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Iterative Operator Splitting Method for Coupled Problems:
Transport and Electric Fields

Jürgen Geiser

Abstract. In this article a new approach is considered for implementing operator
splitting methods for transport problems, influenced by electric fields. Our
motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition)
processes, means the flow of species to a gas-phase, which are influenced by an
electric field. We consider a convection-diffusion equation and a Lorence force in
the electrostatic case.

The iterative splitting schemes is given as an embedded coupling method and
we apply such a scheme as a fast solver. The decomposition analysis is discussed
for the nonlinear case. Numerical experiments are given with respect to explicit
Adam-Bashforth schemes. We discuss the convergence behavior in time and space
for the iterative schemes.

1. Introduction

In the field of numerical modeling and simulation of transport problems, the
influence of electrical fields are of interest.

We consider a coupled model of a convection-diffusion equation with a
electrostatic field.

While the underlying equations are coupled nonlinear and linear equations, we
propose iterative schemes to solve such schemes.

We deal with the following model equations:

∂ u

∂ t
=−v · ∇u+∇ · D∇u, (1)

∂ v

∂ t
=−

∂ u
∂ t

u
v+

ν

µ
E, (2)

u(x, t0) = u0(x), (3)

v(x, t0) = v0(x), (4)
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where u is the density of the ion concentrations, v is the velocity field, E is the
electric field and ν , µ are parameters. We consider Neumann boundary conditions.

The iterative splitting scheme is considered after the spatial discretization and
we obtain the following nonlinear ordinary differential equation system:

∂ u

∂ t
= A1(v)u+ B(v)u, (5)

∂ v

∂ t
= A2

�
∂ u

∂ t
, u
�

v+ f, (6)

where A1, A2, B are given of the spatial discretization. f= ν

µ
E.

Here we deal with a iterative scheme to solve the nonlinear equation.

2. Mathematical Model

We motivate our study by simulating a growth rate of a deposition process
that can be done by PE-CVD (plasma enhanced chemical vapor deposition)
processes, see [12] and [15]. A gas exposed to an electric field in low pressure
conditions (< 5 Torr) results in a non-equilibrium plasma, see [1] and [14]. Such
ionized media, known as “cold” plasma or glow discharges, are powerful surface-
modification tools in Material Science and Technology. Low-pressure plasmas allow
to modify the surface chemistry and properties of materials compatible with
low-medium vacuum, through a PE-CVD process, see applications [14]. Here a
porous media model with permeable layers is an attractive simulation models. The
transport, chemical and sorption processes in a homogeneous media can be used
to simulate species transport in a plasma enhanced environment, controlled by
pressure, by temperature and by additional electric fields.

We concentrate on a far-field model and assume a continuum flow, and that the
transport equations can be treated with a convection-diffusion-reaction equation,
due to a constant velocity field, see:

∂ u

∂ t
+∇Fu= 0, in Ω× [0, t] (7)

F = v− D∇,

c(x , t) = c0(x), on Ω, (8)

∂ c(x , t)
∂ n

= 0, on ∂Ω× [0, t], (9)

where c is the particle density of the ionized species. F the flux of the species. v is
the flux velocity through the chamber and porous substrate which is influenced by
the electric field. D is the diffusion matrix. The initial value is given as c0 and we
assume a Neumann boundary condition.
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Electric Field (Distribution)

To model the influence of the electric field on the concentration we use a
pointwise approach that means we assume that the concentration in a point x ∈ Ω
behaves like a point-charge of mass m = µu, µ ∈ R+ and charge q = νu, ν ∈ R.
We also assume that there is no interaction between these point-charges. (This
interaction is already considered in the convection-diffusion equation). In general
the Lorentz force in this case can be written as F= q(E+v×B). So that the Lorentz
force in our electrostatic case is given as: F= νuE.

We can write the equation of motion as follows:

∂ p

∂ t
= µuE,

∂m

∂ t
v+m

∂ v

∂ t
= νuE,

∂ v

∂ t
+

∂ u
∂ t

u
v=

ν

µ
E. (10)

3. Discretization Methods

3.1. Discretization methods of the Convection-Diffusion equation

For the 3 dimensional convection-diffusion equation we apply a second order
finite difference scheme in space and a higher order discretization scheme in time.

∂ u

∂ t
=−v∇u+ D∆u

=−vx
∂ u

∂ x
− vy

∂ u

∂ y
− vz

∂ u

∂ z
+ D

∂ 2u

∂ x2 + D
∂ 2u

∂ y2 + D
∂ 2u

∂ z2 ,

u(x, t0) = u0(x),

We apply dimensional splitting to our problem
∂ u

∂ t
= Axu+ Ayu+ Azu

where

Ax =−vx
∂ u

∂ x
+ D

∂ 2u

∂ x2 .

We use a 1st order upwind scheme for ∂

∂ x
and a 2nd order central difference

scheme for ∂ 2

∂ x2 . By introducing the artificial diffusion constant Dx = D − vx∆x
2

we achieve a 2nd order finite difference scheme

Lxu(x) =−vx
u(x)− u(x −∆x)

∆x
+ Dx

u(x +∆x)− 2u(x) + u(x −∆x)
∆x2

because the new diffusion constant eliminates the first order error (i.e. the
numerical viscosity) of the Taylor expansion of the upwind scheme. L yu and Lzu
are derived in the same way.
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Depending on the coefficients, the semi-discretization of the diffusion equations
yields stiff or even very stiff equations, which demand for implicit methods.
Nowadays, modern multigrid or multilevel methods solve linear equations in
Nlog(N) operations, even direct methods can handle systems up to N = 1e + 6
(and higher) very efficiently nowadays.

Therefore, we apply for the discretization in time several explicit Runge-
Kutta and Adam-Bashforth methods, means direct methods, as an alternative
discretisation method to implicit schemes.

This leads to restrictions of the step-size in time but on the other hand
the we can control the accuracy of the results. While we restrict us to single
CPU processors, we achieved for our applications that we are more efficient
in computational and memory resource with the optimization of the explicit
methods as to apply a resource intensive implicit methods, e.g. implicit Runge-
Kutta discretization with Multilevel method as solver.

3.2. Analytical solution of the Electrostatic field

Equation (10) is a linear ODE. We have to solve it at every time-step with the
initial condition v(tn) = vn. It has the following analytical solution:

v(t) = vn
un

u(t)
+
ν

µ
E

1

u(t)

∫ t

tn

u(t)d t. (11)

Under the assumption of constant coefficients (that means it holds u(t) = u(tn) =
un ∀ t ∈ [tn, tn+1), u̇(t) = u̇(tn) = u̇n ∀ t ∈ [tn, tn+1)) we get a solution that is
absolutely explicit:

v(t) =
�

vn −
νun

µu̇n
E
�

exp
�
− u̇n

un
t
�
+
νun

µu̇n
E. (12)

Remark 1. The analytical solution is only given for theoretical analysis, for
practical computations, we have to derive a numerical scheme. The schemes are
discussed in the following parts.

Iterative computation of the electrostatic field

We apply successive approximation to the computation of the electrostatic field:

vi(t) = vn
un

ui−1(t)
+
ν

µ
E

1

ui−1(t)

∫ t

tn

ui−1(t)d t, for i = 1, 2, 3, . . . , t ∈ [tn, tn+1],

(13)

where we assume ui−1(t) is given from previous computations and vi(tn) = v(tn).
The stopping criterion is given as:

‖vi(t)− vi−1(t)‖= err1, ‖ui(t)− ui−1(t)‖= err2, max{err1, err2} ≤ err, (14)

where err is a given error-bound.
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The integral in (13) is computed as:

(1) Trapezoidal rule:
∫ t

tn

ui−1(s)ds ≈ 1

2
(t − tn)(ui−1(t) + ui−1(t

n)) , (15)

where we obtain a second order scheme.
(2) Taylor expansion around tn

∫ t

tn

ui−1(s)ds ≈ (t − tn)ui−1(t
n) +

1

2
(t − tn)

dui−1

d t
(tn) , (16)

where we have a also a second order scheme and dui−1

d t
(tn) is given as:

dui−1

d t
(tn) = Aui−1(t

n) + Bui−1(t
n) . (17)

Remark 2. We assume to have sufficient smoothness of the solution ui−1. Further
the computation of the derivation is given with the matrix operators.

3.3. Apriori error estimates: CFL Conditions

In the following we describe the error estimates:

Lemma 1. We assume to deal with finite difference discretization in space and Euler
explicit time discretization. Then the time error estimate for the equation (1) is given
as:

∆tAdv ≤
∆x

3v(∆tAdv)
, (18)

v(t) = ‖v(t)‖=
�

vn −
νun

µu̇n
‖E‖
�

exp
�
− u̇n

un
t
�
+
νun

µu̇n
‖E‖, (19)

∆tDiff ≤
∆x2

6D
, (20)

∆tmax =min(∆tAdv,∆tDiff ); (21)

where ‖ · ‖ is the Euclidian norm for the vectors and equation (18) is a nonlinear
equation solved with Newton’s method.

Proof.

un+1
i − un

i

∆t
= 3‖v‖

un
i+1 − un

i

∆x
+ 3D

un
i+1 − 2un

i + un
i−1

∆x2 (22)

where i are the spatial grid points and v is given analytically in equation (11).
We obtain the stability criterion for a stable discretization scheme:

un+1
i ≤

�
1− 3

‖v‖∆t

∆x
− 6

D∆t

∆x2

�
un

i + 3
‖v‖∆t

∆x
un

i+1 + 3
D∆t

∆x2 (u
n
i+1 + un

i−1)

(23)
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where the CFL condition is given as:
�

1− 3
‖v‖∆t

∆x
− 6

D∆t

∆x2

�
> 0 (24)

we deal with the stronger restriction:

1− 3
‖v‖∆t

∆x
> 0, (25)

1− 6
D∆t

∆x2 > 0. (26)

Then the CLF conditions are given as

∆tAdv ≤
∆x

3v(∆tAdv)
, (27)

v(t) = ‖v(t)‖=
�

vn −
νun

µu̇n
‖E‖
�

exp
�
− u̇n

un
t
�
+
νun

µu̇n
‖E‖, (28)

∆tDiff ≤=
∆x2

6D
, (29)

∆tmax =min(∆tAdv,∆tDiff); (30)

where ‖ · ‖ is the Euclidian norm for the vectors and the analytical solution of the
velocity is given as:

3∆tAdv

�
vn −

νun

µu̇n
‖E‖
�

exp
�
− u̇n

un
∆tAdv

�
+ 3∆tAdv

νun

µu̇n
‖E‖ ≤∆x , (31)

F(∆tAdv)−∆x ≤ 0 (32)

and equation (32) is a real-valued function, where the roots are solved by Newton’s
method. ¤

4. Splitting methods to couple Electrostatic and Convection Diffusion
equation

We concentrate on the splitting methods, which can be classified as classical and
iterative splitting methods.

We propose iterative splitting methods by discussing the additive iterative
splitting methods, see [4] and [10].

We consider the following the nonlinear problem

∂ u

∂ t
= A1(v)u+ B(v)u, (33)

∂ v

∂ t
= A2

�
∂ u

∂ t
, u
�

v+ f, (34)

where the initial conditions are un = u(tn), vn = v(tn). The operators A1 and A2

are spatially discretized operators, e.g. they correspond in space to the discretized
convection and diffusion operators (matrices). Hence, they can be considered as
bounded operators with a sufficient large spatial step ∆x > 0.
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4.1. Iterative splitting methods

The following algorithm is based on the iteration with fixed splitting
discretization step size τ. On the time interval [tn, tn+1] we solve the following
subproblems consecutively for i = 1, 3, . . . , 2m+ 1, cf. [4] and [10].

∂ ui(t)
∂ t

= A1(αvi−1(t) + (1−α)vi−1(t
n))ui(t) (35)

+ B(αvi−1(t) + (1−α)vi−1(t
n))ui−1(t),

with ui(t
n) = un, vi−1(t

n) = vn,

∂ vi(t)
∂ t

= A2

�
α

�
∂ ui

∂ t
, ui

�
+ (1−α)

�
∂ u

∂ t
(tn), u(tn)

��
vi(t) + f, (36)

with ui(t
n) = un, vi(t

n) = vn,

where u0 ≡ un, v0 ≡ vn are the known split approximation at time level t = tn.
The split approximation at time level t = tn+1 is defined as un+1 = ui(tn+1),
vn+1 ≡ vi(tn+1).

While α ∈ [0, 1] is the weighting factor and α = 0 is purely explicit and we are
done in i = 1, α= 1 is pure implicit and we have approximate the last solutions.

Remark 3. The stop criterion of the iterative splitting scheme is given as:

• We stop after a fixed number of iterative steps, e.g. i = 3
• or we stop after an error bound is reached, we assume that there exists an i

with:

max{‖ui(t)− ui−1(t)‖,‖vi(t)− vi−1(t)‖} ≤ err, (37)

where ‖ · ‖ is a given vector norm, e.g. Euclidian norm and err ∈ R+ is a given
error bound, e.g. err= 10−4.

5. Error Analysis: Coupling Methods

For a simpler notation, we define c = (u,v)t as a new variable, including the
concentration and velocity field.

Based on this, we deal with nonlinear differential equations of the following
type:

dc

d t
= A(c(t))c(t) + B(c(t))c(t), with c(tn) = cn, (38)

where c = (u,v)t , with v is the velocity field (including the electrostatic field in a
analytical version) and u is the concentration of the species.

The main idea is to bound the operators A(c(t)) and B(c(t)) in the discretized
equation to satisfy a stable method.

A first idea is the fix-point scheme, that is discussed in the following subsection.
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5.1. Consistency and stability analysis

In the following, we discuss the iterative operator-splitting method as a fixed-
point iteration method to linearize the operators.

We apply for the nonlinear differential equation (38) the following iterative
scheme:

∂t ci = A(ci−1)ci + B(ci−1)ci−1, with ci(x , tn) = cn, (39)

∂t ci+1 = A(ci−1)ci + B(ci−1)ci+1, with ci+1(x , tn) = cn, (40)

where the time-step is τ = tn+1 − tn. The iterations are i = 1, 3, . . . , 2m + 1.
c0(x , t) = cn is the initial solution, where we assume that the solution cn+1 is
near cn, or c0(x , t) ≡ 0. Thus we have to solve the local fixed-point problem. cn is
the known split approximation at time-level t = tn.

The split approximation at time-level t = tn+1 is defined as cn+1 = c2m+2(x , tn+1).
We assume that the operators A(ci−1(x , tn+1)), B(ci−1(x , tn+1)) are constant for
i = 1, 3, . . . , 2m+ 1. Here the linearization is done with respect to the iterations
such that A(ci−1), B(ci−1) are at least non-dependent operators in the iterative
equations, and we can apply the linear theory.

Assumption 1. We have the following assumptions to the fix-point scheme:

• For the first equation (39), we have A(ci−1(x , t))≈ A(ci(x , t)), for small t.
• For the second equation (40), we have B(ci−1(x , t))≈ B(ci+1(x , t)), for small t.
• We have ‖A(ci−1(x , tn+1))ci(x , tn+1)− A(c(x , tn+1))c(x , tn+1)‖ ≤ ε, for sufficient

iterations i ∈ {1, 3, . . . , 2m+ 1}.
Remark 4. The linearization with the fixed-point scheme can be used for smooth
or weak nonlinear operators, otherwise we lose the convergence behavior, while
we did not converge to the local fixed point, see [10].

Next, we demonstrate the error analysis for the linear and nonlinear
decomposition methods. In this section we designate as ei(t) := c(t)− ci(t) the
error between the exact solution and the approximated solution after i iterations.
Here we discuss the linearization techniques and their approximations.

Theorem 1. Let us consider the following problem

∂t c(t) = A(c(t))c(t) + B(c(t))c(t), 0< t ≤ T ,

c(0) = c0 ,

where A, B are nonlinear differentiable bounded operators A, B in a Banach space X.
Linearizing the nonlinear operators yields the linearized equation

∂t c(t) = eAc(t) + eBc(t) + R(cei)cei , 0< t ≤ T ,

eA= A(cei) +
∂ A(cei)
∂ c

cei , eB = B(cei) +
∂ B(cei)
∂ c

cei ,
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R(cei) =
∂ A(cei)
∂ c

cei +
∂ B(cei)
∂ c

cei , (41)

c(0) = c0 ,

where eA, eB, eA+ eB : X → X are given, linear bounded operators being generators of
the C0-semigroup and c0 ∈ X is a given element. The linearization is of the form
A(c)c ≈ A(cei)cei + (

∂ A(cei)
∂ c

cei)(c − cei) where cei ∈ X is a linearized solution, we further

assume ( ∂ A(cei)
∂ c
)cei is a constant Jacobian matrix.

We assume that the iteration process (39)-(40) is convergent and the convergence is
of second order.
It holds

‖ei‖= Kτn‖ei−1‖+O (τ2
n), (42)

where K is an estimation of the residual ‖R(ec)‖ ≤ Rmax ∈ R+ for all ec ∈ X and
‖eB‖ ≤ eK.

One could also obtain the result with Lipschitz-constants.
We now prove the argument using the semi-group theory.

Proof. Let us consider the iteration (39)-(40) in the sub-interval [tn, tn+1].
The linearized splitting method is given as :

∂ ci(t)
∂ t

= eAci(t) + eBci−1(t) + R(ci−1)ci−1(t), (43)

with ci(t
n) = cn (44)

c0(t
n) = cn , c−1 = 0,

∂ ci+1(t)
∂ t

= eAci(t) + eBci+1(t) + R(ci−1)ci−1(t), (45)

with ci+1(t
n) = cn ,

where cn is the known split approximation at the time level t = tn. We solve the
subproblems consecutively for i = 0, 2, . . . , 2m.

For the error function ei(t) = c(t)− ci(t) we have the relations

∂t ei(t) = eA(ei(t)) + eB(ei−1(t)) + R(ei−1)ei−1(t), t ∈ (tn, tn+1],

ei(t
n) = 0 , (46)

and

∂t ei+1(t) = eA(ei(t)) + eB(ei+1(t)) + R(ei−1)ei−1(t), t ∈ (tn, tn+1],

ei+1(t
n) = 0 , (47)

for m= 0, 2, 4, . . . , with e0(0) = 0 and e−1(t) = c(t) and

eA= A(ei−1) +
∂ A(ei−1)
∂ c

ei−1,
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eB = B(ei−1) +
∂ B(ei−1)
∂ c

ei−1,

R(ei−1) =
∂ A(ei−1)
∂ c

ei−1 +
∂ B(ei−1)
∂ c

ei−1.

In the following we derive the linearized equations. We use the notation X2 for
the product space X×X enabled with the norm ‖(u, v)‖=max{‖u‖,‖v‖} (u, v ∈ X).
The elements Ei(t), Fi(t) ∈ X2 and the linear operator A : X2 → X2 are defined
as follows

Ei(t) =

�
ei(t)

ei+1(t)

�
; A =

�eA 0
eA eB

�
, (48)

Fi(t) =

�
R(ei−1)ei−1 + eBei−1

R(ei−1)ei−1

�
(49)

where have the bounded and linearized operators eA, eB and R(ei−1).
Using notation (18) and (48), the relations (46)-(47) can be written in the form

∂tEi(t) =AEi(t) +Fi(t), t ∈ (tn, tn+1],

Ei(t
n) = 0. (50)

Due to our assumptions that A and B are bounded and differentiable and that we
have a Lipschitzian domain, A is a generator of the one-parameter C0 semigroup
(A (t))t≥0. We also assume the estimate of our term Fi(t) with the growth
conditions.

We can estimate the right hand side Fi(t) with help of Lemma 1 presented
after this proof. Hence, using the variations of constants formula, the solution
of the abstract Cauchy problem (50) with homogeneous initial condition can be
written as (cf. e.g. [2])

Ei(t) =

∫ t

tn

exp(A (t − s))Fi(s)ds, t ∈ [tn, tn+1]. (51)

Hence, using the denotation

‖Ei‖∞ = sup
t∈[tn,tn+1]

‖Ei(t)‖ , (52)

and taking into account Lemma 1, we have

‖Ei(t)‖∞ ≤ ‖Fi‖∞
∫ t

tn

‖exp(A (t − s))‖ds

≤ C ‖ei−1(t)‖
∫ t

tn

‖exp(A (t − s))‖ds, t ∈ [tn, tn+1]. (53)

Since (A (t))t≥0 is a semigroup, the so called growth estimate is

‖exp(A t)‖ ≤ K exp(ωt) , t ≥ 0 , (54)

with some numbers K ≥ 0 and ω ∈ R (see [2]).
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• Assume that (A (t))t≥0 is a bounded or exponentially stable semigroup, i.e. that
(54) holds with some ω≤ 0. Then obviously the inequality

‖exp(A t)‖ ≤ K; t ≥ 0 , (55)

holds, and hence from (53), we have

‖Ei(t)‖∞ ≤ Kτn‖ei−1(t)‖, t ∈ (0,τn). (56)

• Assume that (A (t))t≥0 has exponential growth with some ω > 0. From (54)
we have

∫ tn+1

tn

‖exp(A (t − s))‖ds ≤ Kω(t), t ∈ [tn, tn+1], (57)

where

Kω(t) =
K

ω

�
exp(ω(t − tn))− 1

�
, t ∈ [tn, tn+1] , (58)

and hence

Kω(t)≤
K

ω

�
exp(ωτn)− 1

�
= Kτn +O (τ2

n) , (59)

where τn = tn+1 − tn. The estimations (56) and (59) result in

‖Ei‖∞ = Kτn‖ei−1‖+O (τ2
n). (60)

Taking into the account the definition of Ei and the norm ‖·‖∞, that results to have
the estimation ‖ei+1‖ ≤ ‖ei‖, we obtain

‖ei‖= Kτn‖ei−1‖+O (τ2
n),

which proves our statement. ¤

Lemma 2. The term Fi(t) given by (49) can be estimated as

‖Fi(t)‖ ≤ C‖ei−1‖ . (61)

where we assume the boundedness of R(ei−1) and eB, see Theorem 1.

Proof. We have the norm ‖Fi(t)‖=max{Fi1(t),Fi2(t)}.
Each term can be bounded as follows.

‖Fi1(t)‖ ≤ ‖(R(ei−1(t)) + eB)ei−1(t)‖
≤ (Rmax + eK)‖ei−1(t)‖ , (62)

‖Fi2(t)‖ ≤ ‖R(ei−1(t))ei−1(t)‖
≤ Rmax‖ei−1(t)‖ . (63)

where Rmax and eK are constants and defined in Theorem 1.
So we obtain the estimate

‖Fi(t)‖ ≤ C‖ei−1(t)‖,
where C = Rmax + eK . ¤
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6. Experiments

In the following experiments we couple transport equations and flow-field
equations with embedded electrical fields.

We deal with the following coupled partial differential equations (transport and
flow-field equations):

∂ u

∂ t
=−v · ∇u+∇ · D∇u, (64)

∂ v

∂ t
=−

∂ u
∂ t

u
v+

ν

µ
E, (65)

u(x, t0) = u0(x), (66)

v(x, t0) = v0(x), (67)

where we have Neumann boundary conditions.
We deal with several methods and have the following general setting. Let

Ω = [0, 1]×[0, 1]×[0, 1], the unit cube. There we set up the initial concentration

ut0
(x) = 2exp

�−(x− a)2)
0.02

�
∀ x ∈ Ω, (68)

with a= (0.5, 0.5, 0.5)T , (69)

which is just the analytical solution

ua(x, t) =
1

t
exp
�−(x− vt)2

4Dt

�
, (70)

with v= 1 and D = 0.01 at t = t0 = 0.5 on Ω.
During the following experiments we will set v= 0 and consider an equidistant

lattice of N3 points (∆x = ∆y = ∆z = ∆ = 1
N−1

). We set ∆0 =
1

60
, ∆t0 =

1
4
∆0

and tend = 1.50416̄ (tend = t0 + 241 ·∆t0).

To calculate the L2-error we will use a reference solution which is generated
with Kutta’s fourth order method where N = 241 so that ∆= 1

240
and ∆t = 1

48
∆.

In the following tabular (Kutta fourth order) all values have the dimension
1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 0.9195 0.9600 0.9735 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ 0.3427 0.3498 0.3540 0.3568 0.3589 0.3604 0.3615 0.3625 0.3633 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ 0.1179 0.1200 0.1215 0.1227 0.1236 0.1244 0.1251

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

The last value is zero because this was the reference solution. The result is
graphically shown in Figure 1.
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Figure 1. Maximum error Kutta’s fourth

In the following tabular (Heun third order) all values have the dimension
1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 0.9195 0.9600 0.9735 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ 0.3427 0.3498 0.3540 0.3568 0.3589 0.3604 0.3615 0.3625 0.3633 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ 0.1200 0.1215 0.1227 0.1236 0.1244 0.1251

1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 · 10−9

The result is graphically shown in Figure 2.
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Figure 2. Maximum error Heun’s third

In the following tabular (Adam-Bashforth second order) all values have the
dimension 1 · 10−3.
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∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ 0.9599 0.9735 0.9802 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.3604 0.3615 0.3625 0.3632 0.3639

1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in Figure 3.
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Figure 3. Maximum error Adam-Bashforth second

In the following tabular (Adam-Bashforth third order) all values have the
dimension 1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ 0.9803 0.9843 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938

1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in Figure 4.

24681012

1

2

3

4

0

0.2

0.4

0.6

0.8

1

x 10
−3

refinement in timerefinement in space

er
r m

ax

Figure 4. Maximum error Adam-Bashforth third
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In the following tabular (Adam-Bashforth fourth order) all values have the
dimension 1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ ∞ ∞ 0.9870 0.9889 0.9904 0.9915 0.9924 0.9931 0.9938
1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in Figure 5.
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Figure 5. Maximum error Adam-Bashforth fourth

In the following tabular (Adam-Bashforth fifth order) all values have the
dimension 1 · 10−3.

∆t0
1
2∆t0

1
3∆t0

1
4∆t0

1
5∆t0

1
6∆t0

1
7∆t0

1
8∆t0

1
9∆t0

1
10∆t0

1
11∆t0

1
12∆t0

∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.9931 0.9938
1
2∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
3∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1
4∆0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

The result is graphically shown in Figure 6.
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Figure 6. Maximum error Adam-Bashforth fifth
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This results show that the quality of all four methods is much more restricted
by the accuracy in space than in time.

Remark 5. We receive convergent results in time and space for the Adam-
Bashforth and iterative splitting solver. The results can be improved by using higher
order Adam-Bashforth methods and more refined grids.

7. Conclusion

We discussed iterative splitting schemes for nonlinear coupled partial
differential equations. The numerical analysis is presented for nonlinear and
spatial discretized equations and we obtain higher order results with more iterative
steps. With explicit discretization schemes as Adam-Bashforth methods, we can
accelerate our solver schemes, while we skip costly implicit methods. A priori error
estimates allow to optimize the time steps. In future we are taken into account a
framework to couple partial differential equations based on fix-point and iterative
schemes.

Appendix A.

A.1. Explicit Time-Integration Methods

To have fast methods, we consider explicit time-integration methods for the
coupled equations.

We consider Adam-Bashforth (AB) and Runge-Kutta (RK) methods.
While the time steps AB1 is ∆t ≈ 1p

50
∆x and AB2 is ∆t ≈ 1p

200
∆x , we apply

the RK schemes with ∆t ≈ 1p
7
∆x .

A.1.1. Adam-Bashforth methods.

yn+1 = yn + h
s∑

j=0

b j f (tn− j , yn− j), (71)

b j =
(−1) j

j!(s− j)!

∫ 1

0

s∏

i=0,i 6= j

(u+ i) du, j = 0, . . . , s. (72)

We consider here
s = 2 (second order)

yn+1 = yn + h
�

3

2
f (tn, yn)−

1

2
f (tn−1, yn−1)

�
, (73)

s = 3 (third order)

yn+1 = yn + h
�

23

12
f (tn, yn)−

16

12
f (tn−1, yn−1) +

5

12
f (tn−2, yn−2)

�
, (74)
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s = 4 (fourth order)

yn+1 = yn+h
�

55

24
f (tn, yn)−

59

24
f (tn−1, yn−1)+

37

24
f (tn−2, yn−2)−

3

8
f (tn−3, yn−3)

�
,

(75)

and s = 5 (fifth order)

yn+1 = yn + h
�

1901

720
f (tn, yn)−

1387

360
f (tn−1, yn−1)

+
109

30
f (tn−2, yn−2)−

637

360
f (tn−3, yn−3) +

251

720
f (tn − 4, yn − 4)

�
. (76)

A.1.2. Explicit Runge-Kutta methods.
In general a s-stage Runge-Kutta method can be written in the following way:

yn+1 = yn + h
s∑

j=1

b jk j (77)

where

k j = f
�

tn + hc j , yn + h
s∑

l=1

a jl kl

�
. (78)

We will take into account the following two:
Heun’s third-order

0 0 0 0
1
3

1
3

0 0
2
3

0 2
3

0
1
4

0 3
4

=
c A

bT (79)

and
Kutta’s classical fourth-order

0 0 0 0 0
1
2

1
2

0 0 0
1
2

0 1
2

0 0

1 0 0 1 0
1
6

1
3

1
3

1
3

=
c A

bT (80)

A.2. Matrix Exponential Methods

Another way of computing fast explicit schemes of ODE systems of first order
are matrix exponentials.

We deal with:
d y

d t
= Ay, y(0) = y0, (81)
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where we assume A= D+ N , D is the diagonal part and N is the nilpotent part of
the matrix A.

We assume also [D, N] = 0 and we have the solution:

y(t) = exp(Dt)exp(N t)y0, (82)

where exp(Dt) can be computed just exponentiating every entry on the main
diagonal and

exp(N t)≈ I + N t + N2 t2

2
+ N3 t3

3
, (83)

where N is the nilpotent matrix and N · N is only a shift of the to the next higher
upper or lower diagonal.
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