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A Problem of Enumeration of Two-color Bracelets
with Several Variations

Vladimir Shevelev

Abstract. We consider the problem of enumeration of incongruent two-color
bracelets of n beads, k of which are black, and study several natural variations
of this problem. We also give recursion formulas for enumeration of t-color
bracelets, t ≥ 3.

1. Introduction

Professor Richard H. Reis (South-East University of Massachusetts, USA) in
1978 put the problem: “Let a circumference is split by the same n parts. It is
required to find the number R(n, k) of the incongruent convex k-gons, which
could be obtained by connection of some k from n dividing points. Two k-gons
are considered congruent if they are coincided at the rotation of one relatively
other along the circumference and (or) by reflection of one of the k-gons relatively
some diameter”.

In 1979 Hansraj Gupta [1] gave the solution of the Reis problem.

Theorem 1 (H. Gupta).
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where hk ≡ k( mod 2), hk = 0 or 1, (n, k) is gcd(n, k), ϕ(n) - the Euler function.

Consider some convex polygon with the tops in the circumference splitting
points, “1” or “0” is put in accordance to each splitting point depending on
whether a top of the polygon is in the point. Thus, there is the mutual one-
to-one correspondence between the set of convex polygons with the tops in the
circumference splitting points and the set of all (0, 1)-configurations with the
elements in these points.
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Using this bijection and calculating the cyclic index of the Dihedral group
appearing here, the author [4] gave a short proof of Theorem 1. Besides, this
bijection shows that formula (1.1) solves the problem of enumeration of two-color
bracelets of n beads, k of which are black and n− k are white. In turn, it allows to
obtain several simple formulas for series of sequences in [6] (see, e.g., the author’s
explicit formulas for sequences A032279-A032282, A005513-A005516).

Note also that, quite recently, the author found an application of enumeration of
two-color bracelets to some questions of the permanent theory (see [5], Section 5).

Let n beads of a bracelets are located in n dividing points of a circumference
which is split by the same n parts. Let T be cyclic group of turns with the
generating element τ= e

2πi
n .

Definition 1. We call two-color bracelet of n beads symmetric respectively rotation
(two-color SR-bracelet) if its cyclic grope of turns is a proper subgroup of T .

Remark 1. When we say about a two-color bracelet, we exclude cases when it
contains only white (black) color.

Consider several variations of enumeration of two-color bracelets.

Variation 1. To find the number Nn of all incongruent two-color SR-bracelets.

Variation 2. To find the number N (k)(n) of those two-color SR-bracelets which
have exactly k black beads.

Variation 3. To find the number Sn of those two-color SR-bracelets which have a
diameter of symmetry.

Variation 4. To find the number S(k)(n) of those two-color SR-bracelets which
have exactly k black beads and a diameter of symmetry.

Variation 5. Let m be a positive integer. To find the number Nn,m of all incongruent
two-color SR-bracelets with isolated black beads such that between every two black
beads there exist at least m white ones.

Variation 6. For m ≥ 1, to find the number Sn,m of those two-color SR-bracelets
which have a diameter of symmetry.

Variation 7. For m ≥ 1, to find the number N (k)n,m of those two-color SR-bracelets
in Variation 2 which have exactly k black beads.

Variation 8. For m≥ 1, to find the number S(k)n,m of those two-color SR-bracelets in
Variation 3 which have exactly k black beads.

Notice that, Nn,m − Sn,m is the number of those two-color SR-bracelets, none of
which has a diameter of symmetry; N (k)n,m − S(k)n,m is the same two-color SR-bracelets
having exactly k 1’s.
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Some words about structure of the article. Section 2 is devoted to solutions
of Variations 1-4. In Section 3 we introduce two different generalizations of the
Fibonacci numbers. In Section 4 we solve Variations 5-8. In Section 5 we consider
an interesting example and the connected with it some numerical results. In
conclusion, in Section 6 we discuss two open questions (Variation 9-10) and give
enumeration of t-color SR-bracelets (Variation 11-12) and Theorems 4-6.

2. Variations 1-4

Theorem 2. The following formulas take place:
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where µ(n) is the Mobius function,
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and R(n, k) is defined by (1.1).

Proof. (1) Summing (1.1) by k from 1 to n − 1 we find the number λn of all
incongruent of all incongruent two-color bracelets:

λn =
n−1∑

k=1

R(n, k). (2.8)

Let d, 1 ≤ d ≤ n, be a divisor of n. Denote via νd = νd(n) the number of
incongruent bracelets with the minimal angle of self-coincidence equals to 2π

n
d.

Then

λn =
∑

d|n
νd (2.9)

and, by definition of Nn, we have

Nn = λn − ν1 − νn . (2.10)
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Using the Mobius inverse formula (cf., e.g., [3]), we find from (2.9)
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d
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.

Now (2.8) implies
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2
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d

. (2.11)

To complete the proof of (2.1), we need two technical lemmas.

Lemma 1. For hk ≡ k (mod 2), hk = 0 or 1, we have
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Proof. Indeed, for even n, we have
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For odd n, we have
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and the lemma follows from (2.14), (2.16). ¤
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Therefore, taking into account that, for n ≥ 1,
∑
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Putting k = dd1, we have
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This proves (2.17).

Now from (2.8), (1.1) and Lemmas 1, 2 we have
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Finally, from (2.11), taking into account, that for n > 1,
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Note that, as it was expected, if n is prime, then Nn = 0.

(2) As it showed in [1], R1(n, k) (2.7) gives the number of those k-gons or, by
the bijection, those two-color bracelets having exactly k black beads, that are
symmetric respectively a diameter. Therefore, by the same arguments for R1(n, k),
we obtain (2.2).

(3) Let (k, n)> 1. For fixed n, k, let us consider the function R(x , y) (1) on the set
��
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The constriction of the R(x , y) on this set is a function of m. Denote it by Rn,k(m).
Put

Rn,k(m) =
∑

d|m
νd , (2.19)
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where νd = νd(n, k). In particular, Rn,k((n, k)) = R(n, k). Using the Mobius inverse
formula, according to (2.18) we have

νm =
∑

d|m
µ(d)Rn,k

�m

d

�
=
∑

d|m
µ(d)R

�
n

(n, k)
m

d
,

k

(n, k)
m

d

�
.
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and (2.19), for m= (n, k), has the form

R(n, k) =
∑

d|(n,k)

νd .

By the definition, we have now

N (k)n = R(n, k)− ν(n,k) (2.21)

Finally, from (2.20)-(2.21) we deduce (2.3).

(4) From the same arguments it follows that, by replacing in (2.3) R by R1, we
obtain S(k)(n). ¤

For considerations of the further variations, we need two different generali-
zations of Fibonacci numbers.

3. Two generalizations of Fibonacci numbers

Definition 2. Let m be a positive integer. We call m-Fibonacci numbers of type 1
the sequence which is defined by the recursion

F (m)n = F (m)n−1 + F (m)n−m−1 , (3.1)

with the initial conditions

F (m)0 = F (m)1 = . . .= F (m)m = 1 . (3.2)

For m= 1 we obtain the very Fibonacci numbers:

F (1)n = Fn, n≥ 0 . (3.3)

Definition 3. For a positive integer m, the sequence is defined by the same
recursion

f (m)n = f (m)n−1 + f (m)n−m−1, (3.4)

but with other initial conditions

f (m)0 = f (m)1 = . . .= f (m)b m−1
2
c = 1,

f (m)b m+1
2
c = f (m)b m+1

2
c+1
= . . .= f (m)m = 2, (3.5)

we call m-Fibonacci numbers of type 2.
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For m = 1 we also obtain the very Fibonacci numbers, but, comparing with
(3.3)), we have

f (1)n = Fn+1, n≥ 0. (3.6)

Now we prove several lemmas.

Lemma 3. The following formulas hold
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Proof. Proof of the (3.7)-(3.8) is over by the same scheme. Therefore, we prove
(3.7) only. Denote the right part of (3.7) via Φ(m)n . We have
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Thus, for numbers Φ(m)n and F (m)n , formulas (3.1)-(3.2) are valid and, con-
sequently, Φ(m)n = F (m)n , n≥ 0. ¤

Lemma 4. Let hk ≡ k (mod 2), hk = 0 or 1, and γm ≡ m−1 (mod 2), γm = 0 or 1.
Then
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Proof. Proof is the same for all assumptions regarding the parity of m and n.
Therefore, we consider only case when m and n are even. Then γ= 1 and
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It is left to verify the coincidence of the initial conditions (3.5) for f (m)i−1 and for

G(m)i =
∑

k≥0

 
i− mk

2
− hk

b k
2
c

!
, i = 1, 2, . . . , m. (3.12)

Notice that, the summands in (3.12) equal to 0 for those and only those k for
which the following inequality is satisfied:
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Therefore, by (3.12),
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Remark 2. Let show that there does not exist an extension of a definition of { f (m)n }
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For n= 3 and n= 4, we simultaneously have g(1) = 1 and g(1) = 3.

Lemma 5. The following formula holds
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Substituting this to (3.15) and taking in to account that
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we obtain (3.14). ¤

4. Variations 5-8

Let now consider two-color bracelets with k isolated black beads such that
between every two black beads there exist at least m white ones. Let us
consider an aggregate, denoting it black∗, which contains a black bead and the
following in succession after it in a fixed direct the m 0’s. This gives a one-to-
one correspondence between the considered set of all two-color bracelets with k
isolated black beads such that between every two black beads there exist at least
m white ones and the set of all two-color bracelets of n−mk beads containing k
black∗ beads. Therefore, it follows from Theorem 1 that there are R(n− mk, k)
incongruent configurations. Notice that always n−mk ≥ k, or k ≤ b n

m+1
c.

Summing R(n− mk, k) by k from 1 to b n
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c we find the number α(m)n of all

two-color incongruent bracelets with isolated black beads such that between every
two black beads there exist at least m white ones.
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where hk ≡ k (mod 2), hk = 0 or 1, m≥ 1.
By (4.1) and Lemmas 4, 5 we have
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where γm ≡ m− 1 (mod 2), γm = 0 or 1.
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Now (as in proof of (2.2)) we notice that the binomial coefficient
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!

gives the number of those two-color bracelets with k black beads of the considered
type that are symmetric respectively any diameter. Thus, by Lemma 4, the number
β (m)n of all these bracelets equals to

β (m)n = f (m)b n−γm
2
c − 1, γm ≡ m− 1 (mod 2), γm = 0 or 1. (4.3)

Now, using the scheme of the proof of Theorem 2, we obtain the following
results.

Theorem 3. The following formulas solve Variations 5-8:
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5. An example

In the case of m= 1, by (3.3) and (3.6), we have

F (1)n = Fn, f (1)n = Fn+1,

where

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, F6 = 13, . . .

are the Fibonacci numbers.
Thus, by (4.2)-(4.4),
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Therefore, by Theorem 3, we find

N24,1 = α
(1)
12 +α

(1)
8 −α(1)4 = 25+ 7− 2= 30,

S24,1 =−1+ F 24
2·2+1 + F 24

2·3+1 − F 24
2·6+1 =−1+ 21+ 8− 3= 25.
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Thus among 30 incongruent two-color SR-bracelets of 24 beads with isolated black
beads only five ones do not have a diameter of symmetry.

Further, by Theorem 3, we find

N (6)24,1 =−
∑

d=2,3,6

µ(d)R
�

18

d
,

6

d

�
= 9,

S(6)24,1 =−
∑

d=2,3,6

µ(d)

 j
1
2

�
18
d
− h 6

d

�k

b 3
d
c

!
= 6,

N (8)24,1 =−
∑

d=2,4,8

µ(d)R
�

16

d
,

8

d

�
= 8,

S(8)24,1 =−
∑

d=2,4,8

µ(d)

 j
1
2

�
16
d
− h 8

d

�k

b 4
d
c

!
= 6.

Since

(N (6)24,1 − S(6)24,1) + (N
(8)
24,1 − S(8)24,1) = 5,

then only in cases k = 6 and k = 8 there are correspondingly 3 and 2 two-color
SR-bracelets of 24 beads with isolated black beads which do not have a diameter
of symmetry; in all other cases they do have a diameter of symmetry.

In Table 1 we show all 30 incongruent two-color SR-bracelets of 24 beads with
isolated black beads. 0’s denote white beads and 1’s denote black ones.

Note that in Table 1 only bracelets with the ordinal numbers 12, 13, 16, 19 and
22 have no a diameter of symmetry; it is interesting that the bracelets with the
ordinal numbers 5, 7, 10, 20 do not have a diameter of symmetry that connects
any two beads. More exactly, a diameter of symmetry of these bracelets has the
following endpoints: the midpoint between positions 24, 1 and the midpoint
between positions 12, 13. A diameter of symmetry of other bracelets connects
beads 1 and 13.

6. Other variations

We start with the two open questions arising as observations of Table 5.

Variation 9. To enumerate incongruent two-color SR-bracelets with a diameter of
symmetry connecting any two beads.

Notice, furthermore, that among 21 such bracelets in Table 5 only 3 ones have
a diameter of symmetry connecting beads of different colors (see bracelets with
ordinal numbers 2, 25, 26). The following enumerating problem arises naturally.

Variation 10. To enumerate incongruent two-color SR-bracelets with a diameter
of symmetry connecting any two beads of different colors.

In conclusion, we give several cases of enumeration of the incongruent t-color
bracelets (t ≥ 3) containing beads of every of t colors.
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Table 1.

ordinal number two-color SR-bracelets number of black beads

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2
2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3
3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 4
4 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 4
5 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 4
6 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 4
7 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4
8 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 6
9 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 6
10 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 6
11 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 6
12 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 6
13 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 6
14 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 6
15 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 6
16 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 6
17 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 8
18 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 8
19 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 8
20 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 8
21 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 8
22 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 8
23 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 8
24 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 8
25 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 9
26 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 9
27 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 10
28 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 10
29 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 10
30 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 12

Variation 11. To find the number N (0,1,2)
n,1 incongruent three-color (with colors

{0, 1, 2}) SR-bracelets with isolated beads of colors 1 and 2.

Theorem 4.

N (0,1,2)
n,1 =

b n
2
c∑

k≥2
(k,n)>1

N (k)n,1 N(k,n). (6.1)

Proof. We generate the required bracelets from N (k)n,1 two-color SR-bracelets with
colors 0 and 1, k, 2≤ k ≤ b( n

2
)c. Removing beads of color 0, we obtain k places for

generating two-color subbracelet of colors 1 and 2. Since we consider SR-bracelets,
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then, in view of subgroup of subgroup of a cyclic grope is a subgroup, we should
have (l, k)|(k, n)|n. Thus

N (0,1,2)
n,1 =

b n
2
c∑

k≥2
(k,n)>1

N (k)n,1

b (k,n)
2
c∑

l≥2
1<(l,k)|(k,n)

N (l)(k,n). (6.2)

Since
b n

2
c∑

l≥2
(l,n)>1

N (l)n = Nn

(and always (l, n)|n), then from (6.2) we obtain (6.1). ¤

Thus the required enumeration we get from formulas (6.1), (2.1), (4.4) and
(4.6).

Let us calculate, e.g., N (0,1,2)
12,1 . By (6.1), we have

N (0,1,2)
12,1 = N (2)12,1N2 + N (3)12,1N3 + N (4)12,1N4 + N (6)12,1N6 .

Since, for prime p, Np = 0, then

N (0,1,2)
12,1 = N (4)12,1N4 + N (6)12,1N6 . (6.3)

According to (2.5)-(2.6), we find αi = i+ 1, i = 1, 2, 3. Thus, by (2.1), we have

N4 =−2+α2 = 1, N6 =−2+α3 +α2 −α1 = 3 .

Furthermore, by (4.6) and (1.1), we have

N (4)12,1 = R(4, 2) = 2

and

N (6)12,1 = R(3, 3) + R(2, 2)− R(1, 1).

Since, by (1.1),

R(n, n) =
1

2
(1+

1

n

∑

d|n
ϕ(d)) = 1,

then N (6)12,1 = 1 and, by (6.3), finally we find

N (0,1,2)
12,1 = 2 · 1+ 1 · 3= 5 .

In Table 6 we demonstrate all 5 these three-color bracelets of 12 beads.

Table 2.

ordinal number 3-color bracelets
1 1 0 0 2 0 0 1 0 0 2 0 0
2 1 0 1 0 2 0 1 0 1 0 2 0
3 2 0 2 0 1 0 2 0 2 0 1 0
4 1 0 2 0 1 0 2 0 1 0 2 0
5 1 0 2 0 0 0 1 0 2 0 0 0



A Problem of Enumeration of Two-color Bracelets with Several Variations 255

Variation 12. To find the number S(0,1,2)
n,1 incongruent three-color (with colors

{0, 1, 2}) SR-bracelets with a diameter of symmetry having isolated beads of colors
1 and 2.

A solution is given by the following similar to (6.1) formula.

Theorem 5.

S(0,1,2)
n,1 =

b n
2
c∑

k=2
(k,n)>1

S(k)n,1S(k,n). (6.4)

Proof of Theorem 5 is based on quite similar arguments that proof of Theorem
4. Thus the required enumeration we obtain from formulas (6.2), (2.2), (4.5) and
(4.7). So, e.g., we find that S(0,1,2)

12,1 = 4. Thus there is only (up to the congruence)
three-color SR-bracelet in Table 6 that has not a diameter of symmetry. It is easy
to see that it is the last bracelet in this table.

Finally note that the idea of construction formulas (6.1), (6.4) is easily
generalized. E.g., if N (0,1,...,t)

n (S(0,1,...,t)
n ) denotes the number of incongruent (t+1)-

color SR-bracelets (having a diameter of symmetry), N (0,1,...,t)
n,1 (S(0,1,...,t)

n,1 ) denotes
the number of incongruent (t + 1)-color SR-bracelets with isolated beads of
colors 1, . . . , t (having a diameter of symmetry), etc., then we have the following
recursion formulas.

Theorem 6.

N (0,1,...,t)
n =

b n
2
c∑

k=2
(k,n)>1

N (k)n N (0,1,...,t−1)
(k,n) , (6.5)

S(0,1,...,t)
n =

b n
2
c∑

k=2
(k,n)>1

S(k)n S(0,1,...,t−1)
(k,n) , (6.6)

N (0,1,...,t)
n,1 =

b n
2
c∑

k=2
(k,n)>1

N (k)n,1 N (0,1,...,t−1)
(k,n) , (6.7)

S(0,1,...,t)
n,1 =

b n
2
c∑

k=2
(k,n)>1

S(k)n,1S(0,1,...,t−1)
(k,n) (6.8)

etc.
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