

!
≤ ᾱ(G)<∞,

whence, because ᾱ(Gi)− ᾱ(Ki) = ᾱ(Gi \ Ki), it follows that

∞∑

i=1

ᾱ(Gi) =
∞∑

i=1

ᾱ(Gi \ Ki) +
∞∑

i=1

ᾱ(Ki)≤ ε+
∞∑

i=1

ᾱ(Ki)<∞.

Let n ∈ N be such that
∑

i>n ᾱ(Gi) <
ε

2
. Then K = ∪n

i=1Ki ∈ Kδ, K ⊆ A⊆ G
and

G \ K ⊆
 ∞⋃

i=1

Gi

!- 
n⋃

i=1

Ki

!
=

 
n⋃

i=1

Gi

!- 
n⋃

i=1

Ki

!⋃ ⋃

i>n

Gi

!

=

 
n⋃

i=1

(Gi \ Ki)

!⋃ ⋃

i>n

Gi

!
,

thus

ᾱ(G \ K)≤ ᾱ


 

n⋃

i=1

(Gi \ Ki)

!⋃ ⋃

i>n

Gi

!


≤
n∑

i=1

ᾱ(Gi \ Ki) +
∑

i>n

ᾱ(Gi)

≤
∞∑

i=1

ᾱ(Gi \ Ki) +
∑

i>n

ᾱ(Gi)

<
ε

2
+
ε

2
= ε.

Because G ∈ G ∗ by Lemma 2.2, it follows from part (v) that A ∈ Φ. Consider
now, in the second place, an arbitrary sequence (Ai : i ∈ N) of sets in Φ. Then
A1 \ Ai ∈ Φ for every i ∈ N, and also A1 \ Ai ⊆ A1 for every i ∈ N. Then
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∪∞i=1(A1 \ Ai) ∈ Φ from what has been established above. Then
∞⋂

i=1

A1 = A1

- ∞⋃

i=1

(A1 \ Ai)

!
∈ Φ

and we conclude that Φ is a δ-ring. Obviously,B0 ⊆ Φ.

(vii) To prove that ᾱ is countably additive on Φ, let (Ai : i ∈ N) be a sequence of
disjoint sets in Φ and let ∪∞i=1Ai = A∈ Φ. Then ᾱ(∪∞i=1Ai)≥

∑∞
i=1 ᾱ(Ai), since

ᾱ is superadditive on Φ. To prove the converse, let ε > 0. For each i ∈ N,
there exists a set Gi ∈ G ∗ such that Ai ⊆ Gi and

ᾱ(Gi)< ᾱ(Ai) +
ε

2i .

Since A ∈ Φ, ∪∞i=1Gi ∈ G ∗ and ᾱ is countably subadditive on G ∗ by (iii), we
have

ᾱ

 ∞⋃

i=1

Ai

!
≤ ᾱ

 ∞⋃

i=1

Gi

!
≤
∞∑

i=1

ᾱ(Gi)≤
∞∑

i=1

ᾱ(Ai) + ε,

whence, ε being arbitrary,

ᾱ

 ∞⋃

i=1

Ai

!
≤
∞∑

i=1

ᾱ(Ai).

The result follows.

(viii) Since Kδ ⊆ Φ, from part (v) and ᾱ = α on Kδ, α is countably additive on
Kδ, proving (a).

(ix) Claim: ᾱ is complete on Φ. To prove this, let A ∈ Φ with ᾱ(A) = 0 and let
B ⊆ A. For every ε > 0, there exists a set Gε ∈ G ∗ with A⊆ Gε and ᾱ(Gε)< ε.
Since B ⊆ Gε and ᾱ is increasing on P , we deduce that B ∈ Φ and ᾱ(B) = 0.

(x) Let µ = ᾱ|B0. Since Kδ ⊆B0 ⊆ Φ, we deduce that µ is a finite measure on
B0 and is an extension of α fromKδ toB0, by part (i). We also deduce from
part (v) that µ is U -regular onB0, whereby (b) is finally established.

(xi) We now proof (c). We show that G ∗ ⊆M (µ). For this purpose, let R be the
ring generated by Kδ and let

L (R) = {E ∈ P : E ∩ A∈ R for every set A∈ R}.
Then

R ⊆B0 ⊆ T (µ)⊆M (µ).
Now, by invoking [5, p. 70, Corollary 2],

E ∈ L (R)⇒ E ∩ A∈ R for every set A∈R
⇒ E ∩ A∈B0 for every set A∈R
= E ∩ A∈ T (µ) for every set A∈ R
⇒ E ∈M (µ),



10 P. Maritz

showing that L (R) ⊆ M (µ). Let now G ∈ G ∗, and let K ∈ Kδ. Then
K\G = K∩(X \G) ∈Kδ because X \G ∈ F ∗ ⊆ Fδ. So, G∩K = K\(K\G) ∈ R .
If A∈R is arbitrary, then by [5, p. 9, Corollary],

A=
n⋃

i=1

(Ki \ K ′i )

where Ki , K ′i ∈Kδ. Then

G ∩ A=
n⋃

i=1

�
(Ki ∩ G) \ K ′i

�
∈R .

This shows that G ∈ L (R), from which we deduce that G ∗ ⊆ M (µ). For
every set A∈B0,

(1) µ(A) = inf{ᾱ(G) : A⊆ G and G ∈ G ∗}<∞
by parts (v), (vi) and (x). By [5, p. 73, Proposition 7], and parts (v) and (i)
of this paper, for any set A∈M (µ), and since B0 is the δ-ring generated by
B0,

(2) µ∗(A) = sup{µ(B) : B ⊆ A and B ∈B0}
= sup{sup{α(K) : K ⊆ B and K ∈Kδ} : B ⊆ A and B ∈B0}
= sup{α(K) : K ⊆ A and K ∈Kδ}
= ᾱ(A).

Since Kδ ⊆B0,

µ∗(A) = sup{µ(K) K ⊆ A and K ∈Kδ}
for any set A∈M (µ), and from (1) and (2) above,

µ(A) = inf{µ∗(G) : A⊆ G and G ∈ G ∗}
for any set A∈B0. This completes the proof. ¤

The finite U -regular measure µ : B0 → R obtained in Theorem 3.1 will be
called a Baire measure. In Theorem 3.2 below we extend this Baire measure µ to a
V -regular measure µ1 :B1→ R; µ1 will be referred to as a Borel measure.

Theorem 3.2. The Baire measure µ : B0 → R obtained in Theorem 3.1 can
be uniquely extended to a finite positive V -regular Borel measure µ1 : B1 → R.
Furthermore,

(a) for every set K ∈K ,

µ1(K) = inf{µ(A) : K ⊆ A and A∈B0};
(b) for every set G ∈ G ,

µ∗1(G) = sup{µ(A) : A⊆ G and A∈B0};
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(c) for every set A∈B0,

µ(A) = sup{µ1(K) : K ⊆ A and K ∈K }
= inf{µ∗1(G) : A⊆ G and G ∈ G}.

Proof. Let K ∈K . By Lemma 2.1 there are sets A∈B0 such that K ⊆ A. Put

β(K) = inf{µ(A) : K ⊆ A and A∈B0}.
We show that β has the following four properties on K :

(1) β is increasing: β(K1)≤ β(K2) if K1 ⊆ K2.
This follows from the definition of β .

(2) β is finitely subadditive: β(K1 ∪ K2)≤ β(K1) + β(K2).
Let ε > 0. There are sets A1, A2 ∈B0 such that

µ(A1)< β(K1) +
ε

2
and µ(A2)< β(K2) +

ε

2
.

Then K1 ∪ K2 ⊆ A1 ∪ A2 ∈B0 and

β(K1 ∪ K2)≤ µ(A1 ∪ A2)≤ µ(A1) +µ(A2)≤ β(K1) + β(K2) + ε.

Because ε is arbitrary, β(K1 ∪ K2)≤ β(K1) + β(K2).

(3) β is finitely additive: β(K1 ∪ K2) = β(K1) + β(K2) if K1 ∩ K2 = ;.
Let K1, K2 ∈ K , with K1 ∩ K2 = ;. Then because X is a locally compact

Hausdorff space there are disjoint sets U1, U2 ∈ G and also disjoint relatively
compact sets G1, G2 ∈ G such that

K1 ⊆ G1 ⊆ G1 ⊆ U1 and K2 ⊆ G2 ⊆ G2 ⊆ U2.

Then, G1, G2 ∈B1. By Lemma 2.1, we can find two sets B1, B2 ∈Kδ such that

K1 ⊆ B1 ⊆ G1 and K2 ⊆ B2 ⊆ G2.

Let A∈B0 be such that K1∪K2 ⊆ A. Put A1 = A∩B1 ∈B0 and A2 = A∩B2 ∈B0.
Then K1 ⊆ A1, K2 ⊆ A2, A1 ∩ A2 = ; and A1 ∪ A2 ⊆ A. Then

β(K1) + β(K2)≤ µ(A1) +µ(A2) = µ(A1 ∪ A2)≤ µ(A),
and so β(K1)+β(K2)≤ β(K1 ∪ K2). The converse inequality follows from (2)
above.

(4) β is V -regular on K :
Let K ∈K and let ε > 0. There exists a set A∈B0 such that K ⊆ A and

µ(A)< β(K) +
ε

2
.

Because µ is U -regular on B0, we can find sets C ∈ Kδ and G ∈ G ∗, with
C ⊆ A ⊆ G, such that if A′ ∈ B0 and C ⊆ A′ ⊆ G, then | µ(A)− µ(A′) |< ε

2
,

therefore

µ(A′)< µ(A) +
ε

2
.
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Let K ′ ∈ K such that K ⊆ K ′ ⊆ G. Choose a set A′ ∈ B0 such that
C ∪ K ′ ⊆ A′ ⊆ G; this is possible by Lemma 2.1. Then

β(K ′)≤ β(C ∪ K ′)≤ µ(A′)≤ µ(A) + ε
2
≤ β(K) + ε,

therefore,

β(K ′)− β(K)< ε,
hence β is V -regular on the class K of compact sets.

Now apply [5, p. 339, Theorem 1], to β on the lattice K to deduce the
existence of a unique finite positive V -regular Borel measure µ1 : B1 → R such
that µ1(K) = β(K) for every set K ∈K . Now, (a) follows from the definition of β .
We now show that µ1 = µ on B0. Denote the variation of µ1 on P by µ̄1. By [5,
p. 320, Proposition 26], for any A∈ P ,

(∗) µ̄1(A) = sup{µ1(K) : K ⊆ A and K ∈K }.
Let now A ∈ B0. Then, µ1(K) = β(K) ≤ µ(A) if K ⊆ A and K ∈ K , thus,

µ̄1(A) ≤ µ(A). Let now ε > 0. Since µ is U -regular on B0, we can repeat the
arguments in (4) above to find a set C ∈ Kδ and a set G ∈ G ∗, where C ⊆ A⊆ G,
such that if A′ ∈B0 and C ⊆ A′ ⊆ G, then

µ(A)< µ(A′) +
ε

2
.

Choose a set A0 ∈ B0 such that C ⊆ A0 ⊆ G, by Lemma 2.1 again. There exists a
set A1 ∈B0, C ⊆ A1, such that

µ(A1)< β(C) +
ε

2
.

Then C ⊆ A0 ∩ A1 ⊆ G and A0 ∩ A1 ∈B0, consequently,

µ(A)≤ µ(A0 ∩ A1) +
ε

2

≤ µ(A1) +
ε

2
≤ β(C) + ε
= µ1(C) + ε ≤ µ̄1(A) + ε.

Since ε is arbitrary, µ(A)≤ µ̄1(A), therefore, µ(A) = µ̄1(A) for A∈B0. This equality
together with (*) proves the first part of (c). Also, since µ1 is positive on the δ-ring
B1, we have that µ1 = µ̄1 on B1, consequently, µ = µ1 on B0. Since µ = β = µ1

on Kδ and µ1 is the unique extension of β to a finite positive V -regular measure
onB1, it follows that µ1 is the unique extension of µ to a finite positive V -regular
measure onB1.

In order to prove (b) let

M (B1) = {E ∈ P : E ∩ A∈B1 for every set A∈B1}.



Extensions of Lattice Set Functions to Regular Borel Measures 13

Then M (B1) is a σ-algebra containing B1, and by [5, p. 291, Corollary 1],
G ⊆M (B1). Since B1 ⊆ T (µ1) ⊆ H (B1), every set E ∈ T (µ1) can be covered
by a sequence of sets from B1. Since T (µ1) is a σ-ring, it follows from [5, p. 13,
Proposition 21], that M (B1) ⊆ M (µ1). This shows that all open sets are µ1-
measurable. Let G ∈ G . By Lemma 2.1, for every set K ∈ K , there exists a set
A ∈ B0 such that K ⊆ A⊆ G. Then µ1(K) ≤ µ1(A) = µ(A) ≤ µ1(G). Hence, by (*)
above,

(∗∗) µ1(G) = sup{µ1(K) : K ⊆ G and K ∈K }
= sup{µ1(K) : K ⊆ G and K ∈K }
≤ sup{µ1(A) : A⊆ G and A∈B0}
≤ µ1(G) = µ

∗
1(G).

We now prove the second part of (c). Let A ∈ B0 and let ε > 0. Since µ is U -
regular on B0, there exist sets K ∈ Kδ and G ∈ G ∗, with K ⊆ A⊆ G, such that if
A′ ∈B0 and K ⊆ A′ ⊆ G, then |µ(A)−µ(A′)|< ε

2
, hence

µ(A′)≤ µ(A) + ε
2

.

By (∗∗) above, there exists a set A1 ∈B0 with A1 ⊆ G and

µ∗1(G)< µ(A1) +
ε

2
.

Then K ⊆ A∪ A1 ⊆ G and A∪ A1 ∈B0, therefore

µ(A∪ A1)≤ µ(A) +
ε

2
,

hence

µ∗1(G)< µ(A1) +
ε

2
≤ µ(A∪ A1) +

ε

2
≤ µ(A) + ε.

Then,

µ∗1(A) = µ(A) = inf{µ∗1(G) : A⊆ G and G ∈ G}.
This completes the proof. ¤

Remark 3.3. Of the numerous publications on lattice measures and their
extensions, we would like to mention three. In [2], Aldaz and Render develop an
approach to the measure extension problem that is based on nonstandard analysis.
They introduce the class of thick topological spaces, which includes all locally
compact and all K-analytic spaces, and show that if (X ,G ) is regular, Lindelöf and
thick,A ⊆B is a sub-σ-algebra, and ν :A → R is a finite measure, inner regular
with respect to the closeds sets in A , then ν has a Radon extension. Bachman
and Sultan [3] construct a single general abstract measure procedure dealing
with some of the extensions of regular measures from lattices of sets to larger
classes of sets. They obtain Mařík’s result ([9], [10]) as a corollary to one of their
more general results. They also show ([3, p. 547]) that if X is a locally compact
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Hausdorff space, then every countably additive regular measure µ :K0→ R can be
extended uniquely to a countably additive regular measure ν :K → R, but in their
case, bothK0 andK contain X as an element. Finally, the unique extension of the
finite regular set function α : Kδ → R to the V -regular measure µ1 : B1 → R in
the present paper differs from the method followed by Bourbaki [4, §4, pp. 53–59],
mainly due to our two-step method.
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