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Abstract. The central subgroup of the nonabelian tensor square of a group G, denoted by∇(G),
is a crucial tool in exploring the properties of a group. It is a normal subgroup generated by the
element g⊗ g, for all g ∈ G. In this paper, the central subgroup of the nonabelian tensor square
of a crystallographic group with symmetric point group is constructed and generalized up to finite
dimension.
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1. Introduction

Crystallographic groups have many interesting properties. The main focus in this paper is
a crystallographic group with symmetric point group, denoted by B2. In [1], the consistent
polycyclic presentation of B2 of dimension four, B2(4) has been constructed as follows.

B2(4)= 〈a,b, l1, l2, l3, l4 | a2 = l3,b3 = l3
3l−2

4 ,ba = b2l−1
3 l2

4, la
1 = l1, la

2 = l1l−1
2 , la

3 = l3, la
4 = l−1

4 ,

lb
1 = l−1

2 , lb
2 = l1l−1

2 , lb
3 = l3, lb

4 = l4, l l i
j = l j, l

l−1
i

j = l j for j > i, 1≤ i, j ≤ 4〉 (1.1)

The central subgroup of the nonabelian tensor square of a group G, denoted by ∇(G) is a
normal subgroup generated by the element g⊗ g, for all g ∈ G. G ⊗G is a group generated
by the symbols g ⊗ h, for all g,h ∈ G, subject to relations gh ⊗ k = (gh ⊗ kh)(h ⊗ k) and
g⊗ hk = (g⊗ k)(gk ⊗ hk) for all g,h,k ∈ G where gh = h−1 gh [2]. Lemma 1 shows the close
relationship between ∇(G) and the abelianization of the group.

Lemma 1 ([3]). Let Gbe a group whose abelianization is finitely generated by the independent
set xiG′, i = 1, . . . ,n. Then, ∇(G)= {[xi, xϕi ], [xi, xϕj ][x j, xϕi ] | 1≤ i < j ≤ s}.

In [4], the central subgroup of the nonabelian tensor square of the group B2(4) has been
computed. Thus, the aim of this paper is to generalize the central subgroup of the nonabelian
tensor square of the group B2 up to dimension n.

2. Preliminaries

In this section, some basic definitions and some structural results are presented.

Definition 1 ([5], Polycyclic Presentation). Let Fn be a free group on generators g1, . . . , gn and
R be a set of relations of group G. The relations of a polycyclic presentation have the form
ge i

i = gxi ,i+i
i+1 . . . gxi ,n

n for i ≤ I , g−1
j g i g j = gyi , j, j+1

j+1 . . . gyi , j,n
n for j ≤ i, g j g i g−1

j = gzi , j, j+1
j+1 . . . gzi , j,n

n for
j ≤ i and j ∉ I for some I ⊆ {1, . . . ,n}, e i ∈ N for i ∈ I and xi, j, yi, j,kzi, j,k ∈ Z for all i, j and k.

Definition 2 ([5], Consistent Polycyclic Presentation). Let G be a group generated by g1, . . . , gn.
The consistency of the relation in G can be determined using the consistency relations

gk(g j g i) = (gk g j)g i for k > j > i, (ge j
i )g i = g

e−1
j

j (g j g i) for j > i, j ∈ I , g j(ge i
i ) = (g j g i)g

e−1
i

i for
j > i, f = inf ∈ I , (ge i

i )g i = g i(ge i
i ) for i ∉ I and g j = (g j g−1

i )g i for j > i, i ∉ I .

Definition 3 ([6]). Let G be a group with presentation GR and let Gϕ be an isomorphic copy of
G via the mapping ϕ : g → gϕ for all g ∈G. The group ν(G) is defined to be

ν(G)=G,GϕR,Rϕ,x [g,hϕ]= [x g, (xh)ϕ]=xϕ [g,hϕ], for all x, g,h ∈G.

Lemma 2 ([7]). Let G be any crystallographic group of dimension n with point group P . Let
B =G×Fab

m where Fab
m is a free abelian group of rank m. Then B is a crystallographic group of

dimension n+m with point group P .
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In [1] and [4], the abelianization of B2(4) and its central subgroup of the nonabelian tensor
square have been determined as follows.

Lemma 3 ([1]). The abelianization B2(4) is generated by aB2(4)′ of infinite order, l2B2(4)′

of order 3 and l4B2(4)′ of order 2. In symbols, we write B2(4)ab ∼= 〈aB2(4), l2B2(4), l4B2(4)〉 ∼=
C0 ×C2 ×C3.

Theorem 1 ([4]). The subgroup ∇(B2(4)) is given as

∇(B2(4))= 〈[a,aϕ], [l2, lϕ2 ], [l4, lϕ4 ], [a, lϕ2 ][l2,aϕ], [a, lϕ4 ][l4,aϕ]〉 ∼= C0 ×C2 ×C2
3 ×C4.

Lemma 4 ([3]). Let G be a group with elements x and y such that [x, y]= 1. Then,

(i) [xn, (ym)ϕ][ym, (xn)ϕ]= ([x, yϕ][y, (xϕ)])nm,

(ii) If g1 ∈G′ or g2 ∈G′, then [g1, gϕ2 ]−1 = [g2, gϕ2 ].

3. Main Result

In this section, the central subgroup of the nonabelian tensor square of B2 is generalized up to
finite dimension. First, the generalized polycyclic presentation of B2 is constructed as follows.

Lemma 5. The polycyclic presentation of B2(n) is consistent where

B2(n)= 〈a,b, l1, l2, l3, l4 | a2 = l3,b3 = l3
3l−2

4 ,ba = b2l−1
3 l2

4, la
1 = l1, la

2 = l1l−1
2 , la

3 = l3,

la
4 = l−1

4 , la
p = lp, lb

1 = l−1
2 , lb

2 = l1l−1
2 , lb

3 = l3, lb
4 = l4, lb

p = lp,l i
j = l j, l

l−1
i

j = l j

for 1≤ i < j ≤ n and 5≤ p ≤ n〉 (3.1)

Proof. By Lemma 2, B2(n)= B2(4)×Fab
n−4 for n ≤ 4 where B2(4) has the presentation as in (1.1)

and Fab
n−4 is free abelian of rank n−4 which is generated by l5, l6, . . . , ln and lp commutes with

all elements in B2(n) for 5 ≤ p ≤ n. Thus, la
p = lp, lb

p = lp, l l1
p = lp, l l1

p = lp, l l3
p = lp and l l4

p for
5 ≤ p ≤ n. Therefore, B2(n) has the polycyclic presentation as in (3.1) which satisfies all the
relations as given in Definition 2.

Next, the generalization of the abelianization of the group B2 is presented as follows.

Lemma 6. The abelianization of B2(n),

B2(n)ab = 〈aB2(n)′, l2B2(n)′, l4B2(n)′, lpB2(n)′〉 ∼= Cn−3
0 ×C2 ×C3 for 5≤ p ≤ n.

Proof. The abelianization of B1(n)ab is generated by aB2(n)′, bB2(n)′, l2B2(n)′, l3B2(n)′,
l4B2(n)′ and lpB2(n)′ for 5≤ p ≤ n. By Lemma 3, the independent cosets are aB2(n)′, l2B2(n)′

and l4B2(n)′. Also, lpB1(n)′ is independent of other coset. Hence, it can be concluded that
B2(n)ab = 〈aB2(n)′, l2B2(n)′, l4B2(n)′, lpB2(n)′〉. By Lemma 3, aB2(n)′ is of infinite order, l2B2(n)′
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is of order 3 and l4B2(n)′ is of order 2. Besides, lpB2(n)′ is showed to have infinite order since
there is no lr

p in B2(n)′ for any integer r. Since 5≤ p ≤ n, then there are n−4 cosets in term of
lpB2(n)′. Therefore, B2(n)ab ∼= C0 ×C2 ×C3 ×Cn−4

0 = Cn−3
0 ×C2 ×C3.

Then, the construction of ∇(B2(n)) is showed as in the following theorem.

Theorem 2. The subgroup ∇(B2(n)) is given as

∇(B2(n))= 〈[a,aϕ], [l2, lϕ2 ], [l4, lϕ4 ], [lp, lϕp], [a, lϕ2 ][l2,aϕ], [a, lϕ4 ][l4,aϕ], [a, lϕp][lp,aϕ],

[l2, lϕp][lp, lϕ2 ], [l4, lϕp][lp, lϕ4 ], [lp, lϕq ][lq, lϕp]〉
∼= C

(n−3)(n−2)
2

0 ×Cn−3
2 ×Cn−2

3 ×C4 for 5≤ p < q ≤ n.

Proof. By Lemma ??, B1(n)ab is generated by aB2(n)′, l2B2(n)′, l4B2(n)′, and lpB2(n)′ for
5 ≤ p ≤ n. Thus, by Lemma 1, ∇(B1(n)) = 〈[a,aϕ], [l2, lϕ2 ], [l4, lϕ4 ], [lp, lϕp], [a, lϕ2 ][l2,aϕ],
[a, lϕ4 ][l4,aϕ], [a, lϕp][lp,aϕ], [l2, lϕp][lp, lϕ2 ], [l4, lϕp][lp, lϕ4 ], [lp, lϕq ][lq, lϕp]〉 for 5≤ p < q ≤ n.

By Theorem 1, [a,aϕ] has infinite order, [l4, lϕ4 ] has order 4, [a, lϕ4 ] [l4,aϕ] has order 2,
and both [a, lϕ2 ][l2,aϕ] and [l2, lϕ2 ] have order 3. By Lemma 6(i) and (ii), it can be concluded
that [l2, lϕp][lp, lϕ2 ] has order 3 since ([l2, lϕp][lp, lϕ2 ])3 = [l3

2, lϕp][lp, l3ϕ
2 ] = [l3

2, lϕp][l3
2, lϕp]−1 = 1.

Similarly, [l4, lϕp][lp, lϕ4 ] has order 2. Next, suppose that the order of [a, lϕp][lp,aϕ] is finite,
then [ar, lsϕ

p ][ls
p,arϕ]= ([a, lϕp][lp,aϕ])rs = 1 for any integers r and s. Thus, [ls

p,arϕ]= [ar, lsϕ
p ]−1.

However, this is not true since there is no ar and ls
p in B2(n)′. Therefore, [a, lϕp][lp,aϕ] has

infinite order. Using the similar argument, [lp, lϕq ][lq, lϕp] and [lp, lϕp] also have infinite order.

Since 5 ≤ p < q ≤ n, then there are n− 4 generators in terms of [lp, lϕp], [a, lϕp][lp,aϕ],
[l2, lϕp][lp, lϕ2 ] and [l4, lϕp][lp, lϕ4 ] and (n−5)(n−4)

2 generators in term of [lp, lϕq ][lq, lϕp]. Hence,

∇(B2(n)) ∼= C0 ×C3 ×C4 ×Cn−4
0 ×C3 ×C2 ×Cn−4

0 ×Cn−4
3 ×Cn−4

2 ×C
(n−5)(n−4)

2
0 = C

(n−3)(n−2)
2

0 ×Cn−3
2 ×

Cn−2
3 ×C4.

4. Conclusion

In this paper, the generalization of the central subgroup of the nonabelian tensor square of a
crystallographic group with symmetric point group, B2(n) is constructed up to finite dimension
n. Besides, the generalized polycyclic presentation and the generalized abelianization of the
group are also presented.
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