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Abstract. The concept of linear Jaco graphs was introduced by Kok et al. [19, 20]. Linear Jaco graphs
are a family of finite directed graphs which are derived from an infinite directed graph, called the
f (x)-root digraph. The incidence function is a linear function f (x) = mx+ c, x ∈N, m, c ∈N0. Much
research has been done for the case f (x) = x. Many interesting open problems remain for the case
f (x)= x and certainly for the general case f (x)= mx+ c, m, c > 0. Despite an elegant, almost simple
definition of these graphs it remains hard and predictably impossible in some cases to derive closed
formula for a number of well-known invariants. Interesting to note, is the ever so often appearance of
Fibonacci and Lucas numbers as well as the Golden Ratio in some results. These observations suggest
that a sound number theoretic approach might resolve some of the mystery surrounding Jaco graphs.
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1. Introduction
For a general reference to notation and concepts of graph theory see [8]. The concept of linear
Jaco graphs1 was introduced by Kok et al. [19, 20]. In the initial studies the concepts of order 1
and order a Jaco graphs, denoted Jn(1), Jn(a) respectively, were reported on. The aforesaid
notation was used in subsequent papers [17, 18, 21, 22, 23, 24, 25, 26, 27, 28]. In a more recent
study (see [29]) a unifying definition was adopted and the generalised family called linear Jaco
graphs was defined. In terms of linear Jaco graphs the earlier notation namely, Jn(1), Jn(a)
have a different meaning which complicates comparative reading somewhat. Linear Jaco graphs

1Dedicated to the author’s father, late Pieter Jaco Kok.
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are a family of finite directed graphs which are derived from an infinite directed graph, called
the f (x)-root digraph. The incidence function is a linear function f (x)= mx+ c, x ∈N, m, c ∈N0.
The f (x)-root graph is denoted by J∞( f (x)). The finite directed graphs are those limited to n ∈N
vertices by lobbing off all vertices (and arcs to vertices) vt, t > n. Hence, trivially d(vi) ≤ f (i)
for i ∈N. Much research has been done for the case f (x)= x hence, in respect of the linear Jaco
graph Jn(x), n, x ∈N. In this review the incidence function remains linear so for brevity, linear
Jaco graphs are called Jaco graphs.

2. Finite Jaco Graphs, {Jn(x) : n, x ∈N}

The family of trivial finite Jaco Graphs was introduced by Kok et al. [19]. These directed graphs
are derived from the infinite Jaco Graph called, the x-root digraph. Initially this family of linear
Jaco graphs was denoted Jn(1), but the latter is now substituted by the case f (x) = x hence,
m = 1, c = 0. Within the new context the notation fn(1) will represent the case m = 0, c = 1. Of
importance is to reflect on the definitions to ensure an understanding of the basic framework
of the new family of directed graphs. Note that the underlying graph will be denoted J∗

n (x)
and if the context is clear, both the directed and undirected graph are referred to as a Jaco
graph. Similarly the difference between arc and edge and degree, dJn(x)(v) and dJ∗

n (x)(v) will be
understood.

Definition 2.1 ([29]). The infinite Jaco Graph J∞(x), x ∈N is defined by V (J∞(x))= {vi : i ∈N},
A(J∞(x))⊆ {(vi,v j) : i, j ∈N, i < j} and (vi,v j) ∈ A(J∞(x)) if and only if 2i−d−(vi)≥ j.

Definition 2.2 ([29]). The family of finite Jaco Graphs is defined by {Jn(x) ⊆ J∞(x) : n, x ∈N}.
A member of the family is referred to as the Jaco Graph, Jn(x).

It follows through immediate induction that Definition 2.1 and Definition 2.2 are well-
defined.

Definition 2.3 ([29]). The set of vertices attaining degree ∆(Jn(x)) is called the set of Jaconian
vertices; the Jaconian vertices or the Jaconian set of the Jaco Graph Jn(x), and denoted, J(Jn(x))
or, Jn(x) for brevity.

Definition 2.4 ([29]). The lowest numbered (subscripted) Jaconian vertex is called the prime
Jaconian vertex of a Jaco Graph.

Definition 2.5 ([29]). If vi is the prime Jaconian vertex of a Jaco Graph Jn(x), the complete
subgraph on vertices vi+1,vi+2, · · · ,vn is called the Hope subgraph2 or Hope graph of a Jaco
Graph and denoted, H(Jn(x)) or, Hn(x) for brevity.

Definition 2.6 ([29]). If, in applying Definition 2.1 to vertex vi (not necessarily exhaustively),
or for logical method of proof we have the arc (vi,vk) linked in a Jaco Graph Jn(x), then the
degree vertex vi attains at vk is called the, “at degree of vi at vk”, and is denoted, d∗(vi)@vk.

2Named after the author’s loving mother, Hope Kok.

Journal of Informatics and Mathematical Sciences, Vol. 8, No. 2, pp. 67–103, 2016



Linear Jaco Graphs: A Critical Review: Johan Kok 69

Definition 2.7 ([29]). In J∞(x), x ∈ N we have, n = d+
J∞(n)(vn)+ d−

J∞(n)(vn) = d+(vn)+ d−(vn)
whilst in Jn(x) we have, d(vi)= d+

Jn
(vn)+d−

J∞(n)(vn)= dd+(vi)e+d−(vi), i ≤ n.

The x-root digraph has four fundamental properties which are:

(i) V (J∞(x))= {vi : i ∈N}, and

(ii) if v j is the head of an arc then the tail is always a vertex vi , i < j, and

(iii) if vk, for smallest k ∈N is a tail vertex then all vertices v`, k < `< j are tails of arcs to v j ,
and finally

(iv) the degree of vertex vk is d(vk)= k.

The family of finite directed graphs are those limited to n ∈ N vertices by lobbing off all
vertices (and arcs to vertices) vt, t > n. Hence, trivially d(vi) ≤ i for i ∈ N. The notion of the
“at degree of vi at vk” denoted by, d∗(vi)@vk is an interesting concept utilised in the method of
proof of some results on Jaco graphs. In the earlier literature [19, 20] graphical embodiment
is not found to illustrate a member of the trivial family of finite Jaco graphs. Figure 1 depicts
J10(x) (see [29]).

Figure 1. Jaco graph J10(x) [29]

Property 2.1 ([29]). From the definition of a Jaco Graph Jn(x), it follows that for the prime
Jaconian vertex vi, we have d(vm)= m for all m ∈ {1,2,3, . . . , i}.

Property 2.2 ([29]). From the definition of a Jaco Graph Jn(x), it follows that ∆(Jk(x)) ≤
∆(Jn(x)) for all k ≤ n.

Property 2.3 ([29]). The d−(vk) for any vertex vk of a Jaco Graph Jn(x), n ≥ k is equal to d(vk)
in the underlying Jaco Graph J∗

k (x).
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The importance of Property 2.3 is that it implies that d−(vk) in Jk(x) remains constant
throughout Jk+i(x), i ≥ 0. An obvious similar property holds for d+(vk), that is, if t = k+d+(vk),
then d+(vk) remains constant throughout J(k+d+(vk))+i(x), i ≥ 0 hence, d(vk) remains constant
under the same condition. The following results have been derived.

Lemma 2.1 ([29]). If in a Jaco Graph Jn(x), n, x ∈N and for smallest i with d(vi)= i, the arc
(vi,vn) is defined, then vi is the prime Jaconian vertex of Jn(x).

Lemma 2.2 ([29]). For all Jaco Graphs Jn(x), n, x ∈N, n ≥ 2 and, vi,vi−1 ∈ V (Jn(x)) we have
that in the underlying graph J∗

n (x), |(d(vi)−d(vi−1)| ≤ 1.

Corollary 2.3 ([29]). For a Jaco Graph Jn(x), n, x ∈ N the maximum degree ∆(Jn(x)) might
repeat itself as n increases to n+1, (i.e. ∆Jn(x) = ∆Jn+1(x)) but on an increase, ∆Jn+1(x) =
∆(Jn(x))+1.

Note Corollary 2.3 applies to the increase in, in-degrees and out-degrees as n increases.
It is observed that if for vertex vi, the ordered in- and out-degree pair is denoted d±(vi) =
(d−(vi),d+(vi)) then d±(vi+1) = either, (d−(vi)+1,d+(vi)) or, (d−(vi),d+(vi)+1). It forms the
basis for many proof of results. For further analysis the very important Fisher algorithm3 was
derived and found to be well-defined.

2.1 The Fisher Algorithm for {Ji(x) : i ∈ {4,5,6, . . . , s ∈N, x ∈N}}
The family of finite Jaco Graphs are those limited to n ∈N vertices by lobbing off all vertices
(and arcs to vertices) vt, t > n. Hence, trivially d(vi)≤ i for i ∈N.

We generally refer to the entries in a row i as: ent1i = i, ent2i = d−(vi), ent3i = d+(vi),
ent4i = J(Ji(x)), ent5i =∆(Ji(x)), ent6i = dJi(x)(v1,vi) as interchangeable.

The Fisher algorithm has been described in [20]. Note that rows 1, 2 and 3 follow easily from
Definition 2.1.

Step 0: Set j = 4, then set i = j and s ≥ 4.

Step 1: Set ent1i = i.

Step 2: Set ent2i = ent1(i−1)−ent5(i−1) (note that d−(vi)= v(Hi−1(x))= (i−1)−∆(Ji−1(x))).

Step 3: Set ent3i = ent1i−ent2i (note that d+(vi)= i−d−(vi)).

Step 4: Consider ent4(i−1) . If ent4(i−1) = {vk}, set t = k, else set t = k+1.

Step 5: Set the prime Jaconian vertex as vt so J(Ji(x)) = {vt} to begin with. Let l = t + 1,
t+2, . . . , i −1 and recursively calculate i − ent1l +ent2l . If i − ent1l +ent2l = t, add vl to
the set of Jaconian vertices, else go to Step 6.

Step 6: Set ent5i = t. (Note that if Ji(x)= {vt,vt+1, . . .v`}, then, ∆(Ji(x))= t).

Step 7: Select smallest k such that, k+ent3k ≥ i then set ent6i = ent6k+1.
3Named after Dr Paul Fisher, Department of Mathematics, University of Botswana, who described the Fisher

algorithm informally to the author in personal correspondence.
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Step 8: Set j = i+1, then set i = j. If i ≤ s, go to Step 1, else go to Step 9.

Step 9: Exit.

The following table shows the results for the application of the Fisher algorithm for n ≤ 50.

Table 1

φ(vi)→ i ∈N d−(vi)= ν(Hi−1) d+(vi)= i−d−(vi) J(Ji(x)) ∆(Ji(x))

1= f2 0 1 {v1} 0

2= f3 1 1 {v1,v2} 1

3= f4 1 2 {v2} 2

4 1 3 {v2,v3} 2

5= f5 2 3 {v3} 3

6 2 4 {v3,v4,v5} 3

7 3 4 {v4,v5} 4

8= f6 3 5 {v5} 5

9 3 6 {v5,v6,v7} 5

10 4 6 {v6,v7} 6

11 4 7 {v7} 7

12 4 8 {v7,v8} 7

13= f7 5 8 {v8} 8

14 5 9 {v8,v9,v10} 8

15 6 9 {v9,v10} 9

16 6 10 {v10} 10

17 6 11 {v10,v11} 10

18 7 11 {v11} 11

19 7 12 {v11,v12,v13} 11

20 8 12 {v12,v13} 12

21= f8 8 13 {v13} 13

22 8 14 {v13,v14,v15} 13

23 9 14 {v14,v15} 14

24 9 15 {v15} 15

25 9 16 {v15,v16} 15

26 10 16 {v16} 16

27 10 17 {v16,v17,v18} 16

28 11 17 {v17,v18} 17

29 11 18 {v18} 18

30 11 19 {v18,v19,v20} 18

(Contd.)
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φ(vi)→ i ∈N d−(vi)= ν(Hi−1) d+(vi)= i−d−(vi) J(Ji(x)) ∆(Ji(x))

31 12 19 {v19,v20} 19

32 12 20 {v20} 20

33 12 21 {v20,v21} 20

34= f9 13 21 {v21} 21

35 13 22 {v21,v22,v23} 21

36 14 22 {v22,v23} 22

37 14 23 {v23} 23

38 14 24 {v23,v24} 23

39 15 24 {v24} 24

40 15 25 {v24,v25,v26} 24

41 16 25 {v25,v26} 25

42 16 26 {v26} 26

43 16 27 {v26,v27,v28} 26

44 17 27 {v27,v28} 27

45 17 28 {v28} 28

46 17 29 {v28,v29} 28

47 18 29 {v29} 29

48 18 30 {v29,v30,v31} 29

49 19 30 {v30,v31} 30

50 19 31 {v31} 31

From the definition of the Jaco graph and the Fisher algorithm a number of results were
derived.

Proposition 2.4 ([29]). Consider the Jaco Graph Ji(x), i, x ∈N, i ≥ 4. If the Jaconian vertex of
Ji−1(x) is unique say, vk then k+d+(vk)< i and (k+1)+d+(vk+1)> i.

Conjecture 2.4.1 ([29]). If for n ∈ N the out-degree d+(vn) = ` is non-repetitive (meaning
d+(vn−1)< d+(vn)< d+(vn+1)) then, J(Jn(x))= {v`}.

Theorem 2.5 (Morrie’s Theorem, [29]4). If a Jaco Graph Jn(x), n, x ∈N, n ≥ 2 has the prime
Jaconian vertex vk then:

(a) d−(vk)= d−(vk+1) and d−(vk+2)= d−(vk+1)+1 if and only if J(Jn(x))= {vk} and J(Jn+1(x))=
{vk,vk+1,vk+2},

(b) d−(vk)= d−(vk+1)= d−(vk+2) if and only if J(Jn(x))= {vk} and J(Jn+1(x))= {vk,vk+1}.

Proposition 2.6 ([29]). For all Jaco Graphs Jn(x), n, x ∈N we have Card J(Jn(x))≤ 3.
4In memory of young Morrie Gilbert who had to park his soul somewhere in space well before reaching maturity

in his mathematical thinking.
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Corollary 2.7 ([29]). From Proposition 2.4 it follows that if and only if the Jaconian vertex of
Ji−1(x), i ≥ 2 is unique say, vk then J(Ji(x))= either {vk,vk+1} or {vk,vk+1,vk+2}.

Corollary 2.8 ([29]). If k+d+(vk)= i and (k+1)+d+(vk+1)> i+1 then vk is the unique Jaconian
vertex of Ji(x).

Proposition 2.9 ([29]). If d−(vk−1)= d−(vk)= d−(vk+1) then vk is the unique Jaconian vertex of
Jl(x), l = 2k−d−(vk).

Proposition 2.10 ([29]). J(Jk−1(x))= {vl−1} if and only if d+(vk)= d+(vk+1)= l.

Theorem 2.11 ([29]). Let m = n+∆(Jn(x)), then ∆(Jm(x))= either n or n−1.

Conjecture 2.4.2 ([29]). For the Jaco Graphs Jn(x), Jm(x), n,m, x ∈N, with n ≥ 3, m ≥ 3, n 6= m
we have:

∆(Jn+m(x))=
{
∆(Jn(x))+∆(Jm(x)), if Jn(x) or Jm(x) has a unique Jaconian vertex,

∆(Jn(x))+∆(Jm(x))+1, otherwise.

Theorem 2.12 ([29]). If the Jaco Graph Jn(x), n, x ∈ N has a unique Jaconian vertex (prime
Jaconian vertex only) at vi, then:

(a) arc (vi,vn) exists, and

(b) ∆(Jn(x))+d(vn)= n.

Note that ∆(Jn(x))+d(vn)= n; uniqueness of the Jaconian vertex.

Theorem 2.13 ([29]). Consider the Jaco Graph Jn(x), n, x ∈N. For m < i < k ≤ n, the arc (vm,vi)
can only exist if the arc (vm,vi−1) exists. Furthermore, if the arc (vi,vk) exists then the arcs
(vi+1,vk), . . . , (vk−1,vk) exist.

Lemma 2.14 ([29]). The vertex vi is the prime Jaconian vertex of a Jaco Graph Jn(x), if and
only d(vl)≤ d(vi)= i for l = i+1, i+2, . . . ,n.

Theorem 2.15 ([29]). If for the Jaco Graph Jn(x), n, x ∈N we have ∆(Jn(x)) = k, then the out-
degrees of the vertices vk+1,vk+2,vk+3, . . . ,vn are respectively, dd+(vk+1)e = (n−k−1),dd+(vk+2)e =
(n−k−2), · · · ,dd+(vn−1)e = 1 and dd+(vn)e = 0.

Theorem 2.16 ([29]). If for the Jaco Graph Jn(x), n, x ∈ N we can express n = 7 + 3k,
k ∈ {0,1,2, . . . }, then ∆(Jn(x))≤ n− (3+k) and, arc (v∆(Jn(x)),vn) exists.

It is noted from the Fisher table that not all n ∈N are a unique prime Jaconian vertex to a
Jaco graph Jn(x). Stemming from this observation the next conjecture remains open.

Conjecture 2.16.1 ([29]). For the series defined by p0 = 1, pi = either (pi−1+3) or (pi−1+5) the
Jaconian set as determined by Step 4 and 5 of the Fisher algorithm is {α1,α1 +1,α1 +2} and
α1 +1 is not a unique prime vertex of a Jaco graph, Jn(x).

It is further observed that “+5” repeats at most twice, whilst “+3” does not repeat hence, is
immediately followed by “+5”.
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2.2 Fibonaccian Result related to Jaco Graphs
Unless stated otherwise the next results are sourced from [20, 29].

Lemma 2.17 ([20, 29]). For a = 1 and the series (an)n∈N defined by

a0 = 0, a1 = 1, an =min{k < n | k+ak ≥ n} (n ≥ 2).

it holds that:

(a) d+(vn)+d−(vn)= n.

(b) d−(vn+1) ∈ {d−(vn), d−(vn)+1}.

(c) If (vi,vk) ∈ A(J∞(x)) and i < j < k, then (v j,vk) ∈ A(J∞(x)).

(d) d+(vn)= an.

Corollary 2.18 ([20, 29]). Note that (a) and (c) above entail that d+(vn+1)= n+1−d−(vn+1) ∈
{n− d−(vn),n− d−(vn)+1} and that (d) then implies that the series (an) is well defined and
ascending, more specifically, an+1 ∈ {an,an +1}, (n ∈N0).

Lemma 2.19 ([20, 29]). Let i ∈N. Then d+(vi+d+(vi))= i = d+(vi+d+(vi+d+(vi−1))).

Theorem 2.20 ([20, 29], Bettina’s Theorem5). Let F= { f0, f1, f2, f3, . . . } be the set of Fibonacci
numbers and let n = f i1 + f i2 +·· ·+ f ir , n ∈N be the Zeckendorf representation of n (see [42]). Then

d+(vn)= f i1−1 + f i2−1 +·· ·+ f ir−1 .

Proposition 2.21 ([20, 29]). For Fibonacci numbers t = fn−1, h = fn and l = fm, t ≥ 3, h ≥ 3,
l ≥ 3, we have:

(a) ∆(Jh(x))= t = fn−1,

(b) J(Jh(x))= {vt},

(c) ∆(Jh+l(x))=∆(Jh(x))+∆(Jl(x)),

(d) J(Jh+l(x))= {v∆(Jh(x))+∆(Jl (x))}.

2.3 Total Irregularity of Jaco Graphs
Total irregularity of a simple undirected graph G is generally defined to be irrt(G) =
1
2

∑
u,v∈V (G)

|d(u)− d(v)| (see Abdo and Dimitrov [2, 3]). If the vertices of a simple undirected

graph G on n vertices are labelled vi , i = 1,2,3, . . . ,n then the definition may be irrt(G) =
1
2

n∑
i=1

n∑
j=1

|d(vi)−d(v j)| =
n∑

i=1

n∑
j=i+1

|d(vi)−d(v j)| or
n−1∑
i=1

n∑
j=i+1

|d(vi)−d(v j)|. For a simple graph on a

singular vertex (1-empty graph), the default definition irrt(G)= 0 has been adopted.

5This theorem is dedicated to Dr. Bettina Wilkens, Department of Mathematics, University of Botswana.
Dr. Wilkens proposed this result with proof thereof during the early part of the initial research project.
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For illustration the adapted table below follows from the Fisher algorithm [17, 19] for Jn(x),
n ≤ 12. The degree sequence of J∗

n (x) is denoted D(J∗
n (x)). Note that the values irrt(J∗

n (x)) have
been calculated manually, as it is not provided for in the Fisher algorithm.

Table 2

i ∈N d−(vi) d+(vi)= i−d−(vi) D(J∗
i (x)) irrt(J∗

i (x))

1 0 1 (0) 0

2 1 1 (1,1) 0

3 1 2 (1,2,1) 2

4 1 3 (1,2,2,1) 4

5 2 3 (1,2,3,2,2) 8

6 2 4 (1,2,3,3,3,2) 14

7 3 4 (1,2,3,4,4,3,3) 26

8 3 5 (1,2,3,4,5,4,4,3) 42

9 3 6 (1,2,3,4,5,5,5,4,3) 60

10 4 6 (1,2,3,4,5,6,6,5,4,4) 86

11 4 7 (1,2,3,4,5,6,7,6,5,5,4) 116

12 4 8 (1,2,3,4,5,6,7,7,6,6,5,4) 149

Note that the Fisher algorithm determines d+(vi) on the assumption that the Jaco Graph
is always sufficiently large, so at least Jn(x), n ≥ i+d+(vi). For a smaller graph the degree of
vertex vi is given by d(vi)= d−(vi)+ (n− i). In [19, 20], Bettina’s theorem describes an arguably,
closed formula to determine d+(vi). Since d−(vi)= n−d+(vi) it is then easy to determine d(vi)
in a smaller graph Jn(x), n < i+d+(vi).

The next result presents a partially recursive formula to determine irrt(J∗
n+1(x)) if irrt(J∗

n (x)),
n ≥ 1 is known.

Theorem 2.22 ([17]). Consider the Jaco Graph, J∗
n (x), n, x ∈N with ∆(J∗

n (x))= k and irrt(J∗
n (x))

known. Let d(vi), d∗(vi) denote the degree of vertex vi in J∗
n (x) and J∗

n+1(x), respectively. Then
for the graph J∗

n+1(x) we have that:

irrt(J∗
n+1(x))= irrt(J∗

n (x))+
`1∑
i=1

i−
`2∑
i=1

i+
n∑

i=1
|(n−k)−d∗(vi)|,

with `1 the number of vertices vi with d(vi)≤ d(vk+ j), j ∈ {1,2, . . . ,n−k}, and `2 the number of
vertices vi with d(vi)> d(vk+ j), j ∈ {1,2, . . . ,n−k}.

2.4 f t-Irregularity of Jaco Graphs
Let F= { f0 = 0, f1 = 1, f2 = 1, f3 = 2, . . . , fn = fn−1 + fn−2, . . .} be the set of Fibonacci numbers.
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Allocate the Fibonacci weight, f i to a vertex v j of a simple undirected graph G, if and only if

d(v j)= i. Define the total fibonaccian irregularity as, firrt(G)=
n−1∑
i=1

n∑
j=i+1

| f i − f j| (see [17]). For a

simple graph on a singular vertex (1-null graph), define firrt(G)= 0. It follows that a graph is
f-regular if it is a regular graph.

For illustration the adapted table below follows from the Fisher algorithm for Jn(x), n ≤ 12.
The f i-sequence of J∗

n (x) is denoted F(J∗
n (x)). Note that the values firrt(J∗

n (x)) have been
calculated manually, as it is not provided for in the Fisher algorithm. Also note that in [17] the
table depicting the irrt(J∗

i (x)) values (see Table 2) was erroneously duplicated. Table 3 depicts
the correct firrt(J∗

i (x)) values.

Table 3

i ∈N d−(vi) d+(vi)= i−d−(vi) F(J∗
i (x)) firrt(J∗

i (x))

1 0 1 (0) 0

2 1 1 (1,1) 0

3 1 2 (1,1,1) 0

4 1 3 (1,1,1,1) 0

5 2 3 (1,1,2,1,1) 4

6 2 4 (1,1,2,2,2,1) 9

7 3 4 (1,1,2,3,3,2,2) 20

8 3 5 (1,1,2,3,5,3,3,2) 42

9 3 6 (1,1,2,3,5,5,5,3,2) 70

10 4 6 (1,1,2,3,5,8,8,5,3,3) 133

11 4 7 (1,1,2,3,5,8,13,8,5,5,3) 224

12 4 8 (1,1,2,3,5,8,13,13,8,8,5,3) 322

The next result presents a partially recursive formula to determine firrt(J∗
n+1(x)) if

firrt(J∗
n (x)), n ≥ 1 is known.

Theorem 2.23 ([17]). Consider the Jaco Graph, J∗
n (x), n, x ∈N with ∆(J∗

n (x))= k and firrt(J∗
n (x))

known. Let d(vi), d∗(vi) denote the degree of vertex vi in J∗
n (x) and J∗

n+1(x), respectively. Then
for the graph J∗

n+1(x) we have that:

firrt(J
∗
n+1(x))= firrt(J

∗
n (x))+

n∑
i=1

| fn−k − fd∗(vi)|+
∑

i∈{k+1,k+2,...,n}
`(1,i)| fd(vi)+1 − fd(vi)|

− ∑
i∈{k+1,k+2,...,n}

`(2,i)| fd(vi)+1 − fd(vi)|+
n−1∑

i=k+1

n∑
j=i+1

|| fd(vi) − fd(v j)|− | fd(vi)+1 − fd(v j)+1||,

with `(1,i) the number of vertices v j , j ∈ {1,2,3, . . . ,k}, with d∗(vi) > d(v j), i ∈ {k+1,k+2, . . . ,n}
and `(2,i) the number of vertices v j , j ∈ {1,2,3, . . . ,k}, with d∗(vi)≤ d(v j), i ∈ {k+1,k+2, . . . ,n}.
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2.5 firrt Resulting from Edge-joint between Jaco Graphs
Abdo and Dimitrov [3] observed that irrt(G ∪H) ≥ irr(t(G)+ irrt(H)). A result for irrt(J∗

n (x)∪
J∗

m(x)) followed by a corollary in respect of firrt were presented in [17].

Theorem 2.24 ([17]). For the Jaco Graphs J∗
n (x) and J∗

m(x), n,m, x ∈N we have that:

irrt(J∗
n (x)∪ J∗

m(x))

≤ 2(irrt(J∗
n (x)+ irrt(J∗

m(x)))+
n∑

i=`+1

m∑
j=n+(`+1)

|d(vi)−d(v j)|, if n > m,

= 4(irrt(J∗
n (x))), if n = m,

with `=∆Jm(x).

Corollary 2.25 ([17]). For the Jaco Graphs J∗
n (x) and J∗

m(x), we have that:

firrt(J
∗
n (x)∪ J∗

m(x))

≤ 2(firrt(J∗
n (x)+firrt(J∗

m(x)))+
n∑

i=`+1

m∑
j=n+(`+1)

| fd(vi) − fd(v j)|, if n > m,

= 4(firrt(J∗
n (x))), if n = m.

Definition 2.8 ([17]). The edge-joint of two simple undirected graphs G and H is the graph
obtained by linking the edge vu,v ∈V (G),u ∈V (H) and denoted G vu H.

In [27] an abbreviation was prosed for families (classes) of graphs such as paths Pn, cycles Cn,
complete graphs Kn, Jaco graphs Jn( f (x)), etc. The notation is abbreviated as Pn vu Pm = P vu

n,m

and J∗
n ( f (x)) viu j J∗

m( f (x))= J
 vi u j
n,m ( f (x)), etc.

Lemma 2.26 ([17]). Consider the graphs J∗
n (x) and J∗

m(x) on the vertices v1,v2,v3, . . . ,vn and
u1,u2,u3, . . . ,um, respectively, then firrt(J∗

n (x)∪ J∗
m(x))= firrt(J

 v1u1
n,m (x)).

Theorem 2.27 ([17]). Consider the graphs J∗
n (x), n ≥ 3 and J∗

m(x), m ≥ 1 on the vertices
v1,v2,v3, . . . ,vn and u1,u2,u3, . . . ,um, respectively. Without loss of generality choose any vertex
vi , i 6= 1 from V (J∗

n (x)). Let V1 = {vx : fd(vx) ≤ fd(vi)}, |V1| = a; V2 = {vy : fd(vy) > fd(vi)}, |V2| = b;
V3 = {ux : fd(ux) ≤ fd(vi)}, |V3| = a∗ and V4 = {uy : fd(uy) > fd(vi)}, |V4| = b∗. For the simple connected
graph G′ = J

 vi u1
n,m (x) we have that:

firrt(G
′)= firrt(J

∗
n (x))+firrt(J

∗
m(x))+

n∑
j=1

m∑
k=1

| fd(v j) − fd(uk)|v j∈V (J∗
n (x)),uk∈V (J∗

m(x))

+
a∑

j=1
| fd(vi) − fd(v j)|v j∈V1 −

b∑
j=1

| fd(vi) − fd(v j)|v j∈V2

+
a∗∑
j=1

| fd(vi) − fd(v j)|v j∈V3 −
b∗∑
j=1

| fd(vi) − fd(v j)|v j∈V4 .
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2.6 ±Fibonacci Weights, f ±-Zagreb Indices of Jaco Graphs
The topological graph indices irr(G) related to the first Zagreb index, M1(G) = ∑

v∈V (G)
d2(v) =∑

vu∈E(G)
(d(v)+ d(u)), and the second Zagreb index, M2(G) = ∑

vu∈E(G)
d(v)d(u) are of the oldest

irregularity measures researched. Alberton [5] introduced the irregularity of G as irr(G) =∑
e∈E(G)

imb(e), imb(e)= |d(v)−d(u)|e=vu. In the paper of Fath-Tabar [12], Alberton’s indice was

named the third Zagreb indice to conform with the terminology of chemical graph theory.
Recently Ado et al. [2] introduced the topological indice called total irregularity and defined it,
irrt(G)= 1

2
∑

u,v∈V (G)
|d(u)−d(v)|. The latter could be called the fourth Zagreb indice.

If the vertices of a simple undirected graph G on n vertices are labeled vi , i = 1,2,3, . . . ,n
then the respective definitions may be:

M1(G)=
n∑

i=1
d2(vi)=

n−1∑
i=1

n∑
j=2

(d(vi)+d(v j))viu j∈E(G),

M2(G)=
n−1∑
i=1

n∑
j=2

d(vi)d(v j)viu j∈E(G),

M3(G)=
n−1∑
i=1

n∑
j=2

|d(vi)−d(v j)|viu j∈E(G), and

M4(G)= irrt(G)= 1
2

n∑
i=1

n∑
j=1

|d(vi)−d(v j)| =
n∑

i=1

n∑
j=i+1

|d(vi)−d(v j)| or
n−1∑
i=1

n∑
j=i+1

|d(vi)−d(v j)|.

For a simple graph on a singular vertex (1-empty graph), the default values M1(G)= M2(G)=
M3(G)= M4(G)= 0 apply.

In [23] a new derivative of the Zagreb indices were introduced. The ±Fibonacci weight, f ±i of
a vertex vi was defined to be − fd(vi), if d(vi)= i is odd and, fd(vi), if d(vi) is even. The f ±-Zagreb
indices was then defined as:

f ±Z1(G)=
n∑

i=1
( f ±i )2 =

n−1∑
i=1

n∑
j=2

(| f ±i |+ | f ±j |)viu j∈E(G),

f ±Z2(G)=
n−1∑
i=1

n∑
j=2

( f ±i · f ±j )viu j∈E(G),

f ±Z3(G)=
n−1∑
i=1

n∑
j=2

| f ±i − f ±j |viu j∈E(G), and

f ±Z4(G)= 1
2

n∑
i=1

n∑
j=1

| f ±i − f ±j | =
n∑

i=1

n∑
j=i+1

| f ±i − f ±j | or
n−1∑
i=1

n∑
j=i+1

| f ±i − f ±j |.

For a simple graph on a singular vertex (1-empty graph), define

f ±Z1(G)= f ±Z2(G)= f ±Z3(G)= f ±Z4(G)= 0.
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Note. The degree of vertex vi , denoted d(vi) refers to the degree in J∗∞(x) hence d(vi)= i. In the
finite Jaco Graph the degree of vertex vi is denoted d(vi)J∗

n (x). The degree sequence is denoted
Dn = (d(v1)J∗

n (x),d(v2)J∗
n (x), . . . ,d(vn)J∗

n (x)). By convention Di+1 =Di ∪d(vi+1)J∗
n (x).

2.6.1 Algorithm to determine the degree sequence of a finite Jaco Graph, J∗
n (x), n, x ∈N [23]

Consider a finite Jaco Graph Jn(x),n ∈N and label the vertices v1,v2,v3, . . . ,vn.

Step 0: Set n = n. Let i = j = 1. If j = n = 1, let Di = (0) and go to Step 6, else set Di =; and go
to Step 1.

Step 1: Determine the jth Zeckendorf representation say, j = f i1 + f i2 +·· ·+ f ir , and go to Step 2.

Step 2: Calculate d+(v j)= f i1−1 + f i2−1 +·· ·+ f ir−1, then go to Step 3.

Step 3: Calculate d−(v j)= j−d+(v j), and let d(v j)= d+(v j)+d−(v j), then go to Step 4.

Step 4: If d(v j) ≤ n, set d(v j)J∗
n (x) = d(v j) else, set d(v j)J∗

n (1) = d−(v j)+ (n− j) and set D j =
Di ∪d(v j)J∗

n (x) and go to Step 5.

Step 5: If j = n go to Step 6 else, set i = i+1 and j = i and go to Step 1.

Step 6: Exit.

2.6.2 Tabled values of F±(Jn(x)), for finite Jaco Graphs, J∗
n (x), n ≤ 12 [23]

For illustration the adapted table below follows from the Fisher algorithm [19] for Jn(x), n ≤ 12.
The f ±i -sequence of J∗

n (x) is denoted F±(J∗
n (x)).

Table 4

i ∈N d−(vi) d+(vi)= i−d−(vn) F±(J∗
i (x))

1 0 1 (0)

2 1 1 (−1,−1)

3 1 2 (−1,1,−1)

4 1 3 (−1,1,1,−1)

5 2 3 (−1,1,−2,1,1)

6 2 4 (−1,1,−2,−2,−2,1)

7 3 4 (−1,1,−2,3,3,−2,−2)

8 3 5 (−1,1,−2,3,−5,3,3,−2)

9 3 6 (−1,1,−2,3,−5,−5,−5,3,−2)

10 4 6 (−1,1,−2,3,−5,8,8,−5,3,3)

11 4 7 (−1,1,−2,3,−5,8,−13,8,−5,−5,3)

12 4 8 (−1,1,−2,3,−5,8,−13,−13,8,8,−5,3)

Since it is known that a sequence (d1,d2,d3, . . . ,dn) of non-negative integers is a degree

sequence of some graph G if and only if
n∑

i+i
di is even. It implies that a degree sequence has
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an even number of odd entries. Hence, the f ±i -sequence of J∗
n (x) denoted, F±(J∗

n (x)), n ∈N has
an even number of, − fd(vi) entries. Following from Table 4, the table below depicts the values
f ±Z1(J∗

n (x)), f ±Z2(J∗
n (x)), f ±Z3(J∗

n (x)) and f ±Z4(J∗
n (x)) for J∗

n (x), n ≤ 12.

Table 5

i ∈N d−(vi) d+(vi) f ±Z1(J∗
i (x)) f ±Z2(J∗

i (x)) f ±Z3(J∗
i (x)) f ±Z4(J∗

i (x))

1 0 1 0 0 0 0

2 1 1 2 1 0 0

3 1 2 3 −2 4 4

4 1 3 4 −1 4 8

5 2 3 8 −6 11 16

6 2 4 15 5 11 25

7 3 4 32 −26 35 56

8 3 5 62 −19 50 98

9 3 6 103 0 72 138

10 4 6 211 38 119 251

11 4 7 396 −238 210 402

12 4 8 604 −158 273 566

2.7 Number of Arcs of Jaco Graphs
In earlier work [19, 20] it was accepted that finding a closed formula for the number of arcs of
a finite Jaco Graph Jn(x) will remain a challenging open problem. The algorithms discussed
in Ahlbach et al. [1] suggest, finding such formula might not be possible. Three easy to apply
alternative, formula to determine the number of arcs (edges) were reported. The next lemma is
needed to adapt the Fisher algorithm accordingly.

Lemma 2.28 ([19, 20]). ε(Jn(x))= ε(Jn−1(x))+d−(vn).

Adapted Fisher algorithm to table number of arcs
Note that rows 1, 2 and 3 follow easily from the definition of a Jaco graph.

Step 0: Set j = 4, then set i = j and s ≥ 4.

Step 1: Set ent1i = i.

Step 2: Set ent2i = ent1(i−1)−ent4(i−1). (Note that d−(vi)= v(Hi−1(x))= (i−1)−∆(Ji−1(x))).

Step 3: Set ent3i = ent1i−ent2i . (Note that d+(vi)= i−d−(vi)).

Step 4: Set ent5i = ent5(i−1)+ent2i . (Lemma 2.28)

Step 5: Set j = i+1, then set i = j. If i ≤ s, go to Step 1, else go to Step 6.

Step 6: Exit.
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2.27.1. First Recursive Formula. Note that Lemma 2.28 provides the first recursive formula
to determine the number of arcs of Jn(x). Using the adapted Fisher algorithm together with
Lemma 2.28 the table below follows easily.

Table 6

φ(vi)→ i ∈N d−(vi)= ν(Hi−1) d+(vi)= i−d−(vi) ε(Ji(x))= ε(Ji−1(x))+d−(vi)

1= f2 0 1 0

2= f3 1 1 1

3= f4 1 2 2

4 1 3 3

5= f5 2 3 5

6 2 4 7

7 3 4 10

8= f6 3 5 13

9 3 6 16

10 4 6 20

11 4 7 24

12 4 8 28

13= f7 5 8 33

14 5 9 38

15 6 9 44

16 6 10 50

17 6 11 56

18 7 11 63

19 7 12 70

20 8 12 78

21= f8 8 13 86

22 8 14 94

23 9 14 103

24 9 15 112

25 9 16 121

2.27.2. Second Formula. It is well known that ε(Jn(x))=
n∑

i=1
d−(vi). Since d−(vn)= n−d+(vn),

the number of arcs is also given by ε(Jn(x))= 1
2 n(n−1)−

n∑
i=1

d+(vi). Furthermore, for n ≥ 2 we

have d+(v1)= 1, so rather consider ε(Jn(x))= (1
2 (n(n−1)−1)−

n∑
i=2

d+(vi).

Bettina’s Theorem [19] provides for a method to determine d+(vi), ∀ i ∈N.
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Example 2.1. For the Jaco Graph J15(x) it follows that:

ε(J15(x))= 1
2
·15 · (15+1)−1−

15∑
i=2

= 119−
15∑
i=2

d+(vi).

Now, 1= f2, 2= f3, 3= f4, 4= f4+ f2, 5= f5, 6= f5+ f2, 7= f5+ f3, 8= f6, 9= f6+ f2, 10= f6+ f3,
11= f6 + f4, 12= f6 + f4 + f2, 13= f7, 14= f7 + f2, and 15= f7 + f3.

From Bettina’s theorem it follows that:

15∑
i=2

d+(vi)= f2 + f3 + ( f3 + f1)+ f4 + ( f4 + f1)+ ( f4 + f2)+ f5 + ( f5 + f1)

+ ( f5 + f2)+ ( f5 + f3)+ ( f5 + f3 + f1)+ f6 + ( f6 + f1)+ ( f6 + f2)

= 5 f1 +4 f2 +4 f3 +3 f4 +5 f5 +3 f6 = f1 +5 f3 +5 f5 +3 f7

= 75.

So, ε(J15(x))= 119−75= 44.

2.27.3. Third Formula. The third formula follows from Proposition 2.29 and 2.30.

Proposition 2.29. If for the finite Jaco Graph Jn(x), n ∈ N, n can be expressed as n =
m=d+(vn) +d+(vm) then:

ε(Jn(x))= 1
2

(
m∑

i=1
i+

jmax∑
i=0

(d+(vm−i)− i)d+(vm− jmax )− jmax≥1 +d+(vm)(d+(vm)−1)

)
.

Example 2.2. Determine ε(J31(x)). Now, 31= 19+d+(v19)= 19+12. So it follows that:

ε(J31(x))= 1
2

(
19∑
i=1

i+
jmax∑
i=0

(d+(v19−i)− i)+d+(v19)(d+(v19)−1)

)

= 1
2

(1
2

(20.19)+ [(12−0)+ (11−1)+ (11−2)+ (10−3)+ (9−4)+ (9−5)

+ (8−6)+ (8−7)]=50 + [12.11]=132

)
= 1

2
(190+50+132)= 186 .

Note that not all n ∈N can uniquely be written as n=m+d+(vm) for m∈N. From Corollary 3.5
in [20] the next proposition follows.

Proposition 2.30. If, for the Jaco Graph Jn−1(x) the integer (n−1) cannot be expressed as
n−1 = m=d+(vn−1) +d+(vm), then n = m=d+(vn−1) +d+(vm) = m=d+(vn) +d+(vm), and ε(Jn−1(x)) =
ε(Jn(x))−d+(vm).
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Example 2.3. Determine ε(J17(x)). Note that d+(v17) + d+(vd+(v17)) = 18 6= 17. However,
d+(v18)+d+(vd+(v18))= 18, so ε(J17(x))= ε(J18(x))−d+(v11). Hence ε(J17(x))= 63−7= 56.

Recently a closed formula for d−(vn), n ≥ 1 and by implication an explicit formula for the
number of arcs (edges) of a Jaco graph Jn(x)), (J∗

n (x))) were identified by Stephan Wagner6

via www.oeis.org, Sequence A183137. The results are: d−(vn) =
⌊

4(n+1)
(1+p5)2

⌋
=

⌊
2(n+1)
3+p5

⌋
and

ε(J∗
n (x)) =

n∑
i=1

⌊
4(i+1)

(1+p5)2

⌋
=

n∑
i=1

⌊
2(i+1)
3+p5

⌋
. A good approximation dependent on n only is given by

ε(J∗
n (x)) = 3−p5

4(n+1)2 + 1−p5
4(n+1) . These findings will assist to bring a number of recursive formula

to closure. An example of such closure is that Bettina’s theorem (Theorem 2.20) can now be
expressed as: d+(vn)= n−

⌊
4(n+1)

(1+p5)2

⌋
.

2.8 On Certain Invariants of Jaco Graphs
Let µ(G) be an arbitrary invariant of the simple connected undirected graph G. The µ-stability
number of G is conventionally, the minimum number of vertices, of which their removal changes
µ(G). If the removal of the minimum vertices results in a decrease of the invariant the result is
conventionally denoted, µ−(G) and if the change is to the contrary the change is denoted µ+(G).
It is known that the domination number, γ(G′), of a subgraph G′ of G can be larger or smaller
than γ(G). Note that a subgraph may result from the removal of vertices and/or edges from
G. Furthermore, the removal of edges only from the graph G to obtain G′ can only result in
γ(G′)≥ γ(G). The minimum number of edges, of which their removal from G results in a graph
G′ with γ(G′) > γ(G), is called the bondage number b(G), of G. From the definition of a Jaco
Graph it follows that all Jaco Graphs on n ≥ 2 has at least one leaf (vertex with degree = 1).
Hence, the bondage number is b(J∗

n (x))n≥2 = 1.

2.8.1 Independence number
Consider the underlying graph, J∗

n (x), n, x ∈N. Obviously the graph has vertices v1,v2,v3, . . . ,vn.
Because the independence number is defined to be the number of vertices in a maximum
independent set [8], it is optimal to choose non-adjacent vertices recursively, each of minimum
subscript. This observation leads to the next theorem. Observe that vi, j = vi as calculated on
the j-th step of the recursive technique applied in the proof of the next result (see [24]).

Theorem 2.31 ([24]). The cardinality of the set I = {vi, j : v1 = v1,1 ∈ I and vi = vi, j =
v(d+(vm,( j−1))+m+1)}, derived from the Jaco Graph J∗

n (x), n ∈N is equal to the independence number,
α(J∗

n (x)).

Corollary 2.32 ([24]). It follows that the covering number, β(J∗
n (x))= n−α(J∗

n (x)).

2.8.2 Chromatic number and b-Chromatic number
From the definitions provided in [19] the Hope Graph of the Jaco Graph, Jn(x) is the complete
graph on the vertices vi+1,vi+2, . . . ,vn if and only if vi is the prime Jaconian vertex of Jn(x).

6Department of Mathematical Sciences, Stellenbosch University, Republic of South Africa
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Hence, H∗
n(x) ' Kn−i . The reader is reminded that a t-colouring of a graph G is a map

λ : V (G) → [c] := {1,2,3, . . . , c, c ≥ 0} such that λ(u) 6= λ(v) whenever u,v ∈ V (G) are adjacent
in G. The chromatic number of G denoted χ(G) is the minimum c such that G is c-colourable.
The following theorem was settled in [24].

Theorem 2.33 ([24]). For the Jaco Graph, Jn(x), n ∈N with the prime Jaconian vertex vi we
have that the chromatic number, χ(J∗

n (x)) is given by:

χ(J∗
n (x))=

{
(n− i)+1, if and only if the edge vivn exists,
n− i, otherwise.

Recall that the b-chromatic number of a graph is the maximum number k of colours that
can be used to colour the vertices of G, such that we obtain a proper colouring and each colour i,
with 1≤ i ≤ k, has at least one representant xi adjacent to a vertex of every colour j, 1≤ j 6= i ≤ k.
The studies on b-chromatic number attracted much interest since its introduction. The next
result holds for Jaco graphs [31].

Theorem 2.34 ([31]). For n ≥ 2, the b-chromatic number of a linear Jaco graph J∗
n ( f (x)), n, x ∈N

with prime Jaconian vertex vi is given by ϕ(J∗
n≥2( f (x)))= (n− i)+1.

2.8.3 Murtage number
Note that if vertices u and v are not adjacent in G, then γ(G+uv)≤ γ(G). The significance of
this concept becomes apparent in the application of domination theory. In a situation where a
γ-set of a graph is to represent costly facilities in a network N , it may be preferable to establish
additional links (edges) between vertices of N rather than constructing facilities at all vertices
of a γ-set. The aforesaid application motivated the notion of the murtage number7 of a graph.

Definition 2.9 ([24]). The murtage number, m(G), of a simple connected graph G is the
minimum number of edges that has to be added to G such that the resulting graph G′ has
γ(G′)< γ(G).

It follows from the definition that m(G) = 0 if and only if γ(G) = 1. In order to calculate
the murtage number of a graph the concept of a dom-sequence of a γ-set, X i of a graph
was introduced. Label the vertices of X i such that V (G) can be partitioned into sets
D1,i,D2,i, . . . ,Dγ(G),i such that D j,i contains the vertex v j ∈ X i and vertices in V (G)− X i which
are adjacent to v j and such that, |D1,i| ≤ |D2,i| ≤ · · · ,≤ |Dγ(G),i| and |D1,i| is a minimum. Define
a dom-sequence of the γ-set X i as (|D1,i|, |D2,i|, . . . , |Dγ(G),i|). Clearly a γ-set can have more than
one dom-sequence. Assume G has k γ-sets namely X1, X2, . . . , Xk. Let θ = absolute(min |D1, j|)
for some X j . All γ-sets, X` for which firstly, |D1,`| = θ (primary condition) and secondly, d(v1,vi)
is minimum for all vi ∈ X` (secondary condition) is said to be compact γ-sets. The partitioning
described above in respect of a compact γ-set is called a murtage partition of V (G).

7In the derivative named after U.S.R. Murty, the co-author of [8].
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Theorem 2.35 ([24]). Let |D1,i| = θ for some compact γ-set X i of G, then:

m(G)=
{
θ, if and only if v1 is not adjacent to any v j ∈ X i,
θ−1, if and only if v1 is adjacent to some v j ∈ X i.

The fact that m(Jn(x))n∈N ≥ 0 follows from the definition.

From the definition of a Jaco Graph it follows easily that vertex v1 dominates J∗
1 (x) and

J∗
2 (x) and vertex v2 dominates J∗

3 (x) hence, m(J∗
1 (x))= m(J∗

2 (x))= m(J∗
3 (x))= 0.

For J∗
4 (x) and J∗

5 (x) it follows that the set {v1,v3} is a compact γ-set with the dom-sequences,
(1,2) and (1,3) hence, m(J∗

4 (x))= m(J∗
5 (x))= 1.

For the Jaco Graphs J∗
6 (x) and J∗

7 (x) the sets {v1,v4}, {v1,v5}, {v2,v4}, {v2,v5}, {v2,v6}, {v2,v7}
are γ-sets with only {v2,v4} and {v2,v5} the compact γ-sets. The corresponding dom-sequences
are (2,4) and (2,5) hence, m(J∗

6 (x)) = m(J∗
7 (x)) = 2. For J∗

8 (x) the sets {v2,v5}, {v2,v6}, {v2,v7}
are γ-sets with {v2,v5} the unique compact γ-set. The unique corresponding dom-sequence is
(2,6) so, m(J∗

8 (x))= 2.
In respect of J∗

9 (x) and J∗
10(x) an interesting observation is that exactly two γ-sets, both

being compact γ-sets namely, {v2,v6} and {v2,v7}, exist. The corresponding dom-sequences are
(3,6) and (3,7) respectively, meaning, m(J∗

9 (x))= m(J∗
10(x))= 3.

In the case of J∗
11(x) an unique compact γ-set = {v2,v7} exists with the dom-sequence (3,8).

So in this case m(J∗
11(x))= 3.

For J∗
12(x) and J∗

13(x) we note that the sets {v1,v3,v8}, {v1,v3,v9} and {v1,v3,v10} are the
γ-sets with {v1,v3,v8} the unique compact γ-set. The corresponding dom-sequences are (1,3,8)
and (1,3,9). Hence, m(J∗

12(x)) = m(J∗
13(x)) = 1. Further exploratory analysis led to the next

theorem.

Theorem 2.36 ([24]). For any Jaco Graph J∗
n (x), n, x ∈N we have 0≤ m(J∗

n (x))≤ 3. The bounds
are obviously sharp as well.

Corollary 2.37 ([24]). For any finite Jaco Graph J∗
n (x), n, x ∈N:

γ(Jn(1))= γ(J∗
κ (x))+1, κ= (n−d−(vn)−d−(v(n−d−(vn))−1).

2.9 Brush Numbers of Jaco Graphs
The concept of the brush number br(G) of a simple connected graph G was introduced by McKeil
[34] and Messinger et al. [36]. The problem is initially set that all edges of a simple connected
undirected graph G is dirty. A finite number of brushes, βG(v)≥ 0 is allocated to each vertex
v ∈V (G). Sequentially any vertex which has βG(v)≥ d(v) brushes allocated may clean the vertex
and send exactly one brush along a dirty edge and in doing so allocate an additional brush to
the corresponding adjacent vertex (neighbour). The reduced graph G′ = G − vu, ∀ vu ∈ A(G),
βG(v)≥ d(v) is considered for the next iterative cleansing step. Note that a neighbour of vertex
v in G say vertex u, now have βG′(u)=βG(u)+1.
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Clearly for any simple connected undirected graph G the first step of cleaning can begin if
and only if at least one vertex v is allocated, βG(v) = d(v) brushes. The minimum number of
brushes that is required to allow the first step of cleaning to begin is, βG(u)= d(u)= δ(G). Note
that these conditions do not guarantee that the graph will be cleaned. The conditions merely
assure at least the first step of cleaning.

If a simple connected graph G is orientated to become a directed graph, brushes may only
clean along an out-arc from a vertex. Cleaning may initiate from a vertex v if and only if
βG(v)≥ d+(v) and d−(v)= 0. The order in which vertices sequentially initiate cleaning is called
the cleaning sequence in respect of the orientation αi . The minimum number of brushes to
be allocated to clean a graph for a given orientation αi(G) is denoted bαi

r . If an orientation αi

renders cleaning of the graph undoable we define bαi
r =∞. An orientation αi for which bαi

r is a
minimum over all possible orientations is called optimal.

Now, since the graph G having ε(G) edges can have 2ε(G) orientations, the optimal orientation
is not necessary unique. Let the set A= {αi|αi an orientation of G}.

It is important to note that the definition of a Jaco Graph Jn(x), prescribes a well-defined
orientation of the underlying Jaco graph. So there is one specific defined orientation of the
2ε(Jn(x)) possible orientations.

Theorem 2.38 ([18]). For the finite Jaco Graph Jn(x), n, x ∈N, with prime Jaconian vertex vi it
holds that:

br(Jn(x))=
i∑

j=1
(d+(v j)−d−(v j))+

n∑
j=i+1

max{0, (n− j)−d−(v j)}.

For illustration the adapted table below follows from the Fisher algorithm for Jn(x), n ∈N,
n ≤ 16. Note that v∗j is the prime Jaconian vertex.

Table 7

i ∈N d−(vi) d+(vi) v∗j br(Ji(x))

1 0 1 v1 0

2 1 1 v1 1

3 1 2 v2 1

4 1 3 v2 1

5 2 3 v3 2

6 2 4 v3 3

7 3 4 v4 4

8 3 5 v5 5

i ∈N d−(vi) d+(vi) v∗j br(Ji(x))

9 3 6 v5 6

10 4 6 v6 7

11 4 7 v7 8

12 4 8 v7 9

13 5 8 v8 11

14 5 9 v8 12

15 6 9 v9 14

16 6 10 v10 16

From [41] we recall a useful lemma.
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Lemma 2.39 ([18]). For a simple connected directed graph G, we have:

br(G)=min

{ ∑
v∈V (G)

max{0,d+(v)−d−(v)} : over all αi(G) ∈A
}
=min{bαi

r (G) :∀ αi(G)}}.

From Theorem 2.38 and Lemma 2.39 the brush allocations can easily be determined. For
example J9(x) requires the minimum brush allocations, βJ9(x)(v1)=1, βJ9(x)(v2)=0, βJ9(x)(v3)=1,
βJ9(x)(v4)=2, βJ9(x)(v5)=1, βJ9(x)(v6)=1, βJ9(x)(v7)=0, βJ9(x)(v8)=0, βJ9(x)(v9)=0. Note that the
allocations of β(vi) > 0 are located at vertices v1, v3, v4, v5, v6. The end allocation itself is a
minimum allocation associated with an optimal orientation.

2.9.1 Brush Numbers of Mycielski Jaco Graphs
Mycielski [38] introduced an interesting graph transformation in 1955. The transformation can
be described as follows:

(1) Consider any simple connected graph G on n ≥ 2 vertices labelled v1,v2,v3, . . . ,vn.

(2) Consider the extended vertex set V (G)∪ {x1, x2, x3, . . . , xn} and add the edges {vix j,v jxi| iff
viv j ∈ E(G)}.

(3) Add one more vertex w together with the edges {wxi| ∀ i}.

The transformed graph (Mycielskian graph of G or Mycielski G) denoted µ(G), is the simple
connected graph with V (µ(G))=V (G)∪ {x1, x2, x3, . . . , xn}∪ {w} and E(µ(G))= E(G)∪ {vix j,v jxi :
iff viv j ∈ E(G)}∪ {wxi : ∀ i}.

In general, if βG′(v) at a particular cleaning step has βG′(v)> dG′(v), exactly βG′(v)−dG′(v)
brushes are left redundant and can clean along new edges linked to vertex v if such are
added through transformation of the graph G. The latter observation allows for an adaption of
Theorem 2.38 to obtain the brush number of µ(Jn(x))n ≥ 3. Note that µ(J1(x))' K1 ∪P2, hence
a disconnected graph. Easy to see that µ(J2(x))' C5 hence br(µ(J2(x))= 2.

Theorem 2.40 ([32]). For the Jaco graph Jn(x), n, x ∈N, n ≥ 2 the brush number of the Mycielski
Jaco graph is given by:

br(µ(Jn(x))= 2
n∑

i=1
d+

Jn(x)(vi).

2.10 Brush Centre of Jaco Graphs
So far cleaning was restricted to a brush transversing a dirty edge only once. If the latter
restriction is relaxed to, after the first complete cleaning sequence a brush may transverse an
edge for a second time for another complete reversed cleaning sequence, the initial allocation
of brushes or a deviation thereof can be obtained. This observation leads to the concept of a
brush centre. The question is, what is the minimum set of vertices, Br(G) ⊆ V (G) (primary
condition) to allocate the br(G) brushes to, to ensure cleaning of graph G and that on return
(second cleaning) the brushes are clustered as centrally as possible for maintenance (secondary
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condition is the min(max(distance between vertices of the brush centre))). Finding a brush centre
of a graph will allow for well located maintenance centres of the brushes prior to a next cycle of
cleaning. Because brushes themselves may be technology of kind, the technology in real world
application will normally be the subject of maintenance or calibration or virus vetting or alike.

In the defined Jaco graph J5(x) the brush number is br(J5(x)) = 2 ([20, 34]), with the
brush allocation βJ5(x)(v1) = 1, βJ5(x)(v2) = 0, βJ5(x)(v3) = 1, βJ5(x)(v4) = 0, βJ5(x)(v5) = 0. Note
that after the first cleaning sequence both brushes are allocated to the vertex v5. The latter
allocation of brushes with an appropriate re-orientation of J5(x) also clean the Jaco graph. On a
second cleaning sequence the brushes can park at v5 for maintenance. Clearly the set {v5} with
βJ5(x)(v5)= 2 is a (the) brush centre.

Theorem 2.41 ([32]). Consider the initial minimal brush allocation of br(Jn(x)) brushes to the
finite Jaco graph, Jn(x), n, x ∈N. The location of the brushes at the end of the cleaning sequence
represents a brush centre of Jn(x), n, x ∈N.

2.11 Competition Graph of Jaco Graphs
The concept of the competition graph C(G→) of a simple connected directed graph G→ on
n ≥ 2 vertices, was introduced by Joel Cohen in 1968 [9]. Much research has followed and
recommended reading can be found in ([34, 38, 39] together with all their references). The
concept of competition graphs found application in amongst others, Coding theory, Channel
allocation in communication, Information transmission, Complex systems modelled in energy
and economic applications, Decision-making based mainly on opinion influences and Predator-
Prey dynamical systems.

For a simple connected directed graph G→ with vertex set V (G→) the competition graph
C(G→) is the simple graph (undirected and possibly disconnected) having V (C(G→))=V (G→)
and the edges E(C(G→)) = {vy : if at least one vertex w ∈ V (G→) exists such that the arcs
(v,w), (y,w) exist}.

Let G→ be a simple connected directed graph and let V∗ be a non-empty subset of V (G→)
and denote the undirected subgraph induced by V∗ by, 〈V∗〉. In respect of Jaco Graphs the next
result was derived.

Theorem 2.42 ([28]). For the Jaco graph Jn(x), n, x ∈N, n ≥ 5, the competition graph C(Jn(x))
is given by:

C(Jn(x))= 〈V∗〉V∗={vi :3≤i≤n−1} − {vivmi : mi = i+d+
Jn(x)(vi),3≤ i ≤ n−2}∪ {v1,v2,vn}.

2.12 Grog Number of Jaco Graphs
For a simple connected graph G on n ≥ 2 vertices we consider any orientation G→ thereof. Label
the vertices randomly v1,v2,v3, . . . ,vn. The aforesaid vertex labeling is called subscriptioning
and a specific labeling pattern is called a subscription of G. Consider the graph to represent a
predator-prey web. A vertex v with d+

G→(v)= 0 is exclusively prey. To the contrary a vertex w
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with d−
G→(w)= 0 is exclusively predator. A vertex z with dG→(z)= d+

G→(z)>0 +d−
G→(z)>0 is a mix

of predator-prey.
Let a vertex labeled vi have an initial predator≥0-prey≥0 population of exactly ρ(vi)= i. So

generally there is no necessary relationship between the initial predator≥0-prey≥0 population
ρ(vi)= i and dG→(vi)= d+

G→(vi)≥0 +d−
G→(vi)≥0.

2.12.1 The Grog algorithm [28]
The predator-prey dynamics now follow the Grog algorithm.

Grog Algorithm8.

Step 0: Consider the initial graph G→.

Step 1: Choose any vertex vi and predator along any number 1 ≤ ` ≤ d+
G→(vi) ≤ i of out-arcs

or along any number 1 ≤ `≤ i < d+
G→(vi) of out-arcs, with only one predator per out-arc

provided that the preyed upon vertex v j has j ≥ 1.

Step 2: Remove the out-arcs along which were predatored and set d+∗ (vi)= d+
G→(vi)−`, and for

all vertices v j 6=i which fell prey, set d−∗ (v j)= d−
G→(v j)−1.

Step 3: Set the predator≥0-prey≥0 populations ρ∗(vi)= i−` and ρ∗(v j 6=i)= j−1.

Step 4: Consider the next amended graph G→∗ and apply Steps 1, 2, 3 and 4 thereto if possible.
If not possible, exit.

Observation 2.1. It is observed that since both the predator≥0-prey≥0 population of all vertices,
and the number of out-arcs embedded in G→ as well as those respectively found in the iterative
amended graphs G→∗ are finite, the Grog algorithm will always terminate. So it can be said
informally that the Grog algorithm is well-defined.

Also note that Step 1 allows one to choose any vertex vi per iteration. Following that,
any number of the existing out-arcs from vi can be chosen to predator along. Collectively,
the specific iterative choices will be called the predator-prey strategy. Generally, a number of
predator-prey strategies may exist for a given G→ and the set of all possible strategies is denoted,
S(G→). Amongst the strategies there will be those which for a chosen vertex vi , consecutively
predator along the maximal number of out-arcs available at vi . These strategies are called
greedy strategies and a greedy strategy sk ∈ S(G→) is denoted gsk.

Observation 2.2. It is observed that if a predator-prey strategy sk ∈ S(G→) is repeated for a
specific graph G→, the amended graph G→∗ found on termination (exit step) is unique. Put
differently, it can informally be said the predator-prey strategy sk is well-defined.

Definition 2.10 ([28]). For a predator-prey strategy sk and the final amended graph G→∗ (exit
step), the cumulative residual, predator≥0-prey≥0 population over all vertices is denoted and
defined to be rsk (G→)= ∑

∀vi

ρG→∗ (vi).

8Admittedly, the Grog algorithm has been described informally.
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Definition 2.11 ([28]). The Grog number9 of G→ is defined to be g(G→)=min(rsk (G→))∀sk∈S(G→)

or equivalently, g(G→)=min(rgsk (G→))∀gsk∈S(G→).

Definition 2.12 ([28]). The grog number of a simple connected graph G is defined to be
g(G)=min(g(G→)) over all possible orientations of G.

Finding a closed formula for the number of arcs (edges) of a finite Jaco graph will assist
in finding closed formula for many recursive results found for Jaco graphs. In the absence of
such formula the next lemma is needed to settle Proposition 2.44. In [28] it is noted that in the
formulation of the following lemma and proposition, the condition that vi must be the prime
Jaconian vertex was erroneously omitted.

Lemma 2.43. For a Jaco graph, Jn(x), n, x ∈N, n ≥ 2 having prime Jaconian vertex vi we have
2i−n ≥ 0.

Proposition 2.44 ([28]). For a Jaco graph, Jn(x), n, x ∈N, n ≥ 2 having prime Jaconian vertex
vi we have g(J∗

n+1(x))= g(J∗
n (x))+ (2i−n)+1.

Corollary 2.45 ([28]). For a Jaco graph, Jn(x), n, x ∈N, n ≥ 2 we have g(J∗
n+1(x))> g(J∗

n (x)).

2.13 Gutman Index of Jaco Graphs
The concept of the Gutman index, denoted Gut(G) was introduced for a connected undirected
graph G. In [27] the concept was applied to the underlying graphs of the family of Jaco graphs,
(directed graphs by definition), and an easy recursive formula for the Gutman index Gut(J∗

n+1(x))
in terms of the Gutman index of the underlying Jaco graph, J∗

n (x), n, x ∈N with prime Jaconian
vertex vi was derived. Furthermore, Gut(J∗

n (x) v1u1 J∗
m(x))=Gut(J

 v1u1
n,m (x)) was determined

in terms of Gut(J∗
n (x)) and Gut(J∗

m(x)). The aforesaid is the edge-joint, J∗
n (x)∪ J∗

m(x)+ v1u1,
v1 ∈V (J∗

n (x)) and u1 ∈V (J∗
m(x)) (see Section 2.5).

Researching Gut(J
 vkut
n,m (x)), vk ∈ V (J∗

n (x)), ut ∈ V (J∗
m(x)) with 1 ≤ k ≤ n and 1 ≤ t ≤ m in

terms of Gut(J∗
n (x)) and Gut(J∗

m(x)), will be worthy.

Theorem 2.46 ([27]). For the underlying graph J∗
n (x), n, x ∈N, n ≥ 2 with prime Jaconian vertex

vi we have that recursively:

Gut(J∗
n+1(x))=Gut(J∗

n (x))+
i∑

k=1

n∑
t=i+1

dJ∗
n (x)(vk)dJ∗

n (x)(vk,vt)

+
n−1∑

t=i+1

n∑
q=t+1

(dJ∗
n (x)(vt)+dJ∗

n (x)(vq))+ (n− i)

·
(

i∑
k=1

dJ∗
n (x)(vk)dJ∗

n (x)(vk,vn)+
n∑

t=i+1
dJ∗

n (x)(vt)

)
+ (n− i−1)+ i(n− i).

9Named after the author’s late father’s most detested alcoholic drink i.e. a dash of brandy which is over diluted
with H2O called, a Grog.
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Theorem 2.47 ([27]). For the underlying graphs J∗
n (x) and J∗

m(x), n,m, x ∈N and n ≥ m ≥ 2 we
have that:

Gut(J
 v1u1
n,m (x))=Gut(J∗

n (x))+Gut(J∗
m(x))+

n∑
`=2

dJ∗
n (x)(v`)dJ∗

n (x)(v1,v`)

+
m∑

s=2
dJ∗

m(x)(us)dJ∗
m(x)(u1,us)+

m∑
t=2

(dJ∗
n (x)(v1)+1)dJ∗

m(x)(ut)(dJ∗
m(x)(u1,ut)+1)

+
n∑

k=2

m∑
t=2

dJ∗
n (x)(vk)dJ∗

m(x)(ut)(dJ∗
n (x)(v1,vk)+dJ∗

m(x)(u1,ut)+1)+4.

2.14 McPherson Number of Jaco Graphs
The recursive concept, called the McPherson recursion10, is a series of vertex explosions such that
on the first iteration a vertex v ∈V (G) explodes to arc (directed edges) to all vertices u ∈V (G)
for which the edge vu ∉ E(G), to obtain the mixed graph G′

1. Now G′
1 is considered on the second

iteration and a vertex w ∈ V (G′
1) = V (G) may explode to arc to all vertices z ∈ V (G′

1) if edge
wz ∉ E(G) and arc (w, z) or (z,w) ∉ E(G′

1). The McPherson number of a simple connected graph
G is the minimum number of iterative vertex explosions say `, to obtain the mixed graph G′

`

such that the underlying graph of G′
`

denoted G∗
`

has G∗
`
' Kn. For Jaco graphs the next result

was settled.

Theorem 2.48 ([25]). Consider the Jaco graph Jn(x), n, x ∈N, n ≥ 3. If vi is the prime Jaconian
vertex we have:

Υ(Jn(x))=
{

i, if the edge vivn ∉ E(Jn(x),

i−1, otherwise.

The following conjecture is still open.

Conjecture 2.48.1 ([25]). For a Jaco Graph Jn(x), n, x ∈N, n ≥ 3 we have that d+(vn) is unique
(non-repetitive) if and only if Υ(Jn(x)) is unique (non-repetitive).

2.15 Primitive Holes and Pythagorean Primitive Holes
In [21] the concept of a primitive hole was introduced. As a specialised case the concept of
a Pythagorean hole was introduced in [22]. Recall from [21] that conventionally a hole of a
simple connected graph G is loosely defined as a chordless cycle Cn, n ∈N, n ≥ 4 in the graph
G. The girth of a simple connected graph G say k, is the smallest cycle Ck found in G, if
any such cycle exists. So, such smallest cycle is necessarily chordless. Since many graphs
with girth 3 exist the concept of a “chordless” C3 is strongly implied but not conventionally
defined. In [21] the convention that; C3 is a primitive hole was proposed. The girth of an
acyclic graph Gac is conventionally defined to be girth(Gac)=∞. In [21] it was proposed that,
girth(Gac) = 0. This convention will allow the exploration of evolutionary hole growth like,

10Named after the author’s friend, Colonel(ret.) Vic McPherson.
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a hole Ck may grow over time units t = 1,2,3, . . . ,n or ∞ over an integer function p(t) = j
to attain j additional cyclic vertices at t. So girth

(
lim
t→∞(Ck+p(t)

) =∞. It also implies that for

simple connected graphs G1,G2,G3, . . . ,Gn, that girth
(∪n

i=1 G i
)= n∑

i=1
girth(G i), and allows quite

naturally that, girth(∪∞
i=1G i) =

∞∑
i=1

girth(G i) = ∞. These conventions reconcile the inherent

conflict between the definitions of girth and that of a hole. In respect of Jaco graphs the follow
results were settled.

Theorem 2.49 ([21]). For the underlying graph J∗
n (x) n, x ∈N,n ≥ 4 with Jaconian vertex vi we

recursively have:

h(J∗
n+1(x))= h(J∗

n (x))+
(n−i)−1∑

j=1
(n− i)− j.

Theorem 2.50 ([21]). For any primitive hole of the Jaco graph J∗
n (x), n, x ∈N on the vertices vi ,

v j , vk with i < j < k a primitive hole on the vertices v`i , v` j , v`k in J∗
n≥`k(1), ` ∈N, exists.

From the famous König’s theorem [33] it follows that Jn(x), 1≤ n ≤ 4 are the only bipartite
Jaco graphs since all Jn(x), n, x ∈ N, n ≥ 5 contains at least the odd cycle C3. The smallest
Jaco graph having a Pythagorean primitive hole is J∗

8 (x). Denote the number of Pythagorean
primitive holes of a graph G by hp(G). Since closed formula for so many invariants of Jaco
graphs still escape us the best results are the following.

Corollary 2.51 ([22]). The Jaco graph J∗
n (x), n, x ∈N, n = 5k+d+

J∞(x)(v5k) has hp(Jn(x)) = k,
Pythagorean primitive holes.

Corollary 2.52 ([22]). The Jaco graphs J∗
n (x), n, x ∈N, 8≤ n ≤ 15 are the only Jaco graphs with

a unique Pythagorean primitive hole.

Theorem 2.53 ([22]). The Jaco graph J∗
n (x), n, x ∈ N, n ≥ 8 has hp(J∗

n (x)) = k Pythagorean
primitive holes for 5k+d+

J∞(x)(v5k)≤ n < 5(k+1)+d+
J∞(x)(v5(k+1)), alternatively hp(J∗

n (x))= bn
8 c.

To construct the adapted Fisher table below an improvement of Theorem 2.46 is required.

Theorem 2.54 ([22]). For the underlying graph J∗
n (x), n, x ∈N, n ≥ 4 we have recursively:

h(J∗
n+1(x))= h(J∗

n (x))+
d−

J∞(x)(vn+1)−1∑
i=1

i.

The adapted Fisher table, J∞(x), 35≥ n ∈N depicts the values h(J∗
n (x)) and hp(J∗

n (x)) [22].
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Table 8

φ(vi)→ i ∈N d−(vi)= ν(Hi−1) d+(vi)= i−d−(vi) h(J∗
i (x)) hp(J∗

i (x))

1= f2 0 1 0 0

2= f3 1 1 0 0

3= f4 1 2 0 0

4 1 3 0 0

5= f5 2 3 1 0

6 2 4 2 0

7 3 4 5 0

8= f6 3 5 8 1

9 3 6 11 1

10 4 6 17 1

11 4 7 23 1

12 4 8 29 1

13= f7 5 8 39 1

14 5 9 49 1

15 6 9 64 1

16 6 10 79 2

17 6 11 94 2

18 7 11 115 2

19 7 12 136 2

20 8 12 164 2

21= f8 8 13 192 2

22 8 14 220 2

23 9 14 256 2

24 9 15 292 3

25 9 16 328 3

26 10 16 373 3

27 10 17 418 3

28 11 17 473 3

29 11 18 528 3

30 11 19 583 3

31 12 19 649 3

32 12 20 715 4

33 12 21 781 4

34= f9 13 21 859 4

35 13 22 937 4
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It can be seen that Pythagorean primitive holes are generally scarce within Jaco graphs
compared to the number of primitive holes.

3. Finite Jaco Graphs, {Jn(mx) : n,m, x ∈N}

Initially this family of linear Jaco graphs was denoted Jn(a), [20] but the latter is now
substituted by the case f (x)= mx, m, x ∈N with m > 2, c = 0, [29]. Within the new context the
notation Jn(a) will represent the case m = 0, c = a. Of importance is to reflect on the definitions
to ensure an understanding of the basic framework of the new family of directed graphs. Note
that the underlying graph will be denoted J∗

n (mx) and if the context is clear, both the directed
and undirected graph is referred to as a Jaco graph. Similarly the difference between arc and
edge and; dJn(mx)(v) and dJ∗

n (mx)(v) will be understood. Note that the definitions below are
similar to those found in Section 2, Definitions 2.1 to 2.5.

Definition 3.1 ([29]). The family of infinite Jaco Graphs denoted by {J∞(mx) : m, x ∈ N} is
defined by V (J∞(mx))= {vi : i ∈N}, A(J∞(mx))⊆ {(vi,v j) : i, j ∈N, i < j} and (vi,v j) ∈ A(J∞(mx))
if and only if (m+1)i−d−(vi)≥ j.

Definition 3.2 ([29]). The family of finite Jaco Graphs denoted by {Jn(mx) : m,n, x ∈N} is defined
by V (Jn(mx))= {vi : i ∈N, i ≤ n}, A(Jn(mx))⊆ {(vi,v j) : i, j ∈N, i < j ≤ n} and (vi,v j) ∈ A(Jn(mx))
if and only if (m+1)i−d−(vi)≥ j.

Definition 3.3 ([29]). The set of vertices attaining degree ∆(Jn(mx)) is called the set of Jaconian
vertices or the Jaconian vertices or the Jaconian set of the Jaco Graph Jn(mx) and denoted,
J(Jn(mx)) or, Jn(mx) for brevity.

Definition 3.4 ([29]). The lowest numbered (subscripted) Jaconian vertex is called the prime
Jaconian vertex of a Jaco Graph.

Definition 3.5 ([29]). If vi is the prime Jaconian vertex, the complete subgraph on vertices
vi+1,vi+2, · · · ,vn is called the Hope subgraph or Hope graph of a Jaco Graph and denoted,
H(Jn(mx)) or, Hn(mx) for brevity.

The mx-root digraph has four fundamental properties which are:

(i) V (J∞(mx))= {vi : i ∈N}, and

(ii) if v j is the head of an arc then the tail is always a vertex vi , i < j, and

(iii) if vk for smallest k ∈N is a tail vertex then all vertices v`, k < `< j are tails of arcs to v j

and finally,

(iv) the degree of vertex vk is d(vk)= mk.

The family of finite Jaco graphs are those limited to n ∈N vertices by lobbing off all vertices
(and arcs to vertices) vt, t > n. Hence, trivially d(vi)≤ mi for i ∈N. Figure 3 depicts J11(2x+1)
(see [29]).
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Figure 2. Jaco graph J11(2x+1) [29]

Property 3.1 ([29]). From the definition of a Jaco Graph Jn(mx), it follows that, if for the prime
Jaconian vertex vi , we have d(vi)= ki then in the underlying Jaco graph we have d(vk)= mk for
all k ∈ {1,2,3, . . . , i}.

Property 3.2 ([29]). From the definition of a Jaco Graph Jn(mx), it follows that ∆(Jk(mx))≤
∆(Jn(mx)) for all k ≤ n.

Property 3.3 ([29]). From the definition of a Jaco Graph Jn(mx), it follows that the lowest
degree attained by all Jaco Graphs is 0≤ δ(Jn(mx))≤ m.

Property 3.4 ([29]). The d−(vk) for any vertex vk of a Jaco Graph Jn(mx), n ≥ k is equal to
d(vk) in the underlying Jaco Graph Jk(mx).

Lemma 3.1 ([29]). For the Jaco Graphs Ji(mx), i ∈ {1,2,3, . . . ,m+1} we have ∆(Ji(mx))= i−1
and J(Ji(mx))= {vk : 1≤ k ≤ i}=V (Ji(mx)).

Lemma 3.2 ([29]). If in a Jaco Graph Jn(mx), and for smallest i, the arc (vi,vn) is defined, then
vi is the prime Jaconian vertex of Jn(mx).

Lemma 3.3 ([29]). For all Jaco Graphs Jn(mx), n, x ∈ N, n ≥ 2 and, vi,vi−1 ∈ V (Jn(mx)) we
have that in the underlying graph |(d(vi)−d(vi−1)| ≤ a.

Note that ∆(Jn(mx)) might repeat itself as n increases to n+1 but on an increase we always
obtain ∆(Jn(mx))+1 before ∆(Jn(mx))+2.

Theorem 3.4 ([29]). The Jaco Graph Jk(mx), k,m, x ∈N, k = m(m+1)+1 is the smallest Jaco
Graph in {Jn(mx) : n,m, x ∈N} which has ∆(Jk(mx))= m(m+1) and J(Jk(mx))= {vm+1}.
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Observe, perhaps a trivial but important result has not been reported. We shall advance the
result to enhance our understanding of Jaco graphs.

Proposition 3.5. The prime Jaconian vertices of Jn(x), n, x ∈N, say vi, is the prime Jaconian
vertex of Ji+(mi−d−

Ji (mx)(vi))(mx).

Proof. Since vi is the prime Jaconian vertex of Jn(x) the prime vertex has d(vi)= i. For vertex vi

to be the prime Jaconian vertex of a smallest Jn(mx) it is required that a·d(vi)= mi. Since d−(vi)
remains constant in J j≥i(mx) (see Property 3.4) the smallest j is j = i+ (mi−d−

Ji(mx)(vi)).

Definition 3.6 ([29]). For m ∈N, we define the series (cm,n)n∈N0 by

cm,0 = 0, cm,1 = 1, cm,n =min{k < n : mk+ cm,k ≥ n} (n ≥ 2).

The connection between the mx-root digraph J∞(mx) and the series (cm,n) is explained by
the following lemma.

Lemma 3.6 ([20, 29]). Consider the Jaco Graph J∞(mx), m,n, x ∈N then the following hold:

(a) d+(vn)+d−(vn)= mn.

(b) d−(vn+1) ∈ {d−(vn), d−(vn)+1}.

(c) If (vi,vk) ∈ A(J∞(mx)) and i < j < k, then (v j,vk) ∈ A(J∞(mx)).

(d) d+(vn)= (m−1)n+ cm,n.

Corollary 3.7 ([20, 29]). Note that (a) and (b) of Lemma 3.6 entail that d−(vn+1) = (n+1)−
cm,n+1 ∈ {n− cm,n,n− cm,n +1} and that (d) then implies that the series (cm,n) are well-defined
and ascending, more specifically, cm,n+1 ∈ {cm,n, cm,n +1} (n ∈N0).

Lemma 3.8 ([20, 29]). Let k ∈N, and 0≤ b < m. Then cm,mk+cm,k−b = k.

3.1 Fibonaccian-Zeckendorf Result related to, {Jn(mx) : n,m, x ∈N}
Recall that the generalised Lucas sequence Un(m,−1) is defined by

U0 = 0, U1 = 1, Un+1 = mUn +Un−1.

It is well known that Un = rn−sn

r−s , where r = m
2 +

√
m2

4 +1, s = m
2 −

√
m2

4 +1. A probably well-
known (and not hard to prove) theorem, which in the case m = 1 is known as Zeckendorf’s
theorem was required to derive the next important results.

Lemma 3.9 ([29]). Let n ∈ N and let U0,U1, . . . be the terms of the Lucas sequence U(m,−1).
Then n may be uniquely expressed by a sum n = ∑

i∈N
αiUi, where

0≤α1 < m, 0≤αi ≤ m (i > 2), and αi = m only if αi−1 = 0 (i ∈N).

Theorem 3.10 ([20, 29]). Let n ∈ N, n = ∑
i∈N

αiUi where the requirements of Lemma 3.9 are

assumed to be met. Then bn = ∑
i∈N

αiUi−1 +τ(n).
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3.2 Number of Arcs of Jaco Graphs, {Jn(mx) : n,m, x ∈N}
It is hoped that as a special case, a closed formula can be found for the number of arcs of a finite
Jaco Graph Jn(mx). However, the algorithms discussed in Ahlbach et al. [1] suggest this might
not be possible.

Proposition 3.11 ([20, 29]). The number of arcs of a Jaco Graph, ε(Jn(mx)) = 1
2 n(n−1) if

n ≤ m+1..

Theorem 3.12 ([20, 29]). If for the Jaco Graph Jn(mx), n,m, x ∈N we have ∆(Jn(mx))= k, then

ε(Jn(mx))= ε(H(Jn(mx)))+
k∑

i=1
d+(vi).

Corollary 3.13 ([20, 29]). The number of arcs of a Jaco Graph J∗
n (mx), n,m, x ∈ N, having

vertex vi as the prime Jaconian vertex, can also be expressed recursively as:

ε(J∗
n+1(mx))=

{
ε(J∗

n (mx))− i+n, if d(vi)= mi,

ε(J∗
n (mx))− i+ (n+1), if d(vi)< mi.

3.3 Number of Shortest Paths in the Jaco Graphs, {Jn(mx) : n,m, x ∈N}
In the first work the Liz numbers11 were defined (see [20]). Recently Stephan Wagner12 identified
these numbers to be a special case generated from a Horadam Sequence. Reader should note
the subtle difference between the (m,1)-Fibonacci sequence defined in Kalman et al. [16], and
the definition of the Liz numbers. The latter observations with the results from Subsections 2.2
and 3.1 suggest a strong connection between certain properties of Jaco graphs and Number
Theory. Furthermore, studies of the generalisation of the concept to polynomial Jaco graphs

Jn( f (x)) where f (x)=
t∑

i=1
aixi+ c, n,ai, x ∈N and c ∈N0, will justify the generalized Liz numbers

as a family of numbers that can be distinguished from the family of Horadam numbers.

Definition 3.7 ([20]). Liz numbers are the family of numbers defined by L={Lm : L0 = 0,L1 = 1,
L2 = 1,Li = mLi−1 +Li−2,m, i ∈N, i ≥ 3}.

Definition 3.8 ([20, 29]). The set of distance-root vertices of the Jaco Graph Jn(mx), is the
set {vL2 ,vL3 ,vL4 , . . . ,vL j<n, · · · ,vn : for smallest subscript L j , arc (vL j ,vn) ∈ A(Jn(mx))} and is
denoted, D(Jn(mx)) or Dn(mx) for brevity.

Property 3.5 ([20, 29]). From Definitions 3.7 and 3.8 it follow that besides possibly vn, all other
distance-root vertices of the Jaco Graph Jn(mx), n ∈N, have Liz number subscripts.

Property 3.6 ([20, 29]). The set of Fibonacci numbers F ∈ L, since m = 1 for F.

Lemma 3.14 ([20, 29]). In a Jaco Graph Jn(mx), n,m, x ∈N we have for smallest k such that,
k+d+(vk)≥ i that, dJn(mx)(v1,vi)= dJn(mx)(v1,vk)+1.

11In the derivative named after the author’s wife, Elizabeth Kok.
12Department of Mathematical Sciences, Stellenbosch University, Republic of South Africa.
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Definition 3.9 ([20, 29]). Let the number of distinct shortest paths between v1 and vn in the
Jaco Graph Jn(x), n, x ∈N be denoted by ψ(vn).

Proposition 3.15 ([20, 29]). Consider vertex v j, j ≥ 1 in Jn(x), n, x ∈ N. The shortest path
between v1 and v j is unique if and only if, d+(v j) ∈ F.

Proposition 3.16 ([20, 29]). Consider vertex v j, j ≥ 1 in Jn(x), n, x ∈N. If and only if d+(v j) ∉ F,

then ψ(v j)=
f t∑

i=l
ψ(vi), with f t the largest Fibonacci number less than j and l the smallest integer

such that the edge (vl ,v j) exists.

Conjecture 3.16.1 ([20, 29]). Let k ≥ 7 and f i < k ≤ f i+1, and f i, f i+1 ∈ F. If and only if d+(vk)
is non-repetitive (meaning d+(vk−1) 6= d+(vk) 6= d+(vk+1)) then ψ(vk) is non-repetitive (meaning
ψ(vk−1) 6=ψ(vk) 6=ψ(vk+1)).

4. Linear Function Corresponding to a Linear Jaco Graph
It is was reported in [29] that if for a sufficiently large linear Jaco Graph Jn( f (x)) there exist
two vertices vi , v j for which d(vi) = f (i) and d(v j) = f ( j) then the linear function f (x) can be
derived by solving the simultaneous equations:

mi+ c = d(vi), m j+ c = d(v j).

The smallest linear Jaco graph for which this is possible is for Jf (2)+1( f (x)) hence, knowing that
d(v2)= f (2) in the given linear Jaco graph.

Proposition 4.1 ([29]). If for a linear Jaco graph, d(vi) = f (i) and d(vi+1) = f (i+1) then for
maximum i′, j′ for which the arcs (vi,vi′), (vi+1,v j′) exist, we have j′− i′ ∈ {m,m+1}.

Each positive integer k can be written as k+1 sums of non-negative integers m+ c, m ≥ 0,
c ≥ 0. If the lower limit on m is relaxed to allow m ≥ 0 then for a given k the linear Jaco graphs
corresponding to the functions f i(x)= mix+ ci , mi + ci = k and 1≤ i ≤ k+1, are f -related Jaco
graphs.

For m = 0 and c ≥ 0 two special classes of disconnected linear Jaco graphs exist. For
c = 0 the Jaco graph Jn(0) is a null graph (edgeless graph) on n vertices. For c = k > 0,
the Jaco graph Jn(k) = ⋃

b n
k+1 c-copies

Kk+1
⋃

Kn−(k+1)·b n
k+1 c. Figure 3 depicts the linear Jaco graph

J15(3)= K4
⋃

K4
⋃

K4
⋃

K3 (see [29]).
Note that a complete graph Kn is a linear Jaco graph to any linear function f (x)= mx+ c if

n ≤ m+ c+1. And, if Kn is a f -related linear Jaco graph, the complete graph corresponds to
any of the m+ c+1 defined linear functions. It implies that at least a two-component subgraph
of complete graphs say Ks

⋃
K t is required to derive the unique linear function f (x) = k−1,

k =max{s, t}.
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Figure 3. Jaco graph J15(3)= K4
⋃

K4
⋃

K4
⋃

K3 [29]

5. Conclusion

Real world applications of Jaco graphs have not been found as yet. This provides scope for

studies into Applied Jaco Graph Theory. Much research has been done for the case f (x) = x,

x ∈N and limited comparative research followed for the case f (x)= mx, m, x ∈N. Results for the

general case f (x)= mx+ c, m, c, x ∈N are completely open.

Certainly Conjectures 2.4.1, 2.4.2, 2.16.1, 2.48.1 and 3.16.1 call for closure. Also the Grog

algorithm requires formalisation.

As stated in [29] the generalisation of the concepts to polynomial Jaco graphs Jn( f (x)) where

f (x) =
t∑

i=1
aixi + c, n,ai, x ∈ N and c ∈ N0, will be worthy to study. Definition 2.1 will have to

change to define the orientation of edges resulting from f (x)< 0. Also, given a sufficiently large

polynomial Jaco graph, deriving the polynomial function can be formalised.

It is the author’s considered view that having found a closed formula for the number of arcs

(edges of J∗
n ( f (x)) during the compilation of this critical review paper for the special case f (x)= x,

x ∈N opened a wide scope for closure of many recursive results. The remaining challenges are

to generalised the result for the number of arcs (edges) for Jn( f (x)), f (x)= mx+ c after which

the closure of other general results may follow.

Furthermore, the family of linear Jaco graphs offers a wide scope of formal thesis research

at, at least master degree level. The author expresses his willingness to serve as co-supervisor

in any such thesis research.
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