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1. Introduction
There has been substantial progress in research in economics networks reported in both
empirical and theoretical literature. There are massive examples, including job-contacts, sellers
and buyers, diffusion of the knowledge between agents and other relationships that link
agents in a market. Among these relationships is R&D cooperation that has been developed
in numerous papers. One of the new approaches introduced in this field is the network
concept. The idea is that the R&D organization can be described as a network where players
(firms) are represented by nodes and the R&D partnerships (cooperation) are represented by
links [2,4,6,7,11].
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We use a network game given by Goyal and Moraga-Gonzalez [6]. The game consists of
three stages: partnerships selection, R&D investment and market competition. The network
formation is in the first stage as bilateral agreements between firms. The whole system in
the end forms a network called an R&D cooperation network. The effective effort of each firm
depends on the individual effort and efforts of other firms in a market. Specifically, if firms
cooperate in R&D, they are linked in the network; otherwise there is a free R&D spillover to
ensure knowledge flow between non-cooperating firms. If numbers of links of firms are equal,
the network is called symmetric (regular); otherwise it is referred to as an asymmetric network.

Goyal and Moraga-Gonzalez investigated the effect of the cooperative links on the R&D
effort of firms and on their incentives to build R&D relationships. They also investigated the
situations in which the conflict between the individual and social desires from forming R&D
partnerships occurs. The authors did their study for two market structures: independent and
homogeneous products. The findings suggest that the equilibrium outcomes is managed by the
market structure. For independent products case, the R&D effort and profit and social welfare
increase as firms form R&D partnerships. For homogeneous products case, the opposite occurs
in terms of the effort, where it is maximized if all firms stay isolated in the network. In terms of
the profit and social welfare, each of them is maximized at an intermediate cooperation activity.

The discussion in this paper is limited to symmetric networks. This is because for asymmetric
interactions, the equilibria cannot be generalized where they vary according to the network
structure. Also, with increasing number of firms, the number and complexity of the network
will increase and this makes the presentation and analysis of the outcomes difficult. Moreover,
the discussion focuses on the homogeneous products since the equilibrium outcomes in the
independent products case are maximized with the cooperation activities.

The outcomes of this paper can be summarized as follows. Firstly, for each market size, the
production quantity is maximized at the half of the cooperation activity. Secondly, the production
quantity is symmetric around the optimal level. This indicates that the low and intense R&D
cooperative organizations do not encourage the production quantity. Also, there is a state of
balance in the production quantity with respect to the cooperation activity. This state is not
realized in the profit or social welfare case. Finally, the regular increase in the cooperation
activity does not guarantee a constant change in the equilibrium outcomes. This refers that the
regular developing in the R&D network does not provide steady changes that can be expected
from one R&D organization.

This paper is organized as follows. In section 2, we review issues of the social network and
introduce the network model by Goyal and Moraga-Gonzalez model. Then, we review some
terminologies in economics. In section 3, we provide our outcomes. In section 4, we conclude our
study.

2. Background

2.1 Players and Networks
A network is a set of objects (called nodes or vertices) that are connected together by the edges or
links [8]. In mathematics, networks are often referred as graphs. For the purpose of this article,
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we focus on undirected networks; meaning that each link between any two vertices runs in both
directions. We also focus on simple networks that have neither parallel edges (edges that have
the same end vertices) nor loops (edges where their start and end vertices are the same). We
define N as a set of all vertices labeled by letters i, j,k, . . . where |N| = n and E = {i j, jk, . . .} is a
set of all edges in the network where |E| = m is the number of links. Then G(N,E) denotes an
undirected network with nodes N and links E, and for simplicity the network is denoted by G.

Any network G can be represented by an n×n adjacency symmetric matrix A with elements
0 or 1, depending on whether or not nodes are linked. More formally, each element ai j of the
adjacency matrix A, we have ai j = 1 if i j ∈ E; otherwise ai j = 0. For an undirected network the
adjacency matrix, A is symmetric. Nodes linked to node i ∈ N is defined as a set of neighbors
of that node: Ni = { j ∈ N : i j ∈ E}. The length of the neighbors’ set of node i is a degree of that
node [10]. Thus, the degree of each node i ∈ N is denoted by deg(i)= |Ni| where 0≤ deg(i)≤ n−1.
The density of network G gives a ratio of actual links in the network out of possible links
D(G)= 2m/n(n−1) where n and m are numbers of firms and links, respectively.

A symmetric network is a graph in which each player has the same number of links. If G
is a symmetric network such that each play has k links, G is called a symmetric network of
degree k. An empty network En (a graph with no links between players) is an example of the
symmetric networks. Also, a complete network Kn (a graph such that each two nodes are linked)
is a symmetric network of degree n−1. A cycle network Cn (a graph contains a single cycle
through all nodes) is symmetric of degree 2.

2.2 The Model
The emphasis in this paper is on the linear-quadratic function of consumers given by [1] and [5]:

U = a
n∑

i=1
qi − 1

2

(
α

n∑
i=1

q2
i +2λ

∑
j 6=i

qi q j

)
+ I . (2.1)

Here the demand parameters a > 0 denotes the willingness of consumers to pay and α> 0 is the
diminishing marginal rate of consumption, while qi is the quantity consumed of product i and
I measures the consumer’s consumption of all other products. Without loss of generality, it is
assumed that α= 1 to simplify the analysis. The parameter −1≤λ≤ 1 captures the marginal
rate of substitution between different products. If λ< 0 (λ> 0), the products are complements
(substitutes). Also, if λ= 0 (λ= 1), the products are independent (homogeneous).

If the consumer buys qi of good i where m is a consumer’s income and pi is the price of
good i, the money spent is pi qi and the balance is I = m− pi qi . By substituting into (2.1),
we determine the optimal consumption of good i by calculating ∂U

∂qi
= a− qi −λ∑

j 6=i q j − pi = 0.
This implies the inverse demand function for each good i

D−1
i = pi = a− qi −λ

∑
j 6=i

q j, i = 1, . . . ,n . (2.2)

The profit πi for firm i is

πi = (pi − ci)qi =
(
a− qi −λ

n∑
j 6=i

q j − ci

)
qi , (2.3)

where pi is the price of good i produced by firm i and ci is the production cost.
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The total welfare is expressed as

TW = (1−λ)
2

n∑
i=1

q2
i +

λ

2

(
n∑

i=1
qi

)2

+
n∑

i=1
πi . (2.4)

2.3 R&D Network Model
The focus of this paper is on Goyal and Moraga-Gonzalez model. In their model, if firms cooperate
in R&D, they are linked in an undirected network and spillover is set at one where the cost of
link formation is assumed to be negligible. If firms do not cooperate, they are not linked and
there is a spillover (β ∈ [0,1)) between non-linked firms.

Goyal and Moraga-Gonzalez studied two general cases of networks: symmetric and
asymmetric networks [6]. For symmetric networks, the spillover term between non-linked
firms is set at zero. This enabled them to identify the effect of the cooperation activity on the
equilibrium outcomes. For asymmetric networks, the spillover term between non-linked firms is
involved. For the asymmetric networks, the authors considered three firms in a market and this
is due to difficulty computing the equilibrium for a large number of firms, in addition to the
multiplicity of the results as a result of the connectivity changes.

(1) Symmetric R&D network

The discussion in this paper is limited to symmetric networks. This is because for asymmetric
interactions, the equilibria cannot be generalized where they vary according to the network
structure. Also, with increasing the market size n, the number of involved networks will increase
and this makes the presentation and analysis of the outcomes difficult. In a symmetric network
of degree k, all firms have an identical number of links k.

(2) Stages of the model

In Goyal and Moraga-Gonzalez paper, firms strategically form bilateral collaborative links with
other firms where the collaboration of firms is modeled as a three-stage game:

The first stage: Each firm chooses its research partners (network formation). The cooperation
in the symmetric networks is called activity levels.

The second stage: Given the R&D network, each firm chooses the amounts of investment
(effort) in R&D simultaneously and independently in order to reduce the cost of production.

The third stage: Given the R&D investments of each firm, firms compete in the product
market by setting quantities (Cournot competition) in order to maximize their profits.

(3) Cost reduction

According to Goyal and Moraga-Gonzalez paper, the effective R&D effort for each firm is defined
by the following equation:

X i = xi +
∑

j∈Ni

x j +β
∑

k∉Ni

xk, i = 1, . . . ,n , (2.5)

where xi denotes R&D effort of firm i, Ni is the set of firms participating in a joint venture with
firm i and β ∈ [0,1) is an exogenous parameter that captures knowledge spillovers acquired
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from firms not engaged in a joint venture with firm i. The effective R&D effort reduces firm i’s
marginal cost (c) of production

ci = c− xi −
∑

j∈Ni

x j −β
∑

k∉Ni

xk, i = 1, . . . ,n . (2.6)

The effort is assumed to be costly and the function of the cost is quadratic, so that the cost of
R&D is γx2

i , where γ> 0 indicates the effectiveness of R&D expenditure [3]. The profit πi for
firm i is the difference between revenue and production cost minus the cost of R&D

πi =
(
a−

n∑
i=1

qi − c+ xi +
∑

j∈Ni

x j +β
∑

k∉Ni

xk

)
qi −γx2

i i = 1, . . . ,n , (2.7)

where the marginal cost satisfies a > c.

(4) Equilibria for symmetric networks

We assume that the marginal cost c is constant and equal for all firms. We also assume that
for each firm i ∈ N , deg(i) = k. The sub-game perfect Nash equilibrium is identified by using
backwards induction. Under homogeneous Cournot competition, we show the final list of the
equilibria and the detail is given in [6] paper.

R&Deffort : x∗ = (n−k)(a− c)
γ(n+1)2 − (k+1)(n−k)

, (2.8)

ProductionCost : c∗ = cγ(n+1)2 −a(n−k)(k+1)
γ(n+1)2 − (k+1)(n−k)

, (2.9)

Quantity : q∗ = γ(n+1)(a− c)
γ(n+1)2 − (k+1)(n−k)

, (2.10)

Profit : π∗ = γ
[
γ(n+1)2 − (n−k)2](a− c)2[
γ(n+1)2 − (k+1)(n−k)

]2 , (2.11)

Totalwelfare : TW∗ = nγ
[
γ(n+1)2(n+2)−2(n−k)2](a− c)2[

γ(n+1)2 − (k+1)(n−k)
]2 . (2.12)

Under the network game, the concepts of pairwise stability and efficiency are considered in
this paper. The pairwise stability of the network depends on the profit of firm [9] as follows:

Definition 1 (Pairwise Stability). For any network G to be stable, the following two conditions
need to be satisfied for any two firms i, j ∈G:

(1) If i j ∈G, πi(G)≥πi(G− i j) and π j(G)≥π j(G− i j),

(2) If i j ∉G and if πi(G)<πi(G+ i j), then π j(G)>π j(G+ i j),

G− i j is the network resulting from deleting a link i j from the network G and G+ i j is the
network resulting from adding a link i j to the network G. From this definition, network G
is stable if no firm can obtain higher profit from deleting one of its links; and any other link
between two firms would benefit only one of them.

The efficiency of the network is determined by comparing the total welfare of all possible
networks generated from a certain number of firms.
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Definition 2 (Network Efficiency). Network G is said to be efficient if no other network Ǵ can
be generated by adding or deleting links, such that TW(Ǵ)> TW(G).

3. The Outcomes
In this section, we show how the network structure shapes the equilibrium outcomes. Specifically,
we study two related issues the behavior of the equilibria and the change rate of the outcomes
with respect to the cooperation activity.

3.1 Behavior of the Equilibria under the Network Framework
Assume a market consists of a finite number of firms where each firm chooses R&D partners
and the amount of its output to produce. The optimal value of the equilibrium outcomes is
affected by several factors: market structure, marginal cost and number of firms. Since the
focus of this paper is on homogeneous products for an identical marginal cost, the concern will
be about the effect of the number of firms on the outcomes.

Proposition 1 states that the optimal cooperation activity to maximize the production
quantity is equal to the half of firms in the network. This result will vary with the number type
i.e., odd or even number. If the size of the market is odd, there is only one optimal cooperation
activity, but if the size is even, there are two optimal activities.

Proposition 1. With n firms in a market, assume the R&D partnerships form symmetric
networks. If n is an odd (even) number, the optimal quantity of the production is at the cooperation
activity (activities) kq∗ = (n−1)/2 (kq∗

1 = (n−2)/2 and kq∗
1 = n/2).

The proof is given in the Appendix.
The following result states that growing the cooperation activity carries positive and negative

impact on the production quantity. In particular, if the cooperation activity is lower than the
optimal activity kq∗

, the optimal production quantity increases; however, if the activity is higher
than the optimal activity, the quantity decreases.

Corollary 1. With n firms in a market, assume the R&D partnerships form symmetric networks.
The production quantity is symmetric about the optimal activity kq∗

.

The proof is given in the Appendix.

Example 1. For seven and eight firms in a market, suppose the R&D partnerships form
symmetric networks. Figure 2 shows the equilibrium quantity for symmetric networks with
those two different sizes.

(1) As shown in the figure, if n = 7 (n = 8), the optimal cooperation activity (activities) kq∗ = 3
(kq∗ = 3 and kq∗ = 4).

(2) It can be observed that the equilibrium quantity is symmetric about the optimal level kq∗
.

The symmetry of the equilibrium quantity about the optimal cooperation activity is not
observed if the R&D spillover is considered. This indicates that this external parameter has an
effect on the behavior of the optimal quantity.
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Figure 1. The cooperation activity at which the equilibrium quantity is maximized with n = 7 and n = 8.
The parameters used to plot the figure are a = 2, c = 1 and γ= 1.

Remark 1. With n firms in a market, assume the R&D partnerships form symmetric networks.
The production quantity is not symmetric about the optimal activity kq∗

if the R&D spillover is
applied.

Example 2. Assume four firms participate in R&D and the cooperation forms a symmetric
network. Figure 2 shows all possible symmetric networks generated from four firms. Figure 3
displays the equilibrium quantity in those networks for some values of the spillover.

(1) If the spillover β= 0 (i.e., symmetric networks without spillover), the quantity is symmetric
around the activity levels kq∗

1 = 1 and kq∗
2 = 2.

(2) If the spillover β 6= 0, the quantity is not symmetric.

1

2

3

4
G1

1

2

3

4
G2

1

2

3

4
G3

1

2

3

4
G4

Figure 2. The symmetric networks with four firms.

Figure 3. The equilibrium quantity in the networks given in Figure 3 for β = 0, β = 0.3, β = 0.6 and
β= 0.9. The parameters used to plot the figure are a = 2, c = 1 and γ= 1.
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3.2 Comparison of the Behavior of the Equilibria
The behavior of the equilibrium outcomes with respect to the cooperation activity are different.
Firstly, the R&D effort decreases as the cooperation activity increases [6]. This indicates that
the R&D effort is maximized when the cooperation forms an empty network i.e., kx∗ = 0.
Secondly, according to Goyal and Moraga-Gonzalez, the profit and total welfare are maximized
at different intermediate cooperation activities kπ

∗
and kTW∗

. They stated that the activities
kπ

∗
,kTW∗ ∈ (0,n−1) and this indicates that the significant difference between the optimal

activities at which the equilibria are maximized. While the effort are maximized at k = 0, the
other equilibria (the production quantity, profit and total welfare) are maximized at different
intermediate cooperation activities.

Example 3. Suppose two symmetric networks one consists of six firms and the other consists
of eight firms. Table 1 shows the optimal cooperation activities at which the equilibria are
maximized.

Table 1. The optimal cooperation activities for n = 6 and n = 8.

Optimal activity kx∗ kq∗
kπ

∗
kTW∗

Six firms 0 2 & 4 4 3

Eight firms 0 3 & 4 5 4

In the following, we show that the profit and total welfare are not symmetric about their
optimal activities. First, the profit and the total welfare functions can be rewritten as follows:

π∗ = γ
[
γ(n+1)2 − (n−k)2](a− c)2

(
1
φ2

)
, (3.1a)

TW∗ = nγ
[
γ(n+1)2(n+2)−2(n−k)2](a− c)2

(
1
φ2

)
, (3.1b)

where φ = γ(n+1)2 − (k+1)(n− k). From the first condition
(∂φ
∂k = 0

)
, we have 2k−n+1= 0

and this implies k = n−1
2 . For maximizing profit, the second derivative should satisfy

2(2γ(n+1)2 −2(k+1)(n−k)+ (2k−n+1)2)> 0. This implies that the function 1
φ2 is concave at

the activity k = n−1
2 . As we stated above the equilibrium quantity is maximized at that activity.

For the profit and the total welfare functions (equations (3.1a) and (3.1b)), the numerator has
a term containing k and because of that, the two functions are not necessary maximized at
k = n−1

2 . However, we found that the cooperation activity k = n−1
2 is the lower bound of kπ

∗
and

kTW∗
.

In addition, the profit and the total welfare are not symmetric around the optimal activity
level. This result can be proven by comparing the outcomes under the empty network and the
complete network.

Proposition 2. With n firms in a market, assume the R&D partnerships form symmetric
networks. The profit and the total welfare are asymmetric about the cooperation activities kπ

∗

and kTW∗
.

The proof is given in the Appendix.
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Example 4. For two different sizes of a market n = 10 and n = 20, suppose the R&D
partnerships form symmetric networks. Figure 4 shows the effort, the profit and the total
welfare for all possible symmetric interactions generated from these sizes.

(1) The equilibrium outcomes are not symmetric around the activity levels kx∗ , kπ
∗

and kTW∗
.

(2) When all firms do not form cooperative links, the effort reaches the highest value; whereas
the profit and the total welfare reach the lowest value.

Figure 4. The effort, the profit and the total welfare with n = 10 and n = 20. The parameters used to
plot the figures are a = 2, c = 1 and γ= 1.
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One can conclude that any two symmetric networks generated from any market size provide
the same production quantity, but different outcomes for other equilibria. For example, consider
the cases when all firms cooperate with each other (complete network) or stay without the
cooperation (empty network). The production quantity in those networks is identical, but the
complete network is stable. Also, the R&D effort is maximized in the empty network, but this
network is not stable or efficient.

3.3 The Change Rate of the Equilibria with Respect to the Cooperation
According to our discussion in the previous sections, the equilibrium outcomes are affected by
increasing the density of the network.

From our results in the previous section and from the results of [6], we found that the
equilibrium outcomes are affected by the growing density of the network. The question that can
be raised here is that does the uniform increase in the cooperation activity k cause a constant
change in the equilibrium outcomes? The following proposition answers this question for any
market size.

Proposition 3. With n firms in a market, assume the R&D partnerships form symmetric
networks. The change rate of the equilibria with respect to the cooperation activity is not constant.

The proof is given in the Appendix.

4. Conclusion
In this paper, we used an R&D network model to describe the behavior of the equilibrium
outcomes with respect to the cooperation activity. We found that for each market size, the
middle cooperation activity is the optimal activity at which the quantity is maximized. We also
found that the production quantity is symmetric around the optimal level. Moreover, we found
that the regular growth of the cooperation activity does not generate a constant change in the
equilibrium outcomes.

Appendix
Proof of Proposition 1. Since the numerator of the quantity function (equation (2.10)) does
not depend on the activity level k, we want to show that the denominator is minimized at
0< kq∗

1 = (n−1)/2< n−1.
Assume φ is the denominator of the quantity function. We want to prove that for each

network size n, the function φ is convex on its domain [0,n−1]. From the first derivative,
∂φ

∂k
= 0 ⇒ 2k−n+1= 0 ⇒ k = n−1

2
.

The second derivative ∂2φ/∂k2 = 2 is always positive. This means that the function φ is convex
on [0,n−1] and its lowest value is at (n−1)/2. This implies the function 1/φ is concave and its
maximum value is at (n−1)/2.

From equation (2.10), we can rewrite the quantity function as follows

q∗ = γ(n+1)(a− c)
[

1
γ(n+1)2 − (k+1)(n−k)

]
= γ(n+1)(a− c)

(
1
φ

)
. (4.1)

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 1, pp. 1–12, 2017
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This indicates that the quantity function is maximized at kq∗ = (n−1)/2 as the function 1/φ.
If the network size n is odd, the optimal activity level kq∗ = (n−1)/2 for each firm can be

drawn and this means that the quantity is maximized at kq∗
. However, if n is even, kq∗

will not
be an integer number. Therefore, for an even number n, the equilibrium quantity is maximized
at two activity levels kq∗

1 = (n−2)/2 and kq∗
2 = n/2 where the equilibrium quantity at the two

levels are equal.

Proof of Corollary 1. To prove this proposition, we need to show that the function φ is symmetric
around the optimal level kq∗

. If n is odd, then kq∗ = (n−1)/2 is the activity level at which the
function φ is minimized. Take two activity levels lower and higher than kq∗

i.e., k1 = (n−2)/3
and k2 = (n+1)/2. By substituting the activity levels k1 and k2 into φ, we have

φ(k1)= γ(n+1)2 − (n−1)(n+3)
4

=φ(k2) .

We have the same result if we take activity levels from [0,kq∗
) and their corresponding by

the symmetry around kq∗
(i.e., from [kq∗

,n−1]. If n is even, we have the same result where
φ(kq∗

1 ) = φ(kq∗
2 ). This implies that the function φ is symmetric around the optimal level kq∗

.
Hence, from equation (2.10), the equilibrium quantity is symmetric around the optimal activity
level kq∗

.

Proof of Proposition 2. For the profit function, it is sufficient to show that the values of the
function (2.11) under the empty and the complete network (i.e., at k = 0 and k = n−1) are
different. When substituting the activity levels k = 0 and k = n−1 into the profit function, we
have

π∗
k=0 =

γ
[
γ(n+1)2 −n2](a− c)2(

γ(n+1)2 −n
)2 ,

π∗
k=n−1 =

γ
[
γ(n+1)2 −1

]
(a− c)2(

γ(n+1)2 −n
)2 .

For comparison, calculate

π∗
k=n−1 −π∗

k=0 =
γ(n2 −1)(a− c)2(
γ(n+1)2 −n

)2 > 0

This implies that π∗
k=n−1 >π∗

k=0. Similarly, we prove that the total welfares at k = 0 and k = n−1
are different. By substituting the activity levels k = 0 and k = n−1 into (2.12), we have

TW∗
k=0 =

nγ
[
γ(n+1)2(n+2)−2n2](a− c)2

2
(
γ(n+1)2 −n

)2 ,

TW∗
k=n−1 =

nγ
[
γ(n+1)2(n+2)−2

]
(a− c)2

2
(
γ(n+1)2 −n

)2 .

By comparing the two equilibria, we have

TW∗
k=n−1 −TW∗

k=0 =
nγ(n2 −1)(a− c)2(
γ(n+1)2 −n

)2 > 0

This implies that TW∗
k=n−1 > TW∗

k=0.
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Proof of Proposition 3. To prove the proposition, we need to calculate the derivative of the
equilibria with respect to the activity level k.

∂x∗

∂k
=

[
(1−γ)n2 −2(γ+k)n+k2 −γ]

(a− c)(
γ(n+1)2 − (n−k)(k+1)

)2

∂q∗

∂k
= (n+1)(n−2k+1)(a− c)(

γ(n+1)2 − (n−k)(k+1)
)2

∂π∗

∂k
=

[
2γ(n−k)

(
γ(n+1)2 − (k+1)(n−k)

)−2γ(2k−n+1)
(
γ(n+1)2 − (n−k)

)]
(a− c)2(

γ(n+1)2 − (n−k)(k+1)
)3 ,

∂TW∗

∂k
= 4nγ

[
(n−k)+ (n−2k+1)

(
γ(n+1)2(n+2)−2(n−k)2)](a− c)2(

γ(n+1)2 − (n−k)(k+1)
)3 .

Since the derivative of each equilibrium is a function depends on the activity level k, then the
change of the equilibrium with respect to the change of k is not fixed.
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