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1. Introduction

It is well known that the tangent space sphere bundle of a flat Riemannian manifold admits a
contact metric structure satisfying RXY ξ= 0, where R is the curvature tensor [7]. On the other
hand, on a manifold M equipped with a Sasakian structure (φ,ξ,η, g), one has

R(X ,Y )ξ= η(Y )X −η(X )Y , X ,Y ∈Γ(TM). (1.1)

As a generalization of both RXY ξ= 0 and the Sasakian case (1.1), Blair et al. [8] introduced the
class of contact metric manifolds with contact metric structures (φ,ξ,η, g) which satisfy

R(X ,Y )ξ= k[η(Y )X −η(X )Y ]+µ[η(Y )hX −η(X )hY ], (1.2)
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for all X , Y ∈Γ(TM), where k and µ are real constants and 2h is the Lie derivative of φ in the
direction ξ. A contact metric manifold belonging to this class is called a (k,µ)-contact manifold.

In point of applications symmetric Riemannian manifolds are the most interesting and most
important and it was introduced independently by Shirokov [24] as a Riemannian manifold
with covariant constant curvature tensor R, i.e., with

∇R = 0,

where ∇ is the Levi-Civita connection. Later, a similar development took place in the geometry
of submanifolds in the space forms, where a fundamental role is played by metric tensor g (as
the induced Riemannian metric) and the second fundamental form σ. Besides the Levi-Civita
connection ∇ with ∇g = 0, a normal connection ∇⊥ is also defined. The submanifolds with
parallel second fundamental form, i.e., with

∇̄σ= 0,

where ∇̄ is the pair of ∇ and ∇⊥, deserve special attention.

As a generalization of symmetric manifolds in 1946, Cartan introduced the notion of
semisymmetric manifolds. A Riemannian manifold is called semisymmetric if the curvature
tensor satisfies R(X ,Y ) ·R = 0, where R(X ,Y ) is considered as a field of linear operators, acting
on R.

A symmetric study of Riemannian semisymmetric manifolds was started first by Szabo
[26,27] and Kowalski [18], later by Boeckx, Vanhecke and others.

A semi Riemannian pair (M, g) is pseudosymmetric [13], if and only if R ·R = LQ(g,R) holds
on M, where L is a function.

Parallel submanifolds were likewise later placed in a more general class of submanifolds
generalizing the notion of parallel submanifolds. Given an isometric immersion f : M → M̃, let
σ be the second fundamental form and ∇̃ the van der Waerden-Bortolotti connection of M. Then
Deprez defined the immersion to be semiparallel if

R̄(X ,Y ) ·σ= (∇̄X ∇̄Y −∇̄Y ∇̄X −∇̄[X ,Y ]) ·σ= 0, (1.3)

holds for any vectors X ,Y tangent to M, where R̄ denotes the curvature tensor of the connection
∇̄. Semiparallel immersions have been studied by authors, see for example, [5, 12, 14–16]
and [21].

An immersion satisfying the equalities

R̄ ·σ= L1Q(g,σ)

and

R̄ ·σ= L3Q(S,σ)

are called pseudoparallel and Ricci-generalized pseudoparallel respectively (see [3,4]), where
L1 and L3 are the real valued functions and for a (0,k)-tensor field T, k ≥ 1 and a (0,2)-tensor
field B on (M, g), Q(B,T) is defined by [30]

Q(B,T)(X1, . . . , XK ; X ,Y )=−T((X ∧B Y )X1, . . . , XK )−T(X1, . . . , XK−1, (X ∧B Y )XK ), (1.4)
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where X ∧B Y is defined by

(X ∧B Y )Z = B(Y , Z)X −B(X , Z)Y . (1.5)

The study of pseudoparallel and Ricci-generalized pseudoparallel submanifolds of various
manifolds were studied by several authors such as [1,2,33] and many others.

Motivated by the above studies, in this paper we consider invariant submanifolds of
(k,µ)-contact manifold and prove the equivalence of totally geodesicity, pseudoparallel, 2-
pseudoparallel, Ricci-genralized pseudoparallel and 2-Ricci-genralized pseudoparallel. We also
consider the conditions Z(X ,Y ) ·σ = 0 and Z(X ,Y ) · ∇̄σ = 0 on an invariant submanifold of
(k,µ)-contact manifolds, where Z denotes the concircular curvature tensor of the submanifold.

The paper is organized as follows: In section 2, we give some preliminaries which have
been used later. In section 3, we give a brief account of (k,µ)-contact manifolds and their
invariant submanifolds. In section 4, we find the necessary and sufficient conditions for invariant
submanifolds to be pseudoparallel and 2-pseudoparallel. Section 5 is devoted to study of Ricci-
generalized pseudoparallel and 2-Ricci generalized pseudoparallel. Lastly in section 6, we prove
that a (2n+1)-dimensional invariant submanifold M of a (k,µ)-contact manifold M̃ such that
the scalar curvature r 6= 2n(2n+1)(k±µλ), the conditions Z(X ,Y ) ·σ= 0 and Z(X ,Y ) · ∇̄σ= 0
imply that M is totally geodesic.

2. Preliminaries

Let f : (M, g) → (M̃, g̃) be an isometric immersion of an n-dimensional Riemannian manifold
(M, g) into an (n+d)-dimensional Riemannian manifold (M̃, g̃), n ≥ 2,d ≥ 1. We denote by ∇
and ∇̃ the Levi-Civita connections of M and M̃, respectively. Then we have the Gauss and
Weingarten formulas

∇̃X Y =∇X Y +σ(X ,Y ) (2.1)

and

∇̃X N =−AN X +∇⊥
X N,

for any tangent vector fields X , Y and the normal vector field N on M, where σ, A and ∇⊥ are
the second fundamental form, the shape operator and the normal connection respectively. If the
second fundamental form σ is identically zero, then the manifold is said to be totally geodesic.
The second fundamental form σ and AN are related by g̃(σ(X ,Y ), N)= g(AN X ,Y ), where g is
the induced metric of g̃ for any vector fields X and Y tangent to M.

The first covariant derivative of the second fundamental form σ is given by

∇̄Xσ(Y , Z)=∇⊥
X (σ(Y , Z))−σ(∇X Y , Z)−σ(Y ,∇X Z). (2.2)

From the Gauss and Weingarten formulas we obtain

(R̃(X ,Y )Z)T = R(X ,Y )Z+ Aσ(X ,Z)Y − Aσ(Y ,Z)X .

By (1.3), we have

(R̄(X ,Y ) ·σ)(U ,V )= R⊥(X ,Y )σ(U ,V )−σ(R(X ,Y )U ,V )−σ(U ,R(X ,Y )V ), (2.3)

for all vector fields X , Y , U and V tangent to M, where R⊥(X ,Y ) = [∇⊥
X ,∇⊥

Y ]−∇⊥
[X ,Y ], and R̄
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denotes the curvature tensor of ∇̄. Similarly, we have

(R̄(X ,Y ) · ∇̄σ)(U ,V )= R⊥(X ,Y )(∇̄σ)(U ,V ,W)− (∇̄σ)(R(X ,Y )U ,V ,W)

− (∇̄σ)(U ,R(X ,Y )V ,W)− (∇̄σ)(U ,V ,R(X ,Y )W), (2.4)

for vector fields X , Y , U , V and W tangent to M, where (∇̄σ)(U ,V ,W) means (∇̄Uσ)(V ,W) [22].

The concircular curvature tensor for (2n+1)-dimensional Riemannian manifold is given
by [31]

Z (X ,Y )Z = R̃(X ,Y )Z− r
2n(2n+1)

[ g̃(Y , Z)X − g̃(X , Z)Y ], (2.5)

where r̃ is the scalar curvature of the manifold.

Similar to (2.3) and (2.4) the tensors Z (X ,Y ) ·σ and Z (X ,Y ) · ∇̄σ are defined by

Z (X ,Y ) ·σ= R⊥(X ,Y )σ(U ,V )−σ(Z (X ,Y )U ,V )−σ(U ,Z (X ,Y )V ), (2.6)

Z (X ,Y ) · ∇̄σ= R⊥(X ,Y )(∇̄σ)(U ,V ,W)− (∇̄σ)(Z (X ,Y )U ,V ,W)

− (∇̄σ)(U ,Z (X ,Y )V ,W)− (∇̄σ)(U ,V ,Z (X ,Y )W). (2.7)

3. (k,µ)-Contact Manifolds and their Invariant Submanifolds

A (2n+1)-dimensional C∞-differentiable manifold M̃ is said to admit an almost contact structure
(φ,ξ,η, g̃) if it satisfies the following relations [6],

φ2 =−I +η⊗ξ, η(ξ)= 1, φξ= 0, η ·φ= 0, (3.1)

g̃(φX ,φY )= g̃(X ,Y )−η(X )η(Y ),

g̃(X ,φY )=− g̃(φX ,Y ), g̃(X ,φX )= 0, g̃(X ,ξ)= η(X ), (3.2)

where φ is a tensor field of type (1,1), ξ is a vector field, η is a 1-form, and g̃ is a Riemannian
metric on M̃. A manifold equipped with an almost contact metric structure is called an almost
contact metric manifold. An almost contact metric manifold is called a contact metric manifold,
if it satisfies g̃(X ,φY )= dη(X ,Y ), for all vector fields X , Y .

We define a (1,1)-tensor field h by h = 1
2Lξφ, where L denotes the Lie-differentiation. Then

h is symmetric and satisfies hφ=−φh. We have Tr ·h =Tr ·φh = 0 and hξ= 0.

A contact metric manifold satisfying (1.2) is called a (k,µ)-contact manifold. On a (k,µ)-
manifold k ≤ 1, if k = 1, the structure is Sasakian (h = 0 and µ is indeterminant) and if k < 1,
the (k,µ)-nullity condition determines the curvature of M̃2n+1 completely [20]. In fact, for a
(k,µ)-manifold, the condition of being a Sasakian manifold, a K -contact manifold, k = 1 and
h = 0 are all equivalent.

In a (k,µ)-manifold the following relations holds [8]:

h2 = (k−1)φ2, k ≤ 1, (3.3)

(∇̃Xφ)(Y )= g̃(X +hX ,Y )ξ−η(Y )(X +hX ), (3.4)

R̃(X ,ξ)ξ= k[ g̃(X ,Y )ξ−η(Y )X ]+µ[ g̃(hX ,Y )ξ−η(Y )hX ], (3.5)
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R̃(ξ, X )Y = k[X −η(X )ξ]+µhX , (3.6)

S̃(X ,Y )= [2(n−1)−nµ] g̃(X ,Y )+ [2(n−1)+µ] g̃(hX ,Y )

+ [2(1−n)+n(2k+µ)]η(X )η(Y ), n ≥ 1, (3.7)

S̃(X ,ξ)= 2nkη(X ), (3.8)

r̃ = 2n(2n−2+k−nµ), (3.9)

where S̃ is the Ricci tensor of type (0,2), Q is the Ricci operator, i.e., g̃(QX ,Y )= S̃(X ,Y ) and r̃
is the scalar curvature of the manifold. Moreover from (2.5), we also have

Z (ξ,Y )Z =
(
k− r

2n(2n+1)

)
[ g̃(Y , Z)ξ−η(Z)Y ]+µ[ g̃(hY , Z)ξ−η(Z)hY ], (3.10)

Z (ξ,Y )ξ=
(
k− r

2n(2n+1)

)
[η(Y )ξ−Y ]−µhY . (3.11)

Equation (3.4) also implies that

∇̃Xξ=−φX −φhX , (3.12)

Let M̃ be a (k,µ)-contact manifold of dimension (2m+1) and M be a submanifold of dimension
(2n+1). Then M is called an invariant submanifold of M̃ if φ(TM) ⊂ TM. In an invariant
submanifold of a (k,µ)-contact manifold

σ(X ,ξ)= 0. (3.13)

holds, for any vector field X tangent to M [29]. The author M.M. Tripathi et al. [29] proved that

Theorem 3.1. An invariant submanifold of (k,µ)-contact manifold is a (k,µ)-contact manifold.

Hence the equations (3.3)-(3.9) also hold in an invariant submanifold M.

4. Pseudoparallel Invariant Submanifolds of (k,µ)-Contact Manifolds

This section deals with pseudoparallel and 2-pseudoparallel invariant submanifolds of (k,µ)-
contact manifolds.

Definition 4.1. An immersion is said to be pseudoparallel, 2-pseudoparallel, Ricci-generalized
pseudoparallel and 2-Ricci generalized pseudoparallel with respect to Levi-Civita connection ∇,
respectively, if

(1) R̄ ·σ and Q(g,σ),

(2) R̄ · ∇̄σ and Q(g,∇̄σ),

(3) R̄ ·σ and Q(S,σ),

(4) R̄ · ∇̄σ and Q(S,∇̄σ)

are linearly dependent. Equivalently these are expressed by the following equations:

R̄ ·σ= L1Q(g,σ),
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R̄ · ∇̄σ= L2Q(g,∇̄σ),

R̄ ·σ= L3Q(S,σ),

R̄ · ∇̄σ= L4Q(S,∇̄σ)

where R̄ denotes the curvature tensor with respect to connection ∇̄ and L1, L2, L3, L4 are the
functions defined on U1= {x∈M :σ(x) 6= g(x)}, U2= {x∈M : ∇̄σ(x) 6= g(x)}, U3= {x∈M :σ(x) 6=S(x)}
and U4 = {x ∈ M : ∇̄σ(x) 6= S(x)} respectively.

To prove the results, we use the following results:

Lemma 4.1 ( [28]). It is known that if (M,φ,ξ,η, g) is a contact Riemannian manifold and ξ

belongs to the (k,µ)-nullity distribution, then k ≤ 1. If k < 1, then (M,φ,ξ,η, g) admits three
mutually orthogonal and integrable distributions D(0), D(λ) and D(−λ) defined by the eigen
spaces of h, where λ=p

1−k. Further, if X ∈ D(λ), then hX = λX and if X ∈ D(−λ), then
hX =−λX .

Proposition 4.1 ( [5]). Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then
M is totally geodesic if and only if M is semiparallel provided that k 6= ±µλ.

Theorem 4.1. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then M is
pseudoparallel if and only if M is totally geodesic provided L1 6= (k±µλ).

Proof. Let M be pseudoparallel, then we have

(R̄(X ,Y ) ·σ)(U ,V )= L1Q(g,σ)(X ,Y ,U ,V ).

Then from (1.4), (1.5) and (2.3), we get

R⊥(X ,Y )(σ(U ,V ))−σ(R(X ,Y )U ,V )−σ(U ,R(X ,Y )V )

= L1{−g(V , X )σ(U ,Y )+ g(U , X )σ(V ,Y )− g(V ,Y )σ(U , X )+ g(U ,Y )σ(V , X )}. (4.1)

Setting V = ξ=Y in (4.1) and using (3.13), we get

σ(U ,R(X ,ξ)ξ)= L1σ(U , X ).

Making use of equations (3.6) and (3.13), we have

σ(U ,kX +µhX )= L1σ(U , X ).

By virtue of Lemma (4.1)

(k±µλ−L1)σ(U , X )= 0,

which implies σ(U , X )= 0, provided L1 6= (k±µλ).

The converse part holds trivially. This proves the theorem.

Theorem 4.2. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then M is
2-pseudoparallel if and only if M is totally geodesic provided L2 6= (k±µλ).

Proof. Let M be 2-pseudoparallel, then we have

R̄(X ,Y ) · ∇̄σ(U ,V ,W)= L2Q(g,∇̄σ)(U ,V ,W , X ,Y ).
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Put X =V = ξ and in view of (1.4) and (2.4), we have

R⊥(ξ,Y )(∇̄σ)(U ,ξ,W)− (∇̄σ)(R(ξ,Y )U ,ξ,W)− (∇̄σ)(U ,R(ξ,Y )ξ,W)− (∇̄σ)(U ,ξ,R(ξ,Y )W)

= L2{−(∇̄σ)((ξ∧g Y )U ,ξ,W)− (∇̄σ)(U , (ξ∧g Y )ξ,W)− (∇̄σ)(U ,ξ, (ξ∧g Y )W)}. (4.2)

Using (1.5), (2.2), (3.5) and (3.13) we have the following equalities:

(∇̄σ)(U ,ξ,W)= (∇̄Uσ)(ξ,W)

=∇⊥
Uσ(ξ,W)−σ(∇Uξ,W)−σ(ξ,∇UW)

=−σ(∇Uξ,W), (4.3)

(∇̄σ)(R(ξ,Y )U ,ξ,W)= (∇̄R(ξ,Y )Uσ)(ξ,W)

=∇⊥
R(ξ,Y )Uσ(ξ,W)−σ(∇R(ξ,Y )Uξ,W)−σ(ξ,∇R(ξ,Y )UW)

= kη(U)σ(∇Y ξ,W)+µη(U)σ(∇hY ξ,W), (4.4)

(∇̄σ)(U ,R(ξ,Y )ξ,W)= (∇̄Uσ)(R(ξ,Y )ξ,W)

=∇⊥
Uσ(R(ξ,Y )ξ,W)−σ(∇U R(ξ,Y )ξ,W)−σ(R(ξ,Y )ξ,∇UW)

= k∇⊥
Uσ(Y ,W)−µ∇⊥

Uσ(hY ,W)−σ(∇U k[η(Y )ξ−Y ]−µhY ,W)

+kσ(Y ,∇UW)+µσ(hY ,∇UW), (4.5)

(∇̄σ)(U ,ξ,R(ξ,Y )W)= (∇̄Uσ)(ξ,R(ξ,Y )W)

=∇⊥
Uσ(ξ,R(ξ,Y )W)−σ(∇Uξ,R(ξ,Y )W)−σ(ξ,∇U R(ξ,Y )W)

= kη(W)σ(∇Uξ,Y )+µη(W)σ(∇Uξ,hY ), (4.6)

(∇̄σ)((ξ∧g Y )U ,ξ,W)= (∇̄(ξ∧gY )Uσ)(ξ,W)

=∇⊥
(ξ∧gY )U (σ(ξ,W))−σ(∇(ξ∧gY )U )ξ,W)−σ(ξ,∇(ξ∧gY )U )W)

= η(U)σ(∇Y ξ,W), (4.7)

(∇̄σ)(U , (ξ∧g Y )ξ,W)= (∇̄Uσ)((ξ∧g Y )ξ,W)

=∇⊥
U (σ((ξ∧g Y )ξ,W))−σ(∇U (ξ∧g Y )ξ,W)−σ((ξ∧g Y )ξ,∇UW)

=−∇⊥
U (σ(Y ,W))−σ(∇U (η(Y )ξ+Y ),W)+σ(Y ,∇UW), (4.8)

(∇̄σ)(U ,ξ, (ξ∧g Y )W)= (∇̄Uσ)(ξ, (ξ∧g Y )W)

=∇⊥
U (σ(ξ, (ξ∧g Y )W))−σ(∇Uξ, (ξ∧g Y )W)−σ(ξ,∇U (ξ∧g Y )W)

= η(W)σ(∇Uξ,Y ). (4.9)

Then substituting (4.3)-(4.9) in (4.2) we obtain

−R⊥(ξ,Y )σ(∇Uξ,W)−kη(U)σ(∇Y ξ,W)−µη(U)σ(∇hY ξ,W)−k∇⊥
Uσ(Y ,W)+µ∇⊥

Uσ(hY ,W)

+σ(∇U (k[η(Y )ξ−Y ]−µhY ),W)−kσ(Y ,∇UW)−µσ(hY ,∇UW)−kη(W)σ(∇Uξ,Y )−µη(W)σ(∇Uξ,hY )

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 13–26, 2017



20 On Some Classes of Invariant Submanifolds of (k,µ)-Contact Manifold: M.S. Siddesha and C.S. Bagewadi

= L2{−η(U)σ(∇Y ξ,W)+∇⊥
Uσ(Y ,W)+σ(∇U (η(Y )ξ−Y ),W)−σ(Y ,∇UW)−η(W)σ(∇Uξ,Y ). (4.10)

Putting W = ξ in (4.10) and using (3.13), we obtain

kσ(Y ,∇Uξ)+µσ(hY ,∇Uξ)= L2σ(Y ,∇Uξ).

Applying (3.12), we get

kσ(Y ,−φU −φhU)+µσ(hY ,−φU −φhU)= L2σ(Y ,−φU −φhU).

Replace U by φU and using (3.1), (3.13) and in view of Lemma (4.1), the above equation is
reduced to

(k±µλ)σ(U ,Y )= L2σ(U ,Y ),

which implies σ(U ,Y )= 0 provided L2 6= (k±µλ).

So analogous to the proof of the Theorem 4.1, we obtain σ(U ,Y )= 0 provided L2 6= (k±µλ).

The converse statement is trivial. This proves the theorem.

5. Ricci-Generalized Pseudoparallel Invariant
Submanifolds of (k,µ)-Contact Manifolds

In this section, we consider Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo-
parallel invariant submanifolds of (k,µ)-contact manifolds. Now we prove the following
theorems:

Theorem 5.1. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then M is
Ricci-generalized pseudoparallel if and only if M is totally geodesic provided L3 6= (k±µλ)

2nk .

Proof. Let M be Ricci-generalized Pseudoparallel, then we have

(R̄(X ,Y ) ·σ)(U ,V )= L3Q(S,σ)(X ,Y ,U ,V ).

Then making use of (1.4), (1.5) and (2.3) in above equation yields

R⊥(X ,Y )(σ(U ,V ))−σ(R(X ,Y )U ,V )−σ(U ,R(X ,Y )V )

= L3{−S(V , X )σ(U ,Y )+S(U , X )σ(V ,Y )−S(V ,Y )σ(U , X )+S(U ,Y )σ(V , X )}. (5.1)

Putting V = ξ=Y in (5.1) and using (3.13), we get

σ(U ,R(X ,ξ)ξ)= L3S(ξ,ξ)σ(X ,U).

By the equations (3.6), (3.8) and (3.13), we obtain

σ(U ,kX +µhX )= 2nkL3σ(X ,U).

By virtue of Lemma 4.1, we have

(k±µλ−2nkL3)σ(U , X )= 0,

which implies σ(U , X )= 0, provided L3 6= (k±µλ)
2nk .

The converse part holds trivially. This completes the proof.

Theorem 5.2. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then M is
2-Ricci-generalized pseudoparallel if and only if M is totally geodesic provided L4 6= (k±µλ)

2nk .
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Proof. Let M be 2-Ricci-generalized pseudoparallel, then we have

(R̄(X ,Y ) · ∇̄σ)(U ,V ,W)= L4Q(S,∇̄σ)(U ,V ,W , X ,Y ).

Setting X =V = ξ and in view of (1.4) and (2.4), we obtain

R⊥(ξ,Y )(∇̄σ)(U ,ξ,W)− (∇̄σ)(R(ξ,Y )U ,ξ,W)− (∇̄σ)(U ,R(ξ,Y )ξ,W)− (∇̄σ)(U ,ξ,R(ξ,Y )W)

= L4{−(∇̄σ)((ξ∧S Y )U ,ξ,W)− (∇̄σ)(U , (ξ∧S Y )ξ,W)− (∇̄σ)(U ,ξ, (ξ∧S Y )W)}. (5.2)

In view of equations (4.3)-(4.6) L.H.S of (5.2) can be written as

−R⊥(ξ,Y )σ(∇Uξ,W)−kη(U)σ(∇Y ξ,W)−µη(U)σ(∇hY ξ,W)

−k∇⊥
Uσ(Y ,W)+µ∇⊥

Uσ(hY ,W)+σ(∇U (k[η(Y )ξ−Y ]−µhY ),W)−kσ(Y ,∇UW)

−µσ(hY ,∇UW)−kη(W)σ(∇Uξ,Y )−µη(W)σ(∇Uξ,hY ). (5.3)

Using (1.5), (2.2), (3.8) and (3.13) we have the following equalities:

(∇̄σ)((ξ∧S Y )U ,ξ,W)= (∇̄(ξ∧SY )Uσ)(ξ,W)

=∇⊥
(ξ∧SY )U (σ(ξ,W))−σ(∇(ξ∧SY )U )ξ,W)−σ(ξ,∇(ξ∧SY )U )W)

= 2nkη(U)σ(∇Y ξ,W), (5.4)

(∇̄σ)(U , (ξ∧S Y )ξ,W)= (∇̄Uσ)((ξ∧S Y )ξ,W)

=∇⊥
U (σ((ξ∧S Y )ξ,W))−σ(∇U (ξ∧S Y )ξ,W)−σ((ξ∧g Y )ξ,∇UW)

=−2nk∇⊥
U (σ(Y ,W))−σ(∇U2nk(η(Y )ξ−Y ),W))+2nkσ(Y ,∇UW), (5.5)

(∇̄σ)(U ,ξ, (ξ∧S Y )W)= (∇̄Uσ)(ξ, (ξ∧S Y )W)

=∇⊥
U (σ(ξ, (ξ∧S Y )W))−σ(∇Uξ, (ξ∧S Y )W)−σ(ξ,∇U (ξ∧S Y )W)

= 2nkη(W)σ(∇Uξ,Y ). (5.6)

Then substituting (5.3)-(5.6) in (5.2), we obtain

−R⊥(ξ,Y )σ(∇Uξ,W)−kη(U)σ(∇Y ξ,W)−µη(U)σ(∇hY ξ,W)−k∇⊥
Uσ(Y ,W)

+µ∇⊥
Uσ(hY ,W)+σ(∇U (k[η(Y )ξ−Y ]−µhY ),W)−kσ(Y ,∇UW)−µσ(hY ,∇UW)

−kη(W)σ(∇Uξ,Y )−µη(W)σ(∇Uξ,hY )

= L4{−2nkη(U)σ(∇Y ξ,W)+2nk∇⊥
U (σ(Y ,W))+σ(∇U2nk(η(Y )ξ−Y ),W))−2nkσ(Y ,∇UW)

−2nkη(W)σ(∇Uξ,Y )}. (5.7)

Taking W = ξ, in (5.7) and using (3.13), we obtain

kσ(Y ,∇Uξ)+µσ(hY ,∇Uξ)= 2nkL4σ(Y ,∇Uξ).

Using (3.12)

kσ(Y ,−φU −φhU)+µσ(hY ,−φU −φhU)= 2nkL4σ(Y ,−φU −φhU).

Replace U by φU and using (3.1), (3.13) and in view of Lemma 4.1, the above equation is
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reduced to

(k±µλ)σ(U ,Y )= 2nkL4σ(U ,Y ),

which implies σ(U ,Y )= 0 provided L4 6= (k±µλ)
2nk .

So analogous to the proof of the theorem 5.5, we obtain σ(U ,Y )= 0 provided L4 6= (k±µλ)
2nk .

The converse statement is trivial. This proves the theorem.

6. Invariant Submanifolds of (k,µ)-Contact Manifolds
satisfying Z (X ,Y ) ·σ= 0 and Z (X ,Y ) · ∇̄σ= 0

This section deals with invariant submanifolds of (k,µ)-contact manifolds satisfying Z (X ,Y )·σ=
0 and Z (X ,Y ) · ∇̄σ= 0.

Theorem 6.1. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then
Z (X ,Y ) ·σ= 0 holds on M if and only if M is totally geodesic provided r 6= 2n(2n+1)(k±µλ).

Proof. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃ satisfying the condition
Z (X ,Y ) ·σ= 0. Then from (2.6), we have

R⊥(X ,Y )σ(Z,U)−σ(Z (X ,Y )Z,U)−σ(Z,Z (X ,Y )U)= 0. (6.1)

Setting X =U = ξ in (6.1) and using (3.10) and (3.13), we obtain

σ(Z,Z (ξ,Y )ξ)= 0. (6.2)

By virtue of (3.11) it follows from (6.2) that(
k− r

2n(2n+1)

)
σ(Z,η(Y )ξ−Y )−µσ(Z,hY ). (6.3)

Using (3.13) in (6.3) and in view of Lemma 4.1, we get(
k− r

2n(2n+1)
±µλ

)
σ(Z,Y )= 0,

which gives σ(Z,Y )= 0, provided r 6= 2n(2n+1)(k±µλ).

Hence the submanifold M is totally geodesic provided r 6= 2n(2n+1)(k±µλ).

The converse statement is trivial and hence the theorem.

Theorem 6.2. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then
Z (X ,Y ) · ∇̄σ= 0 holds on M if and only if M is totally geodesic provided r 6= 2n(2n+1)(k±µλ).

Proof. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃ satisfying the condition
Z (X ,Y ) · ∇̄σ= 0. Then from (2.7), we have

R⊥(X ,Y )(∇̄σ)(U ,V ,W)− (∇̄σ)(Z (X ,Y )U ,V ,W)

− (∇̄σ)(U ,Z (X ,Y )V ,W)− (∇̄σ)(U ,V ,Z (X ,Y )W)= 0. (6.4)

Setting X =V = ξ in (6.4), we obtain

R⊥(ξ,Y )(∇̄σ)(U ,ξ,W)− (∇̄σ)(Z (ξ,Y )U ,ξ,W)
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− (∇̄σ)(U ,Z (ξ,Y )ξ,W)− (∇̄σ)(U ,ξ,Z (ξ,Y )W)= 0. (6.5)

By virtue of (2.2), (3.10), (3.11) and (3.13), we get

(∇̄σ)(Z (ξ,Y )U ,ξ,W)= (∇̄Z (ξ,Y )Uσ)(ξ,W)

=∇⊥
Z (ξ,Y )U (σ(ξ,W))−σ(∇Z (ξ,Y )Uξ,W)−σ(ξ,∇Z (ξ,Y )UW)

=
(
k− r

2n(2n+1)

)
η(U)σ(∇Y ξ,W)+µη(U)σ(∇hY ξ,W), (6.6)

(∇̄σ)(U ,Z (ξ,Y )ξ,W)= (∇̄Uσ)(Z (ξ,Y )ξ,W)

=∇⊥
U (σ(Z (ξ,Y )ξ,W))−σ(∇UZ (ξ,Y )ξ,W)−σ(Z (ξ,Y )ξ,∇UW)

=
(
k− r

2n(2n+1)

)
[−∇⊥

Uσ(Y ,W)−σ(∇U (η(Y )ξ−Y ),W)+σ(Y ,∇UW)]

+µ[−∇⊥
Uσ(hY ,W)+σ(∇U hY ,W)+σ(hY ,∇UW)], (6.7)

(∇̄σ)(U ,ξ,Z (ξ,Y )W)= (∇̄Uσ)(ξ,Z (ξ,Y )W)

=∇⊥
U (σ(ξ,Z (ξ,Y )W))−σ(∇Uξ,Z (ξ,Y )W)−σ(ξ,∇UZ (ξ,Y )W)

=
(
k− r

2n(2n+1)

)
η(W)σ(∇Uξ,Y )+µη(W)σ(∇Uξ,hY ). (6.8)

Taking account of (3.12), (4.3) and (6.6)-(6.8) in (6.5), we obtain

R⊥(ξ,Y )σ(−∇Uξ,W)−
{(

k− r
2n(2n+1)

)
η(U)σ(∇Y ξ,W)+µη(U)σ(∇hY ξ,W)

}

−
{(

k− r
2n(2n+1)

)
[−∇⊥

Uσ(Y ,W)−σ(∇U (η(Y )ξ−Y ),W)+σ(Y ,∇UW)]

+µ[−∇⊥
Uσ(hY ,W)+σ(∇U hY ,W)+σ(hY ,∇UW)]

}

−
{(

k− r
2n(2n+1)

)
η(W)σ(∇Uξ,Y )+µη(W)σ(∇Uξ,hY )

}
= 0 (6.9)

Putting W = ξ in (6.9) and using (3.12) and (3.13), we get

2
(
k− r

2n(2n+1)

)
σ(−φU −φhU ,Y )−µσ(φU −φhU ,hY ). (6.10)

Replace U by φU and in view of (3.1), we obtain

(1±λ)
(
k− r

2n(2n+1)
±µλ

)
σ(Y ,U)= 0.

Since (1±λ) 6= 0, which implies that σ(Y ,U)= 0 provided
(
k− r

2n(2n+1) ±µλ
)
6= 0.

Hence M is totally geodesic provided
(
k− r

2n(2n+1) ±µλ
)
6= 0. This proves the theorem.

In view of Theorems 4.1, 4.2, 5.1, 5.2, 6.1, 6.2 and Proposition 4.1.

Corollary 6.1. Let M be an invariant submanifold of a (k,µ)-contact manifold M̃. Then the
following conditions are equivalent:
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(1) M is totally geodesic;

(2) M is semiparallel, if (k±µλ) 6= 0;

(3) M is Pseudoparallel, if L1 6= (k±µλ);

(4) M is 2-Pseudoparallel, if L2 6= (k±µλ);

(5) M is Ricci-generalized pseudoparallel, if L3 6= (k±µλ)
2nk ;

(6) M is 2-Ricci-generalized pseudoparallel, if L4 6= (k±µλ)
2nk ;

(7) M satisfies the condition Z (X ,Y ) ·σ= 0 and Z (X ,Y ) · ∇̄σ= 0 with r 6= 2n(2n+1)(k±µλ).

Further, if µ = 0, then (k,µ)-contact manifolds are reduced to N(k)-contact manifolds [8].
Hence the above corollary can be restated as:

Corollary 6.2. Let M be an invariant submanifold of a N(k)-contact manifold M̃. Then the
following conditions are equivalent:

(1) M is totally geodesic;

(2) M is semiparallel, if k 6= 0;

(3) M is Pseudoparallel, if L1 6= k;

(4) M is 2-Pseudoparallel, if L2 6= k;

(5) M is Ricci-generalized pseudoparallel, if L3 6= 1
2n ;

(6) M is 2-Ricci-generalized pseudoparallel, if L4 6= 1
2n ;

(7) M satisfies the condition Z (X ,Y ) ·σ= 0 and Z (X ,Y ) · ∇̄σ= 0 with r 6= 2n(2n+1)k.

7. Conclusion

If M is an invariant submanifolds of a (k,µ)-contact manifold then it is concluded
that the conditions totally geodesicity, semi-parallelism, 2-semiparallelism, pseudo-
parallelism, 2-pseudoparallelism, Ricci-generalized pseudoparallelism, 2-Ricci-generalized
pseudoparallelism of M are equivalent under the suitable conditions. Also, the conditions
semi-parallelism, 2-semiparallelism of M with respect to concircular curvature tensor are
equivalent to the above conditions. Further, if µ = 0 then all the above results hold true for
N(k)-contact manifold.
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