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1. Definitions and Notations
Throughout this paper, R is an associative ring with non-zero identity, all modules are unitary
left R-modules and T is a tilting module. We denote by AddT (resp. FAddT), the class of
modules isomorphic to direct summands of direct sum of copies (resp. finitely many copies) of T .
Following [2], a module T is called tilting (1-tilting) if it satisfies the following conditions:

(1) pd(T)≤ 1, where pd(T) denotes the projective dimension of T .

(2) Exti(T,T(λ))= 0, for each i > 0 and for every cardinal λ.

(3) There exists the exact sequence 0→ R → T0 → T1 → 0, where T0,T1 ∈AddT .
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Also, by Presn T (resp. FPresn T) and Pres∞ T (resp. FPres∞ T) the set of all modules M
such that there exists exact sequences

Tn −→ Tn−1 −→ ·· · −→ T1 −→ T0 −→ M −→ 0

and

· · · −→ Tn −→ Tn−1 −→ ·· · −→ T1 −→ T0 −→ M −→ 0,

respectively, where Ti ∈AddT (resp. FAddT), for every i ≥ 0. A module M is said to be generated
(resp. cogenerated) by T , denoted by M ∈ GenT (resp. M ∈ CogenT) if there exists an exact
sequence Tn → M → 0 (resp. 0 → M → Tn), for some positive integer n. Let C be a class of
modules and M be a module. A C-resolution of M is a long exact sequence · · ·→ C1 → C0 → M →
0, where Ci ∈C, for all i ≥ 0. Let M ∈GenT . Since T is tilting, [2, Theorem 3.11] implies that
T is a 1-star module (see [9, Definition 3.1]) and GenT =Pres∞ T . This shows that any module
generated by T has an AddT-resolution, see also [5, Proposition 2.1].

For any module M, M∗ = HomZ

(
M, Q

Z

)
denotes the character module of M. For any

homomorphism f , we denote by ker f and im f , the kernel and image of f , respectively. Let B
and M ∈GenT be two modules. We define the functors

ΓT
n (M,B) := ker(δn ⊗1B)

im(δn+1 ⊗1B)
; En

T(M,B) := kerδn∗
imδn−1∗

,

where

δ2 δ1 δ0· · · −→ T2 −→ T1 −→ T0 −→ M −→ 0

is an AddT-resolution of M and δn∗ =Hom(δn, idB), for every i ≥ 0, see [5,8] for more details.

Definition 1.1. Let T be a tilting module and n be a nonnegative integer.

(1) A module F is called Tn
M -flat if ΓT

n+1

(
M
K ,F

)
= 0, for every submodule K of M.

(2) A module F is called Tn
M -injective if En+1

T

(
M
K ,F

)
= 0, for every submodule K of M.

Let M ∈GenT and N be two modules. A similar proof to that of [6, Lemma 2.11] shows that
E0

T(M, N) ∼= Hom(M, N). Similarly, it is seen that Γ0
T(M, N) ∼= M ⊗ N . Moreover, E1

T(M,−) = 0
implies that M ∈AddT . We say that M has T-projective dimension n (briefly, T.p.dim(M)= n)
if n is the least non-negative integer such that there exists a long exact sequence

0−→ Tn −→ Tn−1 −→ ·· · −→ T1 −→ T0 −→ M −→ 0

with Ti ∈ AddT , for each i ≥ 0. It is clear that T.p.dim(M) = n if and only n is the least non-
negative integer such that En

T (M,B)= 0, for any module B, see [5, Remark 2.2] for more details.
Also, we say that M has T-flat dimension n (briefly, T.f.dim(M)= n) if n is the least non-negative
integer such that ΓT

n (M,B)= 0, for any module B, see [5, Definition 2.2]. We denote by TPn and
TFn, the class of modules with T-projective dimension at most n and the class of modules with
T-flat dimension at most n, respectively.
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A similar proof to that of [6, Proposition 2.3] shows that the definition of ΓT
n (M,B) (resp.

En
T(C, M)) is independent from the choice of left AddT-resolutions. For unexplained concepts

and notations in this area, we refer the reader to [1,3,5,7].

2. Relative Coherence with Respect to a Tilting Module

We start with two useful lemmas which will be used in the proof of the main results of this
paper.

Lemma 2.1. Let

0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0

be an exact sequence. Then

(1) If A ∈Presn+1 T and C ∈Presn+1 T , then B ∈Presn+1 T.

(2) If A ∈Presn T and B ∈Presn+1 T , then C ∈Presn+1 T.

(3) If B ∈Presn T and C ∈Presn+1 T , then A ∈Presn T.

Proof. (1): We prove the assertion by induction on n. If n = 0, then the commutative diagram
with exact rows

T ′
0

i0−−−−→ T ′
0 ⊕T ′′

0
π0−−−−→ T ′′

0 −−−−→ 0yh′
0

yh0

yh′′
0

0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0y y y
0 0 0

exists, where T ′
0,T ′′

0 ∈ AddT , i0 is the inclusion map, π0 is a canonical epimorphism and
h0 = f h′

0 is epimorphism, by Five Lemma. Let K ′
1 = kerh′

0, K1 = kerh0 and K ′′
1 = kerh′′

0. It is
clear that K ′

1,K ′′
1 ∈Presn T ; so, the induction implies that K1 ∈Presn T . Hence B ∈Presn+1 T .

(2): First assume that n = 0. If B ∈ Pres1 T and A ∈ Pres0 T , then the following commutative
diagram with exact rows:

T ′
0 −−−−→ A −−−−→ 0yγ

y f

T1
α2−−−−→ T0

α1−−−−→ B −−−−→ 0∥∥∥ yg

T ′
0 ⊕T1

h−−−−→ T0
gα1−−−−→ C −−−−→ 0y

0
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in which the existence of γ follows from the exactness of the sequence Hom(T ′
0,T0) →

Hom(T ′
0,B) → 0. Also, h is defined by h(t′0, t1) = γ(t′0) +α(t1). Therefore, we deduce that

C ∈Pres1 T . For n > 0, the assertion follows from induction.

(3): This is proved similarly.

Remark 2.1. If T is finitely presented, then every finite direct sum of copies of T is finitely
presented. Thus every module in FAddT is finitely presented and so all modules in FPresn T
are finitely presented.

Lemma 2.2. If T is finitely presented and F ∈FPresn+2 T , then ΓT
n+1(F, M I)∼=ΓT

n+1(F, M)I , for
every cardinal I .

Proof. Since F ∈FPresn+2 T , the exact sequence

Tn+2 −→ Tn+1 −→ ·· · −→ T1 −→ T0 −→ F −→ 0

exists, where Ti ∈ FAddT for every i ≥ 0. Setting Kn = ker(Tn → Tn−1), it is clear that
Kn ∈ FPres1 T . Thus for any cardinal I , we have the following commutative diagram with
exact rows:

0 −−−−→ ΓT
1 (Kn−1, M I) −−−−→ Kn ⊗M I −−−−→ Tn ⊗M I −−−−→ ·· ·y f

yg
yh

0 −−−−→ ΓT
1 (Kn−1, M)I −−−−→ (Kn ⊗M)I −−−−→ (Tn ⊗M)I −−−−→ ·· ·

By Remark 2.1, Kn and Tn are finitely presented, so g and h are isomorphisms by
[4, Theorem 2.1.5]. Hence f is an isomorphism. Therefore, by [5, Proposition 2.2],

ΓT
n+1(F, M I)∼=ΓT

1 (Kn−1, M I)

∼=ΓT
1 (Kn−1, M)I

∼=ΓT
n+1(F, M)I .

We denote by ΩM(N), the set of all factor modules of N , say B
A (A ≤ B ≤ N), such that there

exists an element m ∈ M with B
A ,→ Rm. In particular, ΩM(R) consists the set of all modules of

the form L
m⊥ for any m ∈ M, where m⊥ = {r ∈ R| rm = 0}⊆ L ≤ R.

Definition 2.1. A module N is called Tn
M -coherent if ΩM(N)∩FPresn T ⊆ FPresn+1 T . A ring

R is called Tn
M -coherent if it is Tn

M -coherent as an module.

In the following theorem, some characterizations of Tn
M -coherent modules are given.

Theorem 2.1. Let T , M and N be modules. If T is finitely presented and x ∈ N , then the
following statements are equivalent:

(1) N is Tn
M -coherent;

(2) If R ∈ FPresn+1 T and 0 ≤ A < B ≤ N , then B
A ∈ FPresn T and B+xR

A ∈ΩM(N)∩FPresn T
implies that x−1B ∈FPresn T ;
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(3) If R ∈ FPresn+1 T and 0 ≤ A ≤ N , then A+xR
A ∈ ΩM(N)∩FPresn T implies that x−1A ∈

FPresn T . And for any 0 ≤ A < B ≤ N , and 0 ≤ A < C ≤ N , B
A , C

A ∈ ΩM(N)∩FPresn T
implies (B∩C)

A ∈FPresn T .

Proof. (1)=⇒(3): We have that (A+xR)
A

∼= (x+ A)R ∼= R
x−1 A , and also, R

x−1 A ∈ FPresn T . So, R
x−1 A ∈

FPresn+1 T by (1), and by Lemma 2.1(3), x−1A ∈ FPresn T . Note that we have B+C
A , B

A ⊕ C
A ∈

FPresn T . Thus B+C
A ∈ FPresn+1 T , by (1). Therefore by Lemma 2.1(3), the exactness of the

sequence

0−→ (B∩C)
A

−→ B
A
⊕ C

A
−→ B+C

A
−→ 0

implies that (B∩C)
A ∈FPresn T .

(3)=⇒(1): We need to show that for any Y = B
A ∈ΩM(N)∩FPresn T implies that Y ∈FPresn+1 T .

From Lemma 2.1(2), we deduce that A+xR
A

∼= R
x−1 A ∈FPresn+1 T . Also, by Remark 2.1, Y = B

A is
finitely generated. So, assume by induction that any (n−1)-generated submodule B

A belong to
FPresn+1 T . Now, every n-generated submodule, which is isomorphic to a subquotient module
of N , is of the form (B+xR)

A for some x ∈ N . Consider the following exact sequence:

0−→ B∩ (A+ xR)
A

−→ B
A
⊕ A+ xR

A
−→ B+ xR

A
−→ 0

The first term belong to FPresn T by (3). Hence, by Lemma 2.1(2), the last term belong to
FPresn+1 T . Thus (1) holds.

(1)=⇒(2): By hypothesis, the exact sequence

0−→ B
A

−→ (B+ xR)
A

−→ R
x−1B

−→ 0

exists, where (B+xR)
A ∈ FPresn+1 T , by (1). So, R

x−1B ∈ FPresn+1 T ; therefore, by Lemma 2.1(3)
x−1B ∈FPresn T .

(2)=⇒(1): This is similar to (3)=⇒(1).

3. Relative Flatness and Relative Injectivity

First, we study the concepts of relative flatness and relative injectivity, with respect to the
tilting module T in short exact sequences.

Theorem 3.1. Let 0→ M1 → M2 → M3 → 0 be an exact sequence of modules.

(1) If F is Tn
M2

-flat, then F is Tn
M1

-flat and Tn
M3

-flat.

(2) If F is Tn
M2

-injective, then F is Tn
M1

-injective and Tn
M3

-injective.

Proof. (1): It is clear that for every submodule K3 of M3, there exists a submodule K2 of
M2 such that K3

∼= K2
M1

. Thus we have ΓT
n+1

(
M3
K3

,F
) ∼= ΓT

n+1

(
M2
K2

,F
)
= 0, by hypothesis, and so

F is Tn
M3

-flat. Now, choose a submodule 0 < K1 ≤ M1. Then there exists an exact sequence
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0→ M1
K1

→ M2
K1

→ M2
M1

→ 0 which induces the long exact sequence

· · · −→ΓT
n+2

(
M2

M1
,F

)
−→ΓT

n+1

(
M1

K1
,F

)
−→ΓT

n+1

(
M2

K1
,F

)
−→ ·· ·

Therefore, Tn
M2

-flatness of F implies that ΓT
n+1

(
M1
K1

,F
)
= 0, and this proves (1).

The proof of (2) is similar to that of (1).

By using similar proofs to those of [7, Propositions 7.6 and 7.21], one can obtain the
isomorphisms ΓT

n+1(
⊕

i∈I Mi,P) ∼= ⊕
i∈I Γ

T
n+1(Mi,P) and En+1

T (
⊕

i∈I Mi,P) ∼= ∏
i∈I

En+1
T (Mi,P). So,

we have the following lemma.

Lemma 3.1. Let {Mi}i∈I be a family of modules. Then the following statements hold.

(1) A module F is Tn
Mi

-flat, for every i ∈ I , if and only if F is Tn⊕
Mi

-flat.

(2) A module F is Tn
Mi

-injective, for every i ∈ I , if and only if F is Tn⊕
Mi

-injective.

For any module M, we denote by σ[M], the full subcategory of modules whose objects are
isomorphic to Y

X , where X ≤Y ≤ M(I), for some index set I .

Many ring and module theoretic concepts have been reformulated for the full subcategory
σ[M] of R-modules subgenerated by a given R-module M (see [10]). Here, it will be shown how
σ[M] can be used as a tool in the category of R-modules, which is totally outside of σ[M]. For
any subcategory of R-modules, such as σ[M] there is always an associated concept of flatness.
A module F is Tn

σ[M]-flat if ΓT
n+1

(
Y
X ,F

)
= 0, for every submodule X ≤Y ∈σ[M]. It will be shown

that Tn
σ[M]-flatness is equivalent to a simpler definition Tn

M -flatness. Also, it will be shown that
σ[M] ⊆ TPn if and only if every module is Tn

M -injective, and σ[M] ⊆ TFn if and only if every
module is Tn

M -flat.

Proposition 3.1. For any module F , the following statements are true.

(1) A module F is Tn
M -flat if and only if ΓT

n+1

(
B
A ,F

)
= 0 for any A ≤ B ∈σ[M].

(2) A module F is Tn
M -injective if and only if En+1

T

(
B
A ,F

)
= 0 for any A ≤ B ∈σ[M].

Proof. (1)(⇐=): This follows immediately by taking B = M.

(=⇒): It suffices to show that F is Tn
B-flat. Let B = X

Y ≤ M(I)

Y for some Y < X ≤ M(I). By Lemma
3.1(1), F is a Tn

M(I) -flat module. Thus Theorem 3.1(1) implies that F is Tn
M(I)

Y

-flat, for any

Y ≤ M(I). Hence for any B = X
Y ≤ M(I)

Y , F is Tn
B-flat, again by Theorem 3.1(1).

The proof of (2) is similar to that of (1).

The next theorem extends Proposition 3.1 to a larger category π[M]⊇σ[M], where π[M] is
the full subcategory of modules whose objects are of the form B

A ≤ M I

A , for some cardinal I and
some modules A ≤ B ≤ M I .
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Theorem 3.2. Let T be finitely presented. Then F ∈ FPresn+2 T is Tn
M -flat if and only if

ΓT
n+1

(
Y
X ,F

)
= 0, for any X <Y ∈π[M].

Proof. (⇐=): This is the special case when Y = M.

(=⇒): It suffices to show that F is Tn
M I -flat for any cardinal I . To prove this, we use the

induction on n. If n = 0, we need to show that ΓT
1

(
M I

K ,F
)
= 0, for any submodule K < M I . On

the other hand, the map α⊗1F : K ⊗F → M I ⊗F is monomorphism. Let π : M I → M be the
projection on the first component. By hypotheses αi ⊗1F :πK ⊗F → Mi ⊗F is monomorphism.
By Remark 2.1, F is finitely presented. So by Lemma 2.2, the natural map β : M I ⊗F → (M⊗F)I

is an isomorphism and also, the map ρ i : (M ⊗ F)I → Mi ⊗ F is the projection. From a
commutative diagram we have that (αi ⊗1F )(π⊗1F )= ρ iβ(α⊗1F )= (π⊗1F )(α⊗1F ). Therefore
(α⊗1F)x = 0=⇒ (π⊗1F)x = 0⇒ x = 0. Hence, the map α⊗1F is monomorphism. Assume that
n ≥ 1. The exact sequence 0→ N → T0 → F → 0 induces that ΓT

n+1

(
M I

K ,F
)∼=ΓT

n

(
M I

K , N
)
. It suffices

to show that N is Tn−1
M -flat. For any submodule D of M, we have that ΓT

n+1

(
M
D ,F

)∼=ΓT
n

(
M
D , N

)
.

Since F is Tn
M -flat, ΓT

n

(
M
D , N

)
= 0 implies that N is Tn−1

M -flat. So, by hypothesis induction, N is

Tn−1
M I -flat. Hence ΓT

n+1

(
M I

K ,F
)
= 0 and this completes the proof.

Proposition 3.2. A module F is Tn
M -flat if and only if the character module of F is Tn

M -injective.

Proof. We only need to show that an isomorphism Em
T

(
M
K ,F∗

) ∼= ΓT
m

(
M
K ,F

)∗
exists, for every

submodule K of M and for every integer m ≥ 0. First suppose that m = 0. Then from [7, Theorem
2.75], we deduce that

E0
T

(
M
K

,F∗
)
∼=Hom

(
M
K

,F∗
)
∼=

(
M
K

⊗F
)∗ ∼=ΓT

0

(
M
K

,F
)∗

.

If m > 0, then the assertion follows from [5, Proposition 2.2] and induction.

Example 3.1. Let R be a 1-Gorenstein ring and 0→ R → E0 → E1 → 0 be the minimal injective
resolution of R. Then by [3], T = E0 ⊕E1 is a tilting module. Hence, for any submodule T ′

of T , the exact sequence 0 → E0 → T → E1 → 0 implies that En+1
T

(
T
T ′ ,T

)
= 0 for any n ≥ 0. So,

T is Tn
T -injective. Moreover, from the exact sequence 0 → T ′ → T → T

T ′ → 0, we deduce that

ΓT
n+1

(
T
T ′ ,R

)
= 0 for any n ≥ 0; therefore, R is a Tn

T -flat module.

In the following theorem, some characterizations of the modules with finite T-projective
dimension and modules with finite T-flat dimension are given.

Theorem 3.3. For any module M, the following statements hold:

(1) σ[M]⊆TPn if and only if every module is Tn
M -injective.

(2) σ[M]⊆TFn if and only if every module is Tn
M -flat.

(3) If σ[M]⊆TPn, then σ[M]⊆TFn.
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(4) σ[M]⊆TPn+1 if and only if every factor module of an Tn
M -injective module is Tn

M -injective.

(5) σ[M]⊆TFn+1 if and only if every submodule of an Tn
M -flat module is Tn

M -flat.

Proof. (1): Choose B ∈ σ[M] ⊆ TPn. Then there exists a submodule Y < M ≤ M(I) such that
B = M

Y ≤ M(I)

Y . Thus En+1
T

(
M
Y ,F

)
= 0, for every module F . So, every module is Tn

M -injective.
Conversely, assume that any module is Tn

M -injective. Then by Lemma 3.1 (2), all modules are
Tn

M(I) -injective. So by Theorem 3.1 (2), for any A ≤ M(I), all modules are Tn
M(I)

A

-injective; therefore,

M(I)

A ∈TPn. Now, let X = B
C ∈σ[M]. Then there exists an exact sequence 0→ B

C → M(I)

C → M(I)

B → 0
which induces the exact sequence

0=En+1
T

(
M(I)

C
,F

)
−→En+1

T

(
B
C

,F
)
−→En+2

T

(
M(I)

B
,F

)
= 0.

So, X = B
C ⊆TPn, as desired.

(2): This is similar to (1).

(3): Assume that σ[M]⊆TPn. Then by (1), every module is Tn
M -injective.

Hence, Proposition 3.2 implies that every module is Tn
M -flat. So, the assertion follows from (2).

(4): Let A be a submodule of the Tn
M -injective module B. By hypothesis, for every Y < M, the

exact sequence

0=En+1
T

(
M
Y

,B
)
−→En+1

T

(
M
Y

,
B
A

)
−→En+2

T

(
M
Y

, A
)
= 0

exists. Thus En+1
T ( M

Y , B
A ) = 0 and so, B

A is Tn
M -injective. Conversely, for any module X , there

exists an exact sequence 0 → X → E → N → 0 with E injective. So by hypothesis, for every
Y < M, the sequence

0=En+1
T

(
M
Y

, N
)
−→En+2

T

(
M
Y

, X
)
−→En+2

T

(
M
Y

,E
)
= 0

is exact, and we have that En+2
T

(
M
Y , X

)
= 0. Thus X is Tn+1

M -injective, and σ[M]⊆TPn+1 by (1).

(5): This is similar to (4).

Proposition 3.3. For any module F , the following statements are equivalent:

(1) F is Tn
M -flat;

(2) ΓT
n+1

(
R
L ,F

)
= 0, for any m ∈ M and m⊥ ⊆ L ≤ R;

(3) F is Tn
Rm-flat, for all m ∈ M.

Proof. (2)⇐⇒(3): Let X = mL < Rm, where L = m−1X . Then we have m⊥ ⊆ L. But X ∼= L
m⊥ ,

while Rm ∼= R
m⊥ .

(1)=⇒(2): It is clear that R
m⊥

∼= Rm ∈σ[M], so Proposition 3.1(1) implies that ΓT
n+1

(
R
L ,F

)
= 0.
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(2)=⇒(1): There is an exact sequence

0−→ K −→⊕
{Rm | m ∈ M}−→ M −→ 0,

where the last map is the natural sum map and K is its kernel. Since Rm ∼= R
m⊥ , F is Tn

Rm-flat.
Therefore, Lemma 3.1 and Theorem 3.1 complete the proof.

The next theorem provides some sufficient conditions under which any direct product (direct
limit) of Tn

M -flat (Tn
M -injective) modules is Tn

M -flat (Tn
M -injective).

Theorem 3.4. Let T be finitely presented and ΩM(R) ⊆ FPresn+1 T . Then the following
statements hold.

(1) If R is an Tn+1
M -coherent, then any direct product of Tn

M -flat modules is Tn
M -flat.

(2) If R is an Tn+1
M -coherent, then every direct limit of Tn

M -injective modules is Tn
M -injective.

Proof. (1): By hypothesis L
m⊥ , R

m⊥ ∈FPresn+1 T . Since R is Tn+1
M -coherent, L

m⊥ , R
m⊥ ∈FPresn+2 T .

So by Lemma 2.1, the sequence 0→ L
m⊥ → R

m⊥ → R
L → 0 implies that R

L ∈FPresn+2 T . Therefore
by Lemma 2.2,

ΓT
n+1

(
R
L

,
∏
i∈I

Fi

)
∼=

∏
i∈I
ΓT

n+1

(
R
L

,Fi

)
= 0.

Hence by Proposition 3.3,
∏
i∈I

Fi is Tn
M -flat.

(2): This is similar to (1).

Proposition 3.4. For any module F , the following are equivalent:

(1) F is Tn
M -injective;

(2) En+1
T ( R

L ,F)= 0, for any m ∈ M and m⊥ ⊆ L ≤ R;

(3) F is Tn
Rm-injective, for all m ∈ M.

Proof. This is similar to Proposition 3.3.

4. Conclusion
Let n be a nonnegative integer, T be a tilting R-module and M be a fixed R-module. From the
results proved in this paper, we conclude that:

• The Tn
M -coherence of a module is equivalent to R ∈FpresnT and some conditions on the

factor modules of N .

• The relative flatness (resp. injectivity) of modules with respect to the elements of any
short exact sequence can be compared.

• A module F is Tn
M -flat if and only if ΓT

n+1( B
A ,F)= 0 for any A ≤ B ∈σ[M].

• A module F is Tn
M -injective if and only if En+1

T ( B
A ,F)= 0 for any A ≤ B ∈σ[M].
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• If T is finitely presented, then the Tn
M -flatness of a module in FPresn+2 T is equivalent to

the vanishing of the functor ΓT
n+1(−,F), on the factor modules in π[M].

• The Tn
M -flatness of any module is equivalent to the Tn

M -injectivity of its character module.

• The relative flatness with respect to any R-module M is equivalent to the relative flatness
with respect to cyclic submodules of M.
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