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1. Introduction
Fixed point theory is one of the most popular tool in nonlinear analysis. The study of existence
and uniqueness of fixed point of a mapping and common fixed points of two or more mappings
has become a subject of great interest. Many authors proved the well known Banach contraction
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principle in various generalized metric spaces (e.g., see [4, 6, 7]). However, expanding mappings
have enjoyed a relatively lower popularity with the results of Wang et al. [15], Daffer and
Kaneko [5], Kumar and Garg [11] among others.

Long-Guang and Xian [7] introduced the concept of a cone metric space and proved some
fixed point theorems for contractive type conditions in cone metric spaces. Later on many
authors have (for e.g., [2, 4, 6, 13]) proved some fixed point theorems for different contractive
types conditions in cone metric spaces.

Recently, Garg and Agarwal [6] introduced the notion of cone pentagonal metric space and
proved Banach contraction mapping principle in a normal cone pentagonal metric space setting.

Motivated and inspired by the results of [6, 12], it is our purpose in this paper to continue
the study of common fixed points of a two self mappings in non-normal cone pentagonal metric
space setting. Our results extend and improve the results of [1, 14, 10, 8, 12, 11], and many
others in the literature.

2. Preliminaries
The following definitions and Lemmas are needed in the sequel.

Definition 2.1 (Huang and Zhang [7]). Let E be a real Banach space and P subset of E. P is
called a cone if and only if:

(1) P is closed, nonempty, and P 6= {0};

(2) a,b ∈R, a,b ≥ 0 and x, y ∈ P =⇒ ax+by ∈ P ;

(3) x ∈ P and −x ∈ P =⇒ x = 0.

Given a cone P ⊆ E, we defined a partial ordering ≤ with respect to P by x ≤ y if and only
if y− x ∈ P. We shall write x < y to indicate that x ≤ y but x 6= y, while x ¿ y will stand for
y− x ∈ int(P), where int(P) denotes the interior of P.
In this paper, we always suppose that E is a real Banach space and P is a cone in E with
int(P) 6= ; and ≤ is a partial ordering with respect to P.

Definition 2.2 (Huang and Zhang [7]). Let X be a nonempty set. Suppose the mapping
ρ : X × X → E satisfies:

(1) 0< ρ(x, y) for all x, y ∈ X and ρ(x, y)= 0 if and only if x = y;

(2) ρ(x, y)= ρ(y, x) for all x, y ∈ X ;

(3) ρ(x, y)≤ ρ(x, z)+ρ(z, y) for all x, y, z ∈ X .

Then ρ is called a cone metric on X , and (X ,ρ) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because each
metric space is a cone metric space where E =R and P = [0,∞) (e.g., see [7]).

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 111–122, 2017



Some Fixed Point Theorems for Expansive Mappings. . . : A. Auwalu and E. Hınçal 113

Definition 2.3 (Azam, Arshad and Beg [4]). Let X be a nonempty set. Suppose the mapping
ρ : X × X → E satisfies:

(1) 0< ρ(x, y) for all x, y ∈ X and ρ(x, y)= 0 if and only if x = y;

(2) ρ(x, y)= ρ(y, x) for all x, y ∈ X ;

(3) ρ(x, y)≤ ρ(x,w)+ρ(w, z)+ρ(z, y) for all x, y, z ∈ X and for all distinct points w, z ∈ X −{x, y}
[Rectangular property].

Then ρ is called a cone rectangular metric on X , and (X ,ρ) is called a cone rectangular metric
space.

Remark 2.4. Every cone metric space is cone rectangular metric space. The converse is not
necessarily true (e.g., see [4]).

Definition 2.5 (Garg and Agarwal [6]). Let X be a non empty set. Suppose the mapping
ρ : X × X → E satisfies:

(1) 0< ρ(x, y) for all x, y ∈ X and ρ(x, y)= 0 if and only if x = y;

(2) ρ(x, y)= ρ(y, x) for x, y ∈ X ;

(3) ρ(x, y)≤ ρ(x, z)+ρ(z,w)+ρ(w,u)+ρ(u, y) for all x, y, z,w,u ∈ X and for all distinct points
z,w,u,∈ X − {x, y} [Pentagonal property].

Then ρ is called a cone pentagonal metric on X , and (X ,ρ) is called a cone pentagonal metric
space.

Remark 2.6. Every cone rectangular metric space and so cone metric space is cone pentagonal
metric space. The converse is not necessarily true (e.g., see [6]).

Definition 2.7. Let (X ,ρ) be a cone pentagonal metric space and S : X → X be a mapping.
Then S is called expansive - contraction if there exists a real constant k > 1 such that

ρ(Sx,Sy)≥ kρ(x, y), for all x, y ∈ X .

Let (X ,ρ) be a cone pentagonal metric space. Let {xn} be a sequence in X and x ∈ X . If for
every c ∈ E with 0¿ c there exist n0 ∈N and that for all n > n0, ρ(xn, x)¿ c, then {xn} is said
to be convergent and {xn} converges to x, and x is the limit of {xn}. We denote this by lim

n→∞xn = x
or xn → x as n →∞. If for every c ∈ E, with 0¿ c there exist n0 ∈N such that for all n,m > n0,
ρ(xn, xm)¿ c, then {xn} is called Cauchy sequence in X .
If every Cauchy sequence is convergent in (X ,ρ), then X is called a complete cone pentagonal
metric space.

Lemma 2.8 (Auwalu [3]). Let (X ,ρ) be a complete cone pentagonal metric space. Let {xn} be a
Cauchy sequence in X and suppose that there is natural number N such that:

(1) xn 6= xm for all n,m > N;

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 111–122, 2017



114 Some Fixed Point Theorems for Expansive Mappings. . . : A. Auwalu and E. Hınçal

(2) xn, x are distinct points in X for all n > N;

(3) xn, y are distinct points in X for all n > N;

(4) xn → x and xn → y as n →∞.

Then x = y.

Let T and S be self maps of a nonempty set X . If w = Tx = Sx for some x ∈ X , then x is
called a coincidence point of T and S and w is called a point of coincidence of T and S. Also,
T and S are said to be weakly compatible if they commute at their coincidence points, that is,
Tx = Sx implies that TSx = STx.

Lemma 2.9 (Abbas and Jungck [2]). Let T and S be weakly compatible self mappings of
nonempty set X . If T and S have a unique point of coincidence w = Tx = Sx, then w is the unique
common fixed point of T and S.

Lemma 2.10 (Jungck et al. [9]). Let (X ,ρ) be a cone metric space with cone P not necessary to
be normal. Then for a, c,u,v,w ∈ E, we have

(1) If a ≤ ka and k ∈ [0,1), then a = 0.

(2) If 0≤ u ¿ c for each 0¿ c, then u = 0.

(3) If u ≤ v and v ¿ w, then u ¿ w.

(4) If c ∈ int(P) and an → 0, then ∃n0 ∈N :∀n > n0, an ¿ c.

3. Main Results
In this section, we prove some fixed point theorems for expansive mappings in cone pentagonal
metric space. We give an example to illustrate the results.

Theorem 3.1. Let (X ,ρ) be a cone pentagonal metric space. Suppose the mappings S,T : X → X
satisfies the condition:

ρ(Sx,Sy)≥ kρ(Tx,T y), ∀x, y ∈ X , (3.1)

where k > 1 is a constant. Suppose that T(X )⊆ S(X ), and either of S(X ) or T(X ) is complete, then
S and T have a unique point of coincidence in X . Moreover, if S and T are weakly compatible,
then they have a unique common fixed point in X .

Proof. Let x0 be arbitrary point in X . Since T(X )⊆ S(X ), we can choose a point x1 in X such
that Tx0 = Sx1. Continuing in this way, we construct sequences {xn} and {yn} in X such that

yn = Txn = Sxn+1 for all n = 0,1,2, · · · .

Suppose that yk = yk−1 for some k ∈N, then Sxk = Txk. Thus, xk is a coincidence point of S and
T. Hence, assume that yn 6= yn−1, for each n ∈N. Then using (3.1), we have that

ρ(yn, yn−1)= ρ(Sxn+1,Sxn)
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≥ kρ(Txn+1,Txn)

= kρ(yn+1, yn).

Hence,

ρ(yn, yn+1)≤ Kρ(yn−1, yn), where K = 1
k
∈ (0,1). (3.2)

By (3.2) it follows, for all n = 0,1,2, · · · , that

ρ(yn, yn+1)≤ Kρ(yn−1, yn)≤ K2ρ(yn−2, yn−1)≤ ·· · ≤ Knρ(y0, y1). (3.3)

Observe that, by (3.1),

ρ(yn+1, yn−1)= ρ(Sxn+2,Sxn)

≥ kρ(Txn+2,Txn)

= kρ(yn+2, yn).

This implies that

kρ(yn, yn+2)≤ ρ(yn−1, yn+1).

Hence,

ρ(yn, yn+2)≤ 1
k
ρ(yn−1, yn).

That is,

ρ(yn, yn+2)≤ Kρ(yn−1, yn). (3.4)

Also, by (3.4) it follows, for all n = 0,1,2, · · · , that

ρ(yn, yn+2)≤ Kρ(yn−1, yn)≤ K2ρ(yn−2, yn−1)≤ ·· · ≤ Knρ(y0, y1). (3.5)

For the sequence {yn}, we consider ρ(yn, yn+p) in two cases as follows:
If p = 2k+1, where k ≥ 1, then by pentagonal property and (3.3), we have

ρ(yn, yn+2k+1)≤ ρ(yn, yn+1)+ρ(yn+1, yn+2)+ρ(yn+2, yn+3)+ρ(yn+3, yn+2k+1)

≤ ρ(yn, yn+1)+ρ(yn+1, yn+2)+ρ(yn+2, yn+3)+·· ·
+ρ(yn+2k−1, yn+2k)+ρ(yn+2k, yn+2k+1)

≤ Knρ(y0, y1)+Kn+1ρ(y0, y1)+Kn+2ρ(y0, y1)+·· ·
+Kn+2k−1ρ(y0, y1)+Kn+2kρ(y0, y1)

≤ Kn

1−K
ρ(y0, y1).

If p = 2k, where k ≥ 2, then by pentagonal property, (3.3) and (3.5), we have

ρ(yn, yn+2k)≤ ρ(yn, yn+2)+ρ(yn+2, yn+3)+ρ(yn+3, yn+4)+ρ(yn+4, yn+2k)

≤ ρ(yn, yn+2)+ρ(yn+2, yn+3)+ρ(yn+3, yn+4)+·· ·
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+ρ(yn+2k−2, yn+2k−1)+ρ(yn+2k−1, yn+2k)

≤ Knρ(y0, y1)+Kn+2ρ(y0, y1)+Kn+3ρ(y0, y1)+·· ·
+Kn+2k−2ρ(y0, y1)+Kn+2k−1ρ(y0, y1)

≤ Kn

1−K
ρ(y0, y1).

Therefore, combining the above two cases, we obtain that

ρ(yn, yn+p)≤ Kn

1−K
ρ(y0, y1), ∀n, p ∈N. (3.6)

Since K ∈ (0,1), we get, as n →∞, Kn

1−K → 0. Hence, for every c ∈ E with c À 0, ∃n0 ∈N such that

ρ(yn, yn+p)¿ c, for all n ≥ n0.

Therefore, {yn} is a Cauchy sequence in (X ,ρ).
Suppose T(X ) is a complete subspace of X , there exists a point q ∈ T(X ) ⊆ S(X ) such that
lim

n→∞ yn = lim
n→∞Txn = q and also lim

n→∞Sxn+1 = q, and if S(X ) is complete, this holds also with
q ∈ S(X ).

Now, let p ∈ X be such that Sp = q. Given c À 0, we choose a natural numbers M1, M2, M3 such
that ρ(q, yn−1)¿ c

4 , ∀ n ≥ M1, ρ(yn−1, yn)¿ c
4 , ∀ n ≥ M2 and ρ(yn,Sp)¿ kc

4 , ∀ n ≥ M3.
Since yn 6= ym for n 6= m, by (3.1), we have that

ρ(yn,Sp)= ρ(Sxn+1,Sp)

≥ kρ(Txn+1,T p)

= kρ(yn+1,T p).

That is,

ρ(yn+1,T p)≤ 1
k
ρ(yn,Sp).

By pentagonal property, we have that

ρ(q,T p)≤ ρ(q, yn−1)+ρ(yn−1, yn)+ρ(yn, yn+1)+ρ(yn+1,T p)

≤ ρ(q, yn−1)+ρ(yn−1, yn)+ρ(yn, yn+1)+ 1
k
ρ(yn,Sp)

¿ c
4
+ c

4
+ c

4
+ c

4
= c, for all n ≥ M,

where M :=max{M1, M2, M3}. Since c is arbitrary, we have ρ(q,T p)¿ c
m , ∀ m ∈N. Since c

m → 0
as m →∞, we conclude c

m −ρ(q,T p) →−ρ(q,T p) as m →∞. Since P is closed, −ρ(q,T p) ∈ P.
Hence ρ(q,T p) ∈ P ∩−P. By definition of cone we get that ρ(q,T p)= 0, and so T p = q. Hence,
T p = Sp = q. That is, q is a point of coincidence of S and T.

Next, we show that q is unique. For suppose q′ be another point of coincidence of S and T. That
is,

Sp′ = T p′ = q′, for some p′ ∈ X .
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Then from (3.1), we have

ρ(q, q′)= ρ(Sq,Sq′)

≥ kρ(Tq,Tq′)

= kρ(q, q′).

So that

ρ(q, q′)≤ 1
k
ρ(q, q′),

which implies that

ρ(q, q′)= 0.

Hence, q = q′.
Therefore, S and T have a unique point of coincidence in X . If S and T are weakly compatible,
then by Lemma 2.9, the mappings S and T have a unique common fixed point in X . This
completes the proof of the theorem.

Theorem 3.2. Let (X ,ρ) be a cone pentagonal metric space. Suppose the mappings S,T : X → X
satisfies the condition:

ρ(Sx,Sy)≥ k1ρ(Tx,Sx)+k2ρ(T y,Sy)+k3ρ(Tx,T y), ∀x, y ∈ X , x 6= y, (3.7)

where k1,k2,k3 ≥ 0 with k1 +k2 +k3 > 1, k1 < 1,k2 < 1, and k3 > 1. Suppose that T(X )⊆ S(X ),
and either of S(X ) or T(X ) is complete, then S and T have a unique point of coincidence in X .
Moreover, if S and T are weakly compatible then S and T have a unique common fixed point
in X .

Remark 3.3. If we put k1 = k2 = 0 in Theorem 3.2, we have Theorem 3.1.

Proof. Let x0 be arbitrary point in X . Since T(X )⊆ S(X ), we can choose a point x1 in X such
that Tx0 = Sx1. Continuing in this way, we construct sequences {xn} and {yn} in X such that

yn = Txn = Sxn+1 for all n = 0,1,2, · · · .

Suppose that yk = yk−1 for some k ∈N, then Sxk = Txk. Thus, xk is a coincidence point of S and
T. Hence, assume that yn 6= yn−1, for each n ∈N. Then using (3.7), we have that

ρ(yn, yn−1)= ρ(Sxn+1,Sxn)

≥ k1ρ(Txn+1,Sxn+1)+k2ρ(Txn,Sxn)+k3ρ(Txn+1,Txn)

= k1ρ(yn+1, yn)+k2ρ(yn, yn−1)+k3ρ(yn+1, yn),

which implies that,

ρ(yn, yn+1)≤ Kρ(yn−1, yn), where K = 1−k2

k1 +k3
∈ (0,1). (3.8)

By (3.8) it follows, for all n = 0,1,2, · · · , that

ρ(yn, yn+1)≤ Kρ(yn−1, yn)≤ K2ρ(yn−2, yn−1)≤ ·· · ≤ Knρ(y0, y1). (3.9)
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Observe that, by (3.7) and pentagonal property,

ρ(yn+1, yn−1)= ρ(Sxn+2,Sxn)

≥ k1ρ(Txn+2,Sxn+2)+k2ρ(Txn,Sxn)+k3ρ(Txn+2,Txn)

= k1ρ(yn+2, yn+1)+k2ρ(yn, yn−1)+k3ρ(yn+2, yn),

which implies that,

k3ρ(yn, yn+2)≤ ρ(yn−1, yn+1)−k1ρ(yn+1, yn+2)−k2ρ(yn−1, yn)

≤ ρ(yn−1, yn)+ρ(yn, yn+1)+ρ(yn+1, yn+2)+ρ(yn+2, yn+1)

−k1ρ(yn+1, yn+2)−k2ρ(yn−1, yn).

Hence,

ρ(yn, yn+2)≤ 1−k2

k3
ρ(yn−1, yn)+ 1

k3
ρ(yn, yn+1)+ 2−k1

k3
ρ(yn+1, yn+2).

That is,

ρ(yn, yn+2)≤αρ(yn−1, yn)+βρ(yn, yn+1)+γρ(yn+1, yn+2), (3.10)

where α= 1−k2
k3

> 0, β= 1
k3

> 0, and γ= 2−k1
k3

> 0.
For the sequence {yn}, we consider ρ(yn, yn+p) in two cases as follows:

If p = 2k+1, where k ≥ 1, then by pentagonal property and (3.9), we have

ρ(yn, yn+2k+1)≤ ρ(yn, yn+1)+ρ(yn+1, yn+2)+ρ(yn+2, yn+3)+ρ(yn+3, yn+2k+1)

≤ ρ(yn, yn+1)+ρ(yn+1, yn+2)+ρ(yn+2, yn+3)+·· ·
+ρ(yn+2k−1, yn+2k)+ρ(yn+2k, yn+2k+1)

≤ Knρ(y0, y1)+Kn+1ρ(y0, y1)+Kn+2ρ(y0, y1)+·· ·
+Kn+2k−1ρ(y0, y1)+Kn+2kρ(y0, y1)

≤ Kn

1−K
ρ(y0, y1).

If p = 2k, where k ≥ 2, then by pentagonal property, (3.9) and (3.10), we have

ρ(yn, yn+2k)≤ ρ(yn, yn+2)+ρ(yn+2, yn+3)+ρ(yn+3, yn+4)+ρ(yn+4, yn+2k)

≤αρ(yn−1, yn)+βρ(yn, yn+1)+γρ(yn+1, yn+2)+ρ(yn+2, yn+3)

+ρ(yn+3, yn+4)+·· ·+ρ(yn+2k−2, yn+2k−1)+ρ(yn+2k−1, yn+2k)

≤αKn−1ρ(y0, y1)+βKnρ(y0, y1)+γKn+1ρ(y0, y1)+Kn+2ρ(y0, y1)

+Kn+3ρ(y0, y1)+·· ·+Kn+2k−2ρ(y0, y1)+Kn+2k−1ρ(y0, y1)

≤αKn−1ρ(y0, y1)+βKnρ(y0, y1)+γKn+1ρ(y0, y1)+ Kn+2

1−K
ρ(y0, y1).
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Since α,β,γ>0, K∈(0,1), we obtain that αKn−1ρ(y0, y1)→0, βKnρ(y0, y1)→0, γKn+1ρ(y0, y1)→
0, Kn

1−K ρ(y0, y1)→0, Kn+2

1−K ρ(y0, y1)→0, as n →∞. Hence, for every c ∈ E with c À 0, ∃n0 ∈N such
that

ρ(yn, yn+p)¿ c, for all n ≥ n0.

Therefore, {yn} is a Cauchy sequence in (X ,ρ).
Suppose T(X ) is a complete subspace of X . Then there exists q ∈ T(X ) ⊆ S(X ) such that
lim

n→∞ yn = lim
n→∞Txn = q and also lim

n→∞Sxn+1 = q, and if S(X ) is complete, this holds also with
q ∈ S(X ).

Now, let p ∈ X be such that Sp = q. Given c À 0, we choose a natural numbers M1, M2, M3 such
that ρ(q, yn−1)¿ c

4 , ∀n ≥ M1, ρ(yn−1, yn)¿ c
4 , ∀n ≥ M2 and ρ(yn,Sp)¿ k3c

4 , ∀n ≥ M3.
Since yn 6= ym for n 6= m, by (3.7), we have that

d(yn,Sp)= d(Sxn+1,Sp)

≥ k1ρ(Txn+1,Sxn+1)+k2ρ(T p,Sp)+k3ρ(Txn+1,T p)

≥ k1ρ(yn+1, yn)+k2ρ(T p,Sp)+k3ρ(yn+1,T p)

≥ k3ρ(yn+1,T p),

which implies that,

ρ(yn+1,T p)≤ 1
k3

ρ(yn,Sp).

By pentagonal property, we have that

ρ(q,T p)≤ ρ(q, yn−1)+ρ(yn−1, yn)+ρ(yn, yn+1)+ρ(yn+1,T p)

≤ ρ(q, yn−1)+ρ(yn−1, yn)+ρ(yn, yn+1)+ 1
k3

ρ(yn,Sp)

¿ c
4
+ c

4
+ c

4
+ c

4
= c, for all n ≥ M,

where M :=max{M1, M2, M3}. Since c is arbitrary, we have ρ(q,T p)¿ c
m , ∀m ∈N. Since c

m → 0
as m →∞, we conclude c

m −ρ(q,T p) →−ρ(q,T p) as m →∞. Since P is closed, −ρ(q,T p) ∈ P.
Hence ρ(q,T p) ∈ P ∩−P. By definition of cone we get that ρ(q,T p)= 0, and so T p = q. Hence,
T p = Sp = q. That is, q is a point of coincidence of S and T.

Next, we show that q is unique. For suppose q′ be another point of coincidence of S and T. That
is,

Sp′ = T p′ = q′, for some p′ ∈ X .

Then from (3.7), we have

ρ(q, q′)= ρ(Sq,Sq′)

≥ k1ρ(Tq,Sq)+k2ρ(Tq′,Sq′)+k3ρ(Tq,Tq′)

≥ k1ρ(q, q)+k2ρ(q′, q′)+k3ρ(q, q′)
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≥ k3ρ(q, q′).

So that

ρ(q, q′)≤ 1
k3

ρ(q, q′),

which implies that

ρ(q, q′)= 0.

Hence, q = q′.
Therefore, S and T have a unique point of coincidence in X . If S and T are weakly compatible,
then by Lemma 2.9, the mappings S and T have a unique common fixed point in X . This
completes the proof of the theorem.

The following example illustrates the result of Theorem 3.2.

Example. Let X = {1,2,3,4,5}, E = R2 and P = {(x, y) : x, y ≥ 0} is a cone in E. Define
ρ : X × X → E as follows:

ρ(x, x)= 0, ∀ x ∈ X ;

ρ(1,2)= ρ(2,1)= (4,8);

ρ(1,3)= ρ(3,1)= ρ(3,4)= ρ(4,3)= ρ(2,4)= ρ(4,2)= (1,2);

ρ(1,5)= ρ(5,1)= ρ(2,5)= ρ(5,2)= ρ(3,5)= ρ(5,3)= ρ(4,5)= ρ(5,4)= (3,6).

Then (X ,ρ) is a complete cone pentagonal metric space, but (X ,ρ) is not a cone rectangular
metric space because it lacks the rectangular property:

(4,8)= ρ(1,2)> ρ(1,3)+ρ(3,4)+ρ(4,2)

= (1,2)+ (1,2)+ (1,2)

= (3,6), as (4,8)− (3,6)= (1,2) ∈ P.

Define a mapping S,T : X → X as follows:

S(x)= x, ∀x ∈ X .

T(x)=
{

4, if x 6= 5;
2, if x = 5.

Clearly T(X ) ⊆ S(X ), and the mappings S and T are weakly compatible. Hence, all the
conditions of Theorem 3.2 holds for all x, y ∈ X , where k3 ∈ (1,2], k1 = 0, k2 = 0, and 4 ∈ X is the
unique common fixed point of the mappings S and T.

Now as corollaries, we recover, extend and generalize the recent results of [1, 14, 10, 8, 12, 11],
and many others in the literature, to a more general cone pentagonal metric space.

Corollary 3.4. Let (X ,ρ) be a complete cone pentagonal metric space. Suppose the mappings
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S,T : X → X satisfies the condition:

ρ(Sx,Sy)≥ k
(
ρ(Tx,Sx)+ρ(T y,Sy)

)
, ∀x, y ∈ X , x 6= y, (3.11)

where k ∈ (1/2,1). Suppose that T(X )⊆ S(X ), and either of S(X ) or T(X ) is complete, then S and
T have a unique point of coincidence in X . Moreover, if S and T are weakly compatible then S
and T have a unique common fixed point in X .

Proof. Putting k1 = k2 and k3 = 0 in Theorem 3.2. The result follows.

Corollary 3.5. Let (X ,ρ) be a complete cone pentagonal metric space and let S : X → X be onto
mapping which satisfies the condition:

ρ(Sx,Sy)≥ k1ρ(x,Sx)+k2ρ(y,Sy)+k3ρ(x, y), ∀x, y ∈ X , x 6= y,

where k1,k2,k3 ≥ 0 with k1 +k2 +k3 > 1, k1 < 1,k2 < 1, and k3 > 1. Then S have a unique fixed
point in X .

Proof. Putting T = I in Theorem 3.2. This completes the proof.

Corollary 3.6. Let (X ,ρ) be a complete cone pentagonal metric space and let S : X → X be
surjective which satisfies the condition:

ρ(Sx,Sy)≥ k
(
ρ(x,Sx)+ρ(y,Sy)

)
, ∀x, y ∈ X , x 6= y,

where k ∈ (1/2,1). Then S have a unique fixed point in X .

Proof. Putting T = I in Corollary 3.4. This completes the proof.

Corollary 3.7. Let (X ,ρ) be a cone pentagonal metric space and let S : X → X be onto mapping
which satisfies:

ρ(Sx,Sy)≥ kρ(x, y), ∀x, y ∈ X ,

where k > 1 is a constant. Then S has a unique fixed point in X .

Proof. Putting T = I and k1 = k2 = 0 in Theorem 3.2. The result follows.

4. Conclusion
In this paper, we prove existence of common fixed points for two self mappings satisfying
expansive conditions in non-normal cone pentagonal metric spaces. The established results
extend and improve recent results obtained by many authors. We give an example to elucidate
our results.
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