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Different Vaccination Strategies for Measles Diseases:
A Simulation Study

I.A. Moneim

Abstract. Vaccination strategies are designed and applied to control or eradicate
an infection from the population. This paper studies three different vaccination
strategies used world wide for many infectious diseases including measles. These
strategies are the conventional constant vaccination strategy, the periodic step
(pulse) vaccination strategy and finally the mixed vaccination strategy of both the
constant and the periodic one. Simulation of the different vaccination programs
is been conducted. The Poincaré section is playing as a filter of our simulation
results to show a wide range of possible behavior of our model. critical vaccination
parameter is been estimated from the results to prevent sever epidemics.

1. Introduction

Vaccination programs are frequently used as a tool to control the spread
of epidemics. The simplest vaccination strategy is to vaccinate all susceptible
individuals at a constant rate. This may also be combined with vaccination of a
fixed fraction of very young children at the smallest possible age where maternal
antibodies no longer confound the effect of the vaccine, commonly 9-18 months
for measles. In the absence of vaccination cases, many common childhood diseases
show a regular periodic oscillation with period a whole number of years [12, 18].
We ignore the effect of maternal antibodies in this paper, so children subject to
be vaccinated from birth. Much work has been done analysing seasonal periodic
outbreaks of infectious diseases considering seasonal variation in the contact rate
[12, 18].

Recently it has been postulated that in some circumstances a periodic
vaccination strategy, for example pulse vaccination, can be a more efficient use
of limited immunisation resources than continuous constant vaccination effort
[1, 17, 19]. Many recent works studied epidemic models with pulse vaccination
strategy. The pulse vaccination was the main aim of these epidemiological
investigations [8, 9, 5, 6, 20, 21].
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In this paper we study a general continuous periodic vaccination strategy r(t).
This is combined with vaccination of a given proportion of newborn individuals.
As in many real diseases there is a time delay between an individual becoming
infected and becoming infectious we introduced an exposed or latent class into the
model. We consider the model both with a periodic disease transmission rate and
a constant one.

If the combined vaccination strategy is applied in the situation where no disease
is present then the number of susceptibles eventually reaches a unique periodic
solution. Our results lead us to conjecture that this combined periodic and fixed
vaccination strategy is sufficient to eliminate disease from the population exactly
when the weighted time-averaged disease-free susceptible population is less than
a certain threshold value.

2. The SEIR model with vaccination

The SEIR model of the spread of infectious diseases makes the following
assumptions:

(1) The total population size is N and the per capita birth rate is a constant µ. As
births balance deaths we must have that the per capita death rate is also µ.

(2) The population is uniform and mixes homogeneously.
(3) The population is divided into susceptible, exposed, infective and recovered

individuals. The total number of individuals in each of these classes are
respectively S ≡ S(t), E ≡ E(t), I ≡ I(t) and R≡ R(t).

(4) The infection rate β(t) is defined as the total rate at which potentially
infectious contacts occur between two individuals. So the total rate at which
susceptibles become exposed is β(t)SI . Biological considerations mean that
β(t) is continuous. We also assume that β(t) is not identically zero, positive,
non-constant and periodic of period T .

(5) The susceptibles move from the exposed class to the infective class at a
constant rate σ.

(6) The infectives move from the infective class to the recovered class at a constant
rate γ

(7) A fraction p (0 ≤ p ≤ 1) of all new-born children are vaccinated. In addition
all susceptibles in the population are vaccinated at a time dependent periodic
rate r(t). This is the periodic vaccination strategy. We shall suppose that r(t)
is periodic with period LT . The case where r(t) has period T can be obtained
by setting L = 1.

Our SEIR model with time dependent vaccination strategy can be written
as a set of four coupled non-linear ordinary differential equations as follows



Different Vaccination Strategies for Measles Diseases: A Simulation Study 279

[12, 18, 13]:

dS

d t
= µN(1− p)− β(t)SI − (µ+ r(t))S, (1)

dE

d t
= β(t)SI − (µ+σ)E, (2)

dI

d t
= σE − (µ+ γ)I , (3)

and

dR

d t
= µN p+ r(t)S+ γI −µR, (4)

with

S+ E + I + R= N . (5)

Here the disease transmission rate β(t) and the vaccination rate r(t) are
non-zero, positive, continuous periodic functions. The system (1)-(5) has no
equilibrium points but a disease free solution (DFS), with E(t) = I(t) = 0 is still
possible.

Consider the region D in R4 defined by

D = {(S, E, I , R) ∈ [0, N]4 | S+ E + I + R= N}.

The system of differential equations (1)-(4) is well posed on D [16].

3. The disease free solution

In the case that r(t) is a non-constant bounded continuous periodic function,
there is no equilibrium point for the system (1)-(5). So there is no disease free
equilibrium point. But still there is a periodic DFS corresponding to the case that
E(t) = I(t) = 0. In this case DFS is given by:

S∗(t0) =
�

N[µ(1− p)]exp
�
−µLT −

∫ LT

0

r(τ)dτ
�

×
∫ t0+LT

t0

exp
�
µ(ζ− t0) +

∫ ζ

t0

r(τ)dτ
�

dζ
�

× 1

1− exp
h
−µLT −

∫ LT

0
r(τ)dτ

i . (6)

Hence S∗(t0 + LT ) = S∗(t0). So S∗ is a periodic function of t. Differentiating (6)
S∗(t0) is continuously differentiable with respect to t0 and Ŝ(t) = S∗(t), Ê = Î = 0
and R̂(t) = R∗(t) = N − S∗(t) is a disease free periodic solution of the system (1)-
(5) which repeats itself every LT years; see [15]. We have the following result:
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Theorem 1. Equations (1)-(5) have a disease free periodic solution of period LT
which is continuously differentiable and this is the only disease free periodic solution
to (1)-(5), and any disease free solution to (1)-(5) approaches this one as time
becomes large.

Proof. See [14] for the case L = 1. ¤

4. The simulation

In this paper the simulations of the SEIR model with three different vaccination
strategies have been conducted using the XPPAUT package and data estimated
from the literature. Parameter values corresponding to the measles disease have
been used.

A constant population size of N = 1, 000, 000 has been considered. We also
supposed that µ = 0.02/year corresponding to an average human lifetime of 50
years [18] and [4]. We chose this value to be consistent with previous studies
even though the actual value of the average lifetime in many countries is higher.
For example the average lifetime in the UK is around 70.0 years. We do not feel
that this will have much effect on the results of our simulations as we are mainly
considering childhood diseases and the proportion of individuals who catch the
disease at 50 years or later is negligible. Mainly the following specific values of
σ−1 and γ−1 have been taken as in [11], [7], [2], [3] and [10] for our model:

Measles σ−1 = 9.49 days and γ−1 = 3.65 days;
We have taken also β0 as estimated from the literature, for our simulations

results for all of the bifurcation diagrams presented and for the three diseases
under investigation as flows: β0 = 0.0018/year for measles, 0.00113/year for
chickenpox and 0.0007/year for rubella respectively.

The key parameter in the analytical results was the basic reproduction number
R0 [16] and [14]. So the computer simulations of our model were performed
using values of R0 > 1 to insure that the disease is in the endemic state. The
values of R0 were determined by the value of β0, the mean level of the disease
transmission function, and β1 which determines the amplitude parameter of the
periodic transmission rate β(t).

This paper targeted the long term behaviour of the system in response to
changes in the vaccination parameter, (the value the vaccination rate of the
convection strategy, the amplitude of the vaccination function of both the pulse
and the mixed one), which is our bifurcation parameter. The basic idea of this
study is simply that, given a set of parameter values compound with appropriate
initial values then the endemic equilibrium solution is obtained by running the
system for a long time to eliminate transient solutions. Filtering the equilibrium
solutions by looking at Poincaré sections of them taken every year (recall that the
underlying seasonal variation in the contact rate has period one year). So in this
paper the vaccination parameter is used as a filter of the long term equilibrium
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solution. By plotting the sections of the long term endemic equilibrium solutions
against the vaccination parameter we obtain a number of points in a vertical line
corresponding to each value chosen for the vaccination parameter. These points
on the filter, represent the period of the stable long term periodic solution of our
model. For example a single point indicates a solution of period one year, two
points a solution of period two years, n points a solution of period n years and
an infinite number of points a chaotic solution. In the following simulation results
which represent global bifurcation diagrams for SEIR model with vaccination using
our filter are given. We say global because the filter described above is used to plot
the bifurcation diagrams for a large range of values of the vaccination parameter.
The comparison of the simulation results of our model show that the type of
vaccination parameter affecting the pattern of the dynamics of the disease. The
pattern of the mixed vaccination is the simplest and the most controllable one.

This paper looked at bifurcation diagrams for three different vaccination
function one of them is the constant strategy. These three vaccination programs
are applied for the SEIR model with the seasonally periodic transmission function
the more realistic reparameterised step function as, β(t) = β0 + β1∆1(t), with
mean value β0, of period one year [16] and [14], where

∆1(t) =

¨
−2 when (t − [t]) ∈ (1/3, 2/3),
1 otherwise.

Our three different vaccination strategies are of the following forms:

(1) The constant vaccination function P(t) = p1 to vaccinate the newborns as
many as possible all the time.

(2) The periodic binary step vaccination function p(t) = p1∆(t) with period one
year to vaccinate the susceptible population S(t), where

∆(t) =

¨
1 when (t − [t]) = 2/3,

0 otherwise.

(3) The mixed vaccination strategy which is compromised of the periodic function
p(t) = p1∆(t), in combined with the constant vaccination one P(t) = p in all
of our simulations we have taken p = 0.5.

The simulation study is been designed to start off just before school opening days.
It means that the disease transmission rate is at its highest value. Therefore at
this critical moment we start our vaccination to control the disease dynamics or
possibly prevent severe epidemics to occur. We simulate our model with the three
different vaccination strategies under consideration by varying the vaccination
parameter p1 from 0 to 1 in value. Then plotting the long term solution against
the vaccination parameter to have wide range of possible behaviour of the disease
under consideration. From the obtained patterns we can decide easily which
vaccination strategy is more effective than the others.
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Figure 1. The bifurcation diagrams of measles parameter values of
number of susceptibles against vaccination parameter value of p1 of the
convection constant vaccination strategy P(t) = p1.

We start off our simulation of measles disease with the constant vaccination
strategy. Figure 1 represents the bifurcation diagram of measles when the
vaccination strategy is the convection constant one. This pattern shows that at
low level of vaccination rate measles have long period solutions, these solution
tend to chaos behaviour by a series of period doubling. This complicated pattern is
interrupted by six, ten and twelve years periodic solutions. Increasing the value of
p1 we obtained a region of long period or aperiodic solutions until p1 reaches the
value 0.9 approximately then a long period, 20 years or more, periodic solution
appears up to the value p1 = 0.96. Increasing the value of p1 slightly again a one
year periodic solution appears and persists to decrease and tends to its limiting
value at the end of range. These results agree with the previous results [2] and [1]
which predict that, the effective value of p1 of the convection constant vaccination
strategy should exceed 0.95 in value. In other words the percentage of the number
of vaccinated newborns should exceed 95% to prevent sever epidemics to occur.
This proportion of newborns is very difficult to be vaccinated for different reasons
[16].

Figure 2 represents the bifurcation diagram of measles when the vaccination
parameter is the amplitude of the periodic step function p(t) = p1δ(t). This
pattern start off by long period periodic solution at low values of the amplitude of
the vaccination function. Increasing the value of p1 aperiodic solutions interrupted
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Figure 2. The bifurcation diagrams of measles parameter values of
number of susceptibles against vaccination parameter, the amplitude p1

of the non constant periodic vaccination function p(t) = p1δ(t).

with long period solutions appear until the value of the amplitude reaches the
value 0.3. Unlike the convection vaccination strategy, increasing the amplitude
slightly a three years periodic solution obtained flowed by a one year periodic
solution which persists until the value of p1 becomes 0.5 in value. This one
year periodic solution is been interrupted with a long period periodic solution.
Increasing the value of p1 more the one year periodic solution persists but
decreases to it limiting value as the p1 tends to the end of its range. It is important
to note that, the step periodic vaccination force the behavior of the system to
be simply more than the convection one. and the control of the dynamics of the
disease is possible for a lower values of p1 compared with the convection strategy.

Figure 3 represents the corresponding bifurcation diagram of measles when the
vaccination strategy is the mixed strategy and amplitude p1 of the periodic step
function p(t) = p1δ(t) is vaccination parameter. In this vaccination strategy there
is another proportion of vaccinated newborns, this proportion is been taken as
50%. This pattern starts with a ban of long period periodic solutions followed by
six years periodic solutions then a one year periodic solutions interrupted with long
period periodic solutions. When the value of p1 exceeds 0.2 a one year periodic
solution appears and persists until the of p1 reaches 0.5 in value. Increasing
the value p1 further the one year periodic solution decreases monotonically to
its limiting value as the amplitude parameter tends to its end of range. It is
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Figure 3. The bifurcation diagrams of measles parameter values of
number of susceptibles against vaccination parameter, p1 the amplitude
of the mixed vaccination strategy of both the constant and periodic step
one.

important to note that the level of susceptible population is half the value of the
corresponding value of the susceptible population when the vaccination strategy is
the step periodic one only. This result is expected and obtained in several previous
works. The most important result here and it seems to be a novel result is the
simple pattern of measles with the mixed vaccination strategy. This patterns shows
disappearance of very long period solutions and the pattern does not contain any
chaotic behaviour.

Therefore we can claim that the mixed vaccination strategy is the most effective
policy to control measles disease. Moreover using this mixed vaccination strategy
reduces the number of the susceptibles in the system by a fraction p which is the
rate at which the newborns are vaccinated.

5. Summary and discussion

It is important to simulate our model with exposed or latent class and with
different vaccination strategy, to evaluate which strategy is more efficient. We have
simulated the control of the dynamics of three childhood infectious disease by
using three different types of vaccination strategies. We perform these simulations
for an SEIR model with a seasonally varying disease transmission rate. Using a
periodic vaccination strategy in such an SEIR model seems to lead to periodicity
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in the disease dynamics [16]. In this paper we try to control or possibly eradicate
diseases by applying the most efficient vaccination strategy. Efficiency means some
times less number of vaccinated individuals leads to perfect control of the disease.

However the simulation results have indicated that using different functional
forms of vaccination strategies generates different patterns of solutions for the
measles disease parameter set. The bifurcation diagrams show that the simplest
pattern is that of the mixed vaccination strategy. Apart from some of the results
this diagram show a one year solution for the whole diagram except the first
quarter of range of the vaccination parameter. The most complicated Diagram is
corresponding to the constant vaccination parameter which show a wide range of
periodic and aperiodic solutions all over this pattern.

It is interesting to note the difference between the bifurcation diagrams in the
case of using a periodic step vaccination function and the constant convection
vaccination strategy. The bifurcation diagram for the periodic step vaccination
shows that the disease reaches the DFS at a vaccination level less than 60% of
the total number of the susceptible population. On the other hand the constant
vaccination strategy failed to control the disease before the vaccination rate
exceeds 95%.

Finally we point out the difference between the bifurcation diagrams, when
using the periodic step vaccination function and using the mixed vaccination
strategy. The patterns show that, the level of vaccinated population at which
the disease starts to be controlled, in the case of using the mixed vaccination
strategy is much fewer than that of the only step periodic vaccination strategy. The
diagrams show that, the effective vaccination parameter p1 in the case of the mixed
vaccination is about a third of the that of the only step periodic vaccination strategy.
Using a continuous periodic vaccination strategy in conjunction with vaccination
of a fixed proportion of newborn individuals, reduces the proportion of newborns
who need to be immunised to a more realistic level. Moreover from (6) one can
see easily that using such a mixed vaccination strategy uniformly reduces the
level of fluctuation of susceptible in the DFS compared with a purely periodic
vaccination function (p = 0). This agree with our simulation results. As the
diagrams show that at the end of range of the vaccination parameter, the number of
susceptible population in the system when the mixed vaccination strategy is used,
is approximately half its corresponding number of susceptible population in the
system when the purely step vaccination strategy is used. Hence it is more optimal
to use a combined vaccination approach in order to prevent major outbreaks of
infectious disease occurring.
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