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Abstract. The weighted distributions are widely utilized in numerous real life fields such as medicine,
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the moment generating function and the survival function are studied. The maximum likelihood
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1. Introduction
The theory of weighted distributions provides an integrative conceptualization for model
stipulation and data representation problems. It also provides a unifying approach for correction
of biases that exist in unequally weighted sample data. Also, the theory provides a means
of fitting models to the unknown weighting function when samples can be taken both from
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the original distribution and the resulting ‘biased’ distribution. These problems exist in all
disciplines of science and numerous ad hoc solutions have been developed. The concept of
weighted distributions was given by Fisher [19] and Rao [40]. Rao [40] identified various
situations that can be modeled by weighted distributions. These situations refer to instances
where the recoded observations cannot be considered as a random sample from the original
distributions. This may occur due to non observability of some events or damage caused to the
original observation resulting in a reduced value, or adoption of a sampling procedure which
gives unequal chances to the units in the original.

Weighted distributions are utilized to modulate the probabilities of the events as observed
and transcribed. Patil and Rao [36] presented some useful concepts. The weighted version of the
bivariate logarithmic series distribution was presented by Gupta and Tripathi [22] and a size
biased sampling and related invariant weighted distributions are studied by Patil and Ord [37].
Castillo and Perez-Casany [14] introduced new exponential families that come from the concept
of weighted distribution, that include and generalize the Poisson distribution.The applications
of weighted distributions are also given by [17,34,35]. For more important results of weighted
distribution you can see also [20,25], who introduced the weighted inverse Weibull distribution
and beta-inverse Weibull distribution.

For more results and applications of weighted distribution you can see also Al-Kadim
Hussein [6–8,15,16,18,23,30,38,42,44], who proposed the length-biased Weighted Generalized
Rayleigh distribution with its properties. Also they presented the length-biased form of the
weighted Weibull distribution and its properties in detail (see Das and Roy, [15]).

Asgharzadeh [9] introduced the new weighted Lindley distribution with application.
More work on weighted distributions and their applications in various fields includes
[1–5, 10–13, 21, 24, 26–29, 31–33, 39, 41, 43, 45–47]. Weighted distributions have seen much
use as a tool in the selection of appropriate models. Considering the importance of weighted
distribution, we present a weighted Exponentiated Inverted Weibull distribution and the sub
models which are the special cases of our proposed distribution. Various useful mathematical
properties of the WEIWD are derived in the next sections. We also present the application of
the proposed distribution on real life data set.

The rest of the article is organized as follows. In Section 2, we provide the definition and
derivation of PDF and CDF of WEIWD. Some special sub-models are considered in Section 3
and different statistical properties of our proposed model are discussed in Section 4. Estimation
of the unknown parameters is carried out in Section 5. The real data set has been analyzed in
Section 6 and finally we conclude the article in Section 7.

2. Definition, Derivation of Weighted Exponentiated
Inverted Weibull Distribution

In this section, first we provide the definition of the weighted distribution and then drive the
weighted Exponentiated inverted Weibull distribution and also its cumulative distribution
function. We also drive the shape of PDF and CDF of the WEIWD at various choices of
parametric values.
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Definition 1. Suppose X is a non negative random variable with its natural density function
PDF f (x). Let the weight function be w(x) which is a non negative function then the random
variable X having probability density function:

fw(x) =
w(x) f (x)
E(w(x))

, a < x < b (2.1)

and

E(w(x))=
∫ ∞

0
w(X ) f (X )dX ,

where w(x) is a weight function and choice of this function determines the class of weighted
distribution.

The probability density function and cumulative density function of the two parameters
Exponentiated Inverted Weibull distribution are

f (β,θ; x)= θβx−(β+1){exp(−x−β)}θ; x > 0, β> 0, θ > 0, (2.2)

F(β,θ; x)= {exp(−x−β)}θ. (2.3)

In the past few years, several weighted statistical distributions have been proposed to model
lifetime data. One of such distributions is the three-parameter Weighted Exponentiated Inverted
Weibull Distribution (WEIWD) catheterized here. As many authors have utilized different
weight functions e.g. w(x) = xcβ, w(x) = x, w(x) = x2c−N exp

[− x2(cσ2− 1
2σ2 )

]
, w(x) = enx etc for

development of their weighted distributions but the question arises why they used these weight
functions? If we select the cumulative distribution function of the distribution as a weight
function then the value of our proposed distribution and the original distribution will remain
almost same so we can employ F(cx) as a weight function.

Remembering the PDF of the EIW distribution is

{exp(−x−β)}θ . (2.4)

And the weight function used is as follows

w(x)= e−θ(cx)−β . (2.5)

Substitute (2.4) and (2.5) in (2.1), we get

gw(x)= e−θ(cx)−ββθx−(β+1){exp(−x−β)}θ∫ ∞
0 e−θ(cx)−ββθx−(β+1)exp(−x−β)θdx

= βθx−(β+1)e−θx−β(1+c−β)

(1+ c−β)−1 ,

gw(x;β,θ, c)= (1+ c−β)βθx−(β+1)e−θx−β(1+c−β) (2.6)

and the corresponding cumulative distribution function (CDF) of the WEIW distribution denoted
as Gw(x;β,θ, c).

Generally, the distribution function is expressed as:

G(x)=
∫ x

0
g(t)dt . (2.7)
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Substituting (2.6) into (2.7), we obtain

=
∫ x

0

βθ

(1+ c−β)−1 t−(β+1)e−θt−β(1+c−β)dt .

By setting θt−β(1+ c−β)= y and θ(1+c−β)
xβ < x <∞, we get finally

=
∫ ∞
θ(1+c−β)

xβ

y0e−yd y

=
∫ ∞
θ(1+c−β)

xβ

y(1+0)−1e−yd y

Gw(x;β,θ, c)=Γ
(
1,
θ(1+ c−β)

xβ

)
. (2.8)

Figures 1 and 2 illustrate the PDF and CDF of the WEIW distribution respectively, for
selected values of the parameters β, θ and c.

(a) (b)

(c)

Figure 1. The probability density function of WEIW distribution at various parameters choices
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(a) (b)

(c)

Figure 2. The distribution function of the WEIW distribution for selected values of β, θ and c.

3. Special Sub-Models

In this section, we meditate some special sub-models of the proposed WEIW distribution in the
following five corollaries.

Corollary 1. Putting β=β, θ =−θ, c−β =−2 and multiplying a constant; (−1); in (2.6) we get
the Exponentiated Inverted Weibull distribution as

g(θ,β; x)= θβx−(β+1)e−θx−β , x > 0, θ > 0, β> 0 .

Corollary 2. Where β = −β, θ = θ, c = 0 and multiplying a constant; (−1); then WEIW
distribution reduces to the Weibull density function as

g(θ,β; x)= θβxβ−1e−θxβ , x > 0, θ > 0, β> 0 .

Corollary 3. The case when β=−1, θ = θ, c = 0 and multiplying a constant; (−1); then (2.6)
gives the Exponential density function of the form

g(θ; x)= θe−θx, x > 0, θ > 0 .
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Corollary 4. Putting β = 1, θ = 1
θ
, c = 0 in (2.6) then the resulted distribution is the Inverse

Exponential distribution

g(θ; x)= θ−1x−2e−(θx)−1
, x > 0, θ > 0 .

Corollary 5. By substituting β= 2, θ = 1
θ2 , c = 0 in (2.6) then we obtain the density function the

Inverse Rayleigh distribution of the form

g(θ; x)= 2θ−2x−3e−(θx)−2
, x > 0, θ > 0 .

4. Properties

This section derived the statistical properties of the WEIW distribution, specifically moments,
mean variance, coefficient of variation, skewness, kurtosis and moment generating function,
reliability function, hazard function and the reverse hazard function and mode of function is
also discussed here as follow:

4.1 Moments
In this sub section we present the rth moment for the weighted Exponentiated Inverted Weibull
distribution. If X ∼WEIW distribution with parameters β, θ and c, then the rth moment of x,
say µ′

r is given as

Eg(xr)=
∫ ∞

0
xr g(x)dx .

From the PDF of the WEIW distribution in (2.6) then Eg(xr) can b obtained as:

E( g)(xr)=
∫ ∞

0
xr(1+ c−β)βθx−(β+1)e−θx−β(1+c−β) dx

= (1+ c−β)βθ
∫ ∞

0
xr−β−1e−θx−β(1+c−β) dx .

By setting θx−β(1+ c−β)= y, after simplification we get

= θ
r
β (1+ c−β)

r
βΓ

(
1− r

β

)
. (4.1)

From the rth moment of the WEIW distribution, putting r = 1 in (4.1), and the Expected value
of X is obtained as:

Eg(X )= θ1β(1+ c−β)1βΓ

(
1− 1

β

)
.

The first four central moments of WEIW distribution are given by

µ1 = 0,

µ2 =µ′
2 −µ′2

1 = θ
2
β (1+ c−β)

2
β

[
Γ

(
1− 2

β

)
−Γ2

(
1− 1

β

)]
,

µ3 =µ′
3 −3µ′

2µ
′
1 +2µ′3

1 = θ
3
β (1+ c−β)

3
β

[
Γ

(
1− 3

β

)
−3Γ

(
1− 2

β

)
Γ

(
1− 1

β

)
+2Γ3

(
1− 1

β

)]
,

µ4 =µ′
4 −4µ′

1µ
′
3 +6µ′2

1 µ
′
2 −3µ′4

1
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= θ
4
β (1+ c−β)

4
β

[
Γ

(
1− 4

β

)
−4Γ

(
1− 1

β

)
Γ

(
1− 3

β

)
+6Γ2

(
1− 1

β

)
Γ

(
1− 2

β

)
−3Γ4

(
1− 1

β

)]
.

Now we can also use (4.1) to obtain the mean, variance, coefficient of variation, coefficient of
skewness and coefficient of kurtosis as follows:

µ= E(x)= θ1β(1+ c−β)1βΓ

(
1− 1

β

)
, (4.2)

σ2 = E(x2)−µ2 = θ
2
β (1+ c−β)

2
β

[
Γ

(
1− 2

β

)
−Γ2

(
1− 1

β

)]
, (4.3)

CV= σ

µ
=

[
Γ

(
1− 2

β

)
−Γ2

(
1− 1

β

)] 1
2

Γ
(
1− 1

β

) , (4.4)

CS= µ3

σ3 =
[
Γ

(
1− 3

β

)
−3Γ

(
2− 1

β

)
Γ

(
1− 2

β

)
+2Γ3

(
1− 1

β

)]
[
Γ

(
1− 2

β

)
−Γ2

(
1− 1

β

)] 3
2

, (4.5)

CK= µ4

σ4 =
[
Γ

(
1− 4

β

)
−4Γ

(
1− 3

β

)
Γ

(
1− 1

β

)
+6Γ

(
1− 2

β

)
Γ2

(
1− 1

β

)
−3Γ4

(
1− 1

β

)]
[
Γ

(
1− 2

β

)
−Γ2

(
1− 1

β

)]2 . (4.6)

4.2 Reliability Function
In this sub section, we present the Reliability function of WEIW distribution.

By definition, the survival function of the random variable X is given by:

Sw(x;β,θ, c)= 1−Gw(x;β,θ, c) . (4.7)

Using (2.8) into (4.7), the survival function of the WEIW distribution can be expressed by:

Sw(x;β,θ, c)= 1−Γ
(
1,
θ(1+ c−β)

xβ

)
. (4.8)

4.3 Hazard Function
This sub section presents the Hazard function of the WEIW distribution as

hw(x;β,θ, c)= gw(x;β,θ, c)
Sw(x;β,θ, c; )

. (4.9)

Substituting (2.6) and (4.8) into (4.9), we obtain:

hw(x;β,θ, c)= (1+ c−β)βθx−(β+1)e−θx−β(1+c−β)

1−Γ
(
1, θ(1+c−β)

xβ

) . (4.10)

4.4 Reversed Hazard Function
In this sub section, we derived the Reversed Hazard function of the WEIW distribution as:

φw(x;β,θ, c)= gw(x;β,θ, c)
Gw(x;β,θ, c)

. (4.11)
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Substituting (2.6) and (2.8) into (4.11)

φw(x;β,θ, c)= (1+ c−β)βθx−(β+1)e−θx−β(1+c−β)

Γ
(
1, θ(1+c−β)

xβ

) . (4.12)

4.5 Moment Generating Function (m g f)
We start with the well-known definition of the moment generating function and we can provide
m g f of WEIW distribution, is obtained by:

Mx(t)= E(etx)

=
∫ ∞

0
etx(1+ c−β)βθx−(β+1)e−θx−β(1+c−β) dx

=βθ(1+ c−β)
∫ ∞

0
etxx−(β+1)e−θx−β(1+c−β) dx .

By using Taylor’s series expansion etx =
∞∑

r=0

(tx)r

r! and setting θx−β(1+c−β)= y, we finally obtained

Mx =
∞∑

r=0

tr

r!
θ

r
β (1+ c−β)

r
βΓ

(
1− r

β

)
. (4.13)

4.6 The Mode
We take density function of the weighted Exponentiated Inverted Weibull distribution is as
follows:

gw(x;β,θ, c)= (1+ c−β)βθx−(β+1)e−θx−β(1+c−β) .

The limit of the density function is

(1) lim
x→0

gw(x;β,θ, c)= lim
x→0

(1+ c−β)βθx−(β+1)e−θx−β(1+c−β) = 0.

(2) lim
x→∞ gw(x;β,θ, c)= lim

x→∞(1+ c−β)βθx−(β+1)e−θx−β(1+c−β) = 0.

Now the logarithm of the function gw(x;β,θ, c) given by

ln[gw(x;β,θ, c)]= ln
[
(1+ c−β)βθx−(β+1)e−θx−β(1+c−β)]

= ln1+ ln c−β+ lnβ+ lnθ−β ln x− log x−θx−β(1+ c−β) . (4.14)

Differentiating (4.14) with respect to x, we obtain
∂

∂x
[gw(x;β,θ, c)]=−β

x
− 1

x
+βθx−β−1(1+ c−β) , (4.15)

∂2

∂X2 [gw(x;β,θ, c)]=−x−2[−β−1+θβ2x−β(1+ c−β)+θβc−βx−β(1+ c−β)]< 0 . (4.16)

The mode of the WEIW distribution is obtained by solving the non linear equation (4.15) with
respect to x, we get

x =
[
θβ(1+ c−β)

β+1

] 1
β

.

The mode of the proposed distribution is actually the maximum of the distribution function.
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Since we have obtained the mode mean, variance, CV, CS and CK of WEIWD; we set the values
of the parameters β, θ and c and compute the values of these quantities. Now for different
values of parameters, we obtain Mode (x0) of the WEIW distribution in Table 1 and Table 2
provided the values of the mean, variance, standard deviation (STD), coefficient of variation
(CV), coefficient of skewness (CS), coefficient of kurtosis (CK) with some values of parameters β,
θ and c of WEIW distribution.

Table 1. The Mode values of WEIWD at various parameters choices

β θ c Mode (x0)

2 1 1 1.1547
3 2 1 1.4422
4 3 1 1.4802
5 4 1 1.4614
6 5 1 1.4306
7 6 1 1.3417
8 7 1 1.3705

Table 2. The mean, variance, coefficient of variation, skewness, kurtosis of the WEIWD at various
parameter choices.

β θ c MEAN VAR STD CV CS CK

5 2 3 1.3384 0.1768 0.4204 0.3141 3.5391 48.0909
6 2 4 1.2671 0.1006 0.3171 0.2721 2.8307 24.6947
7 2 4 1.2209 0.0647 0.2544 0.2084 2.4726 17.2330
8 2 5 1.1882 0.0454 0.2131 1.1793 2.1615 14.2197
9 2 6 1.1640 0.0334 0.1828 0.1571 1.9885 12.4474

10 2 7 1.1453 0.0089 0.0943 0.1397 1.8893 11.1114
11 2 8 1.1303 0.0065 0.0808 0.1262 1.7767 9.7362
12 2 9 1.1183 0.0049 0.0700 0.1149 1.6117 10.5206
13 2 10 1.1081 0.0137 0.1172 0.1057 1.5300 10.3725
14 2 11 1.0997 0.0115 0.1073 0.0976 1.3530 13.7084
15 2 12 1.0925 0.0098 0.0990 0.0907 1.4944 8.4913

From the above tables, we observe the following:

(1) when we fixed a parameter c = 1, the mode of WEIW distribution increases as the value of
parameters β and θ increases and at a moment, the mode is becoming decreasing as we
increase the value of parameters.

(2) When we fixed a parameter θ = 2, mean, variance, standard deviation, coefficient of
variation, skewness and kurtosis decreases as the value of parameters β and c increases.

Next, we have provided some plots of the Reliability function, Hazard function and Reverse
Hazard function for selected values of parameters β, θ and c.
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Figure 3. Reliability function of WEIWD Figure 4. Hazard function of WEIWD

Figure 5. Reverse Hazard function of WEIWD

5. Parameter Estimation
Inthis section, we use maximum likelihood estimation (MLE) method to find the estimation of
the unknown parameters of the WEIWD. This is the one of the most important methods for
estimations of the parameters of a statistical model. Suppose that sample was drawn from (2.6)
and we drive the non-linear equations for finding the maximum likelihood estimators of the
parameters. The maximum likelihood estimates β∧, θ∧ and c∧ of β, θ and c are obtained by
maximizing the log-likelihood

L(x;β,θ, c)= (1+ c−β)nθnβn
n∏

i=1
x−(β+1)

i e
−θ(1+c−β)

n∑
i=1

x−βi . (5.1)

The log-likelihood functions of n observations of x reduces to

l(x;β,θ, c)= logL(x;β,θ, c)

= n logθ+n logβ−β
n∑

i=1
log xi −

n∑
i=1

log xi −θ
n∑

i=1
x−βi −θc−β

n∑
i=1

x−βi +n log c−β . (5.2)
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The components corresponding to the model parameters are calculated by differentiating in
(5.2) as

∂l
∂β

= n
β
−

[
n∑

i=1
ln(xi)

]
−θ

[
n∑

i=1
(−x−βi ln(xi))

]

+θc−β
[

n∑
i=1

(−x−βi ln(xi))

]
−θc−β

[
n∑

i=1
(−x−βi ln(xi))

]
−n ln(c) , (5.3)

∂l
∂θ

= n
θ
−

[
n∑

i=1
x−βi

]
− c−β

[
n∑

i=1
x−βi

]
, (5.4)

∂l
∂c

= θc−β−1β

[
n∑

i=1
x−βi

]
− nβ

c
. (5.5)

The estimates can be obtained by setting the results equal to zero as;

n
β
−

[
n∑

i=1
ln(xi)

]
−θ

[
n∑

i=1
(−x−βi ln(xi))

]
+θc−β

[
n∑

i=1
(−x−βi ln(xi))

]

−θc−β
[

n∑
i=1

(−x−βi ln(xi))

]
−n ln(c)= 0 , (5.6)

n
θ
−

[
n∑

i=1
x−βi

]
− c−β

[
n∑

i=1
x−βi

]
= 0 , (5.7)

θc−β−1β

[
n∑

i=1
x−βi

]
− nβ

c
= 0 . (5.8)

The non linear equations (5.6)-(5.8) does not seem to be have a closed form solution and must be
solved iteratively to obtain the estimate of the parameters or the system of the three equations.
We can use the Newton Raphson method for the above equations to obtain the β∧, θ∧ and c∧

the MLE of (β,θ, c), respectively.

6. Application to a real dataset

In this section, we determine the flexibility and potentiality of our proposed weighted
Exponentiated Inverted Weibull distribution using the real data set. We provide an application
of the WEIW distribution by considering the uncensored data on distance between cracks in a
pipe dataset as follow:

30.94, 18.51, 16.92, 51.56, 22.85, 22.38, 19.08, 49.59, 17.12, 10.67, 25.43, 10.24, 27.47, 14.70,
14.10, 29.93, 27.98, 36.02, 19.40, 14.97, 22.57, 12.26, 18.14, 18.84.

The data can be modeled by Weighted Exponentiated Inverted Weibull Distribution and we
estimate the unknown parameters β, θ and c by the maximum likelihood method. We apply the
Newton Raphson procedure for simultaneously three equations, by taking the initial estimate
β∧ = 0.9, θ∧ = 5 and c∧ = 0.01000 then we obtained the estimate of parameters are: β∧ = 2.8639,
θ∧ = 394.0386 and c∧ = 0.4815.
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This section also presents the comparison analysis of the WEIW, EIW, LBEIW, LBIW and
Weibull distributions applying to the real datasets as given above. We apply the Kolmogorov-
Smirnov test (KS test) for the goodness of fit purpose. Table 3 provides the MLE estimates of
the parameters β, θ and c values of the test statistics which is KS test. The p-value of KS for
the WEIW distribution is 0.9850.

The results in Table 3 shown that the WEIW distribution fits the data as well as EIW,
LBEIW, LBIW and Weibull distribution. In this case the value of the K-S statistics is smaller
for WEIW distribution as compared to those values of the other distributions. In fact, based on
the value of the KS-statistic, we observe that the WEIW distribution provides the best fit for
this data among all the models considered. So it is evident that the WEIW distribution is the
best distribution and is a strong competitor to other distributions commonly used in literature
for fitting lifetime data as given below.

Table 3. Goodness of fit summary of distance between cracks in a pipe data set.

Fitting models: WEIW EIW LBEIW LBIW Weibull

Parameter β∧ = 2.8639 β∧ = 2.7347 β∧ = 3.3891 β∧ = 1.3484 β∧ = 2.3089

Estimates: θ∧ = 394.0386 θ∧ = 2384.5601 θ∧ = 9508.9505 θ∧ = 26.0230 c∧ = 0.4815

K.S statistic 0.0865 0.0891 0.1031 0.5129 0.1436

P-value 0.9850 0.9822 0.9376 0.0000 0.6532

7. Conclusions
In this paper, we have introduced a new three parameter weighted Exponentiated Inverted
Weibull distribution (WEIWD). We use cumulative distribution function as a weight function in
our proposed distribution and we derive various mathematical properties of the WEIWD. It is a
weighted distribution and in fact contains a fairly large class of distributions with potential
applications to a wide area of probability and statistics and it has also some special sub-models.
We also analyzed the behavior of the PDF, CDF, survival function, hazard function and reversed
hazard function by plotting the functions for different values of parameters.

We examine the maximum likelihood estimation of the models parameters. An application
of this new distribution to real data set on distance between crakes in a pipe is given to
demonstrate that it can be used quite effectively to provide better fits than other available
models that might be of use for practitioners in the applied sciences and this show that the fit
of the WEIWD is best fit to the data with highest p value. We hope that the WEIWD provides a
rather general and flexible framework for statistical analysis and may attract the extensive
application in life time data analysis and other fields.
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