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General Proximal Point Algorithmic Models and Nonlinear
Variational Inclusions Involving RMM Mappings

Ram U. Verma

Abstract. The proximal point algorithms based on relative A-maximal

monotonicity (RMM) is introduced, and then it is applied to the approximation

solvability of a general class of nonlinear inclusion problems using the generalized

resolvent operator technique. This algorithm seems to be more application-

oriented to solving nonlinear inclusion problems. Furthermore, the obtained

result could be applied to generalize the Douglas-Rachford splitting method to

the case of RMM mapping based on the generalized proximal point algorithm.

1. Introduction

Consider a real Hilbert space X with the norm ‖ · ‖ and the inner product 〈·, ·〉.
Here we are concerned with a general class of nonlinear variational inclusion
problems: determine a solution to

0 ∈ M(x), (1.1)

where M : X → 2X is a set-valued mapping on X .
Recently, the Verma [24] investigated the solvability of a generalized class

of variational inclusion systems involving RMM, RMRM, PSM and cocoercive
mappings. These notions, especially RMM and RMRM generalize most of the
existing concepts of general maximal monotonicity in literature. On the other
hand, these notions do have significant applications to proximal point algorithms
and its variants, especially introduced and studied by Eckstein and Bertsekas [1],
that was based on the work of Rockafellar [10], while solving inclusion problems
of the form (1.1). Furthermore, Verma [19] applied the relative A-maximal
monotonicity (RMM), in the context of investigating the approximation solvability
of an inclusion problem of the form (1.1) relating to sensitivity analysis.
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In this communication, we develop a general framework for the generalized
proximal point algorithm in light of the notion of the relative A-maximal
monotonicity (RMM) of the set-valued map M , that encompasses most of
proximal point algorithms applied to the context of solving general inclusion
problems (1.1) in literature. Verma [17] introduced and studied the notion of A-
maximal monotonicity, while examining the approximation solvability of inclusion
problems of the form (1.1) that may have applications to problems arising from
mathematical economics, optimization and control theory, operations research,
mathematical finance, mathematical programming, and decision and management
sciences. The notion of A-maximal monotonicity generalizes the existing general
theory of maximal monotone mappings, including the H-maximal monotone
mappings [4]. For more literature, we recommend the reader [1]-[27].

2. General Relative A-Maximal Monotonicity

In this section we present some basic properties on relative A-maximal
monotonicity (RMM) and related results. Let M : X → 2X be a multivalued
mapping on X . We shall denote both the map M and its graph by M , that is, the
set {(x , y) : y ∈ M(x)}. This is equivalent to stating that a mapping is any subset
M of X × X , and M(x) = {y : (x , y) ∈ M}. If M is single-valued, we shall still use
M(x) to represent the unique y such that (x , y) ∈ M rather than the singleton set
{y}. This interpretation shall much depend on the context. The domain of a map
M is defined (as its projection onto the first argument) by

D(M) = {x ∈ X : ∃ y ∈ X : (x , y) ∈ M}= {x ∈ X : M(x) 6= ;}.
The inverse M−1 of M is {(y, x) : (x , y) ∈ M}.

Definition 2.1. Let A : X → X be a single-valued mapping, and M : X → 2X be a
multivalued mapping on X . The map M is said to be:

(i) Monotone if

〈u∗ − v∗, u− v〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) (r)-strongly monotone if there exists a positive constant r such that

〈u∗ − v∗, u− v〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iii) (r)-expanding if there exists a positive constant r such that

‖u∗ − v∗‖ ≥ r‖u− v‖ ∀ (u, u∗), (v, v∗) ∈ graph(M).

(iv) (m)-relaxed monotone if there exists a positive constant m such that

〈u∗ − v∗, u− v〉 ≥ (−m)‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(v) (c)-cocoercive if there exists a positive constant c such that

〈u∗ − v∗, u− v〉 ≥ c‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(vi) Cocoercive if we have

〈u∗ − v∗, u− v〉 ≥ ‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).
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(vii) (d)-relaxed cocoercive if there exists a positive constant d such that

〈u∗ − v∗, u− v〉 ≥ −d‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(viii) Nonexpansive if

‖u∗ − v∗‖ ≤ ‖u− v‖ ∀ (u, u∗), (v, v∗) ∈ graph(M).

(ix) Firmly nonexpansive if

‖u∗ − v∗‖2 ≤ 〈u∗ − v∗, u− v〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(x) (c)-Firmly nonexpansive if there is a positive constant c such that

‖u∗ − v∗‖2 ≤ c〈u∗ − v∗, u− v〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xi) Hypermonotone if

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xii) (r)-Strongly hypermonotone if there exists a positive constant r such that

〈u∗ − v∗, A(u)− A(v)〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xiii) (m)-relaxed hypermonotone if there exists a positive constant m such that

〈u∗ − v∗, A(u)− A(v)〉 ≥ (−m)‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xiv) (c)-hypercocoercive if there exists a positive constant c such that

〈u∗ − v∗, A(u)− A(v)〉 ≥ c‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xv) Hypercocoercive if we have

〈u∗ − v∗, A(u)− A(v)〉 ≥ ‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xvi) (d)-relaxed hypercocoercive if there exists a positive constant d such that

〈u∗ − v∗, A(u)− A(v)〉 ≥ −d‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xvii) Firmly hypernonexpansive if

‖u∗ − v∗‖2 ≤ 〈u∗ − v∗, A(u)− A(v)〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(xviii) (c)-Firmly hypernonexpansive if there is a positive constant c such that

‖u∗ − v∗‖2 ≤ c〈u∗ − v∗, A(u)− A(v)〉 ∀ (u, u∗), (v, v∗) ∈ graph(M).

Definition 2.2. The map M : X → 2X is said to be maximal monotone if

(i) M is monotone, that is,

〈u∗ − v∗, u− v〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(M),

and
(ii) it follows from (u, u∗) ∈ X × X and

〈u∗ − v∗, u− v〉 ≥ 0 ∀ (v, v∗) ∈ graph(M)

that (u, u∗) ∈ graph(M).

Definition 2.3. Let A : X → X be a single-valued mapping. The map M : X → 2X

is said to be maximal hypermonotone (MHM) if

(i) M is hypermonotone, that is,

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(M),

and it follows from
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(ii) (u, u∗) ∈ X × X and

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (v, v∗) ∈ graph(M)

that (u, u∗) ∈ graph(M).

Definition 2.4 ([19]). Let A : X → X be a single-valued mapping. The map
M : X → 2X is said to be relative A-maximal monotone (RMM) if:

(i) M is hypermonotone, that is,

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) R(A+ρM) = X for ρ > 0.

Example 2.1. We consider an example where M is hypermonotone but not
monotone. Let X = (−∞,+∞), M(x) = −x and A(x) = − 1

2
x for all x ∈ X .

Then it is easy to check that M is hypermonotone but not monotone.

Definition 2.5 ([19]). Let A : X → X be an (r)-strongly monotone mapping and
let M : X → 2X be an RMM mapping. Then the generalized resolvent operator
RM
ρ,A : X → X is defined by

RM
ρ,A(u) = (A+ρM)−1(u).

Proposition 2.1. Let A : X → X be an (r)-strongly monotone single-valued mapping
and let M : X → 2X be an RMM mapping. Then (A+ρM) is maximal hypermonotone
for ρ > 0.

Proof. In light of Definition 2.3, A+ ρM is hypermonotone for ρ > 0, since A is
(r)-strongly monotone and M is hypermonotone. All be need to show at this stage
is for (u, u∗) ∈ X × X and

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (v, v∗) ∈ graph(A+ρM),

we have (u, u∗) ∈ graph(A+ρM).
To achieve this, assume that there exists some (u0, u∗0) /∈ graph(A+ ρM) such

that

〈u∗0 − v∗, A(u0)− A(v)〉 ≥ 0 ∀ (v, v∗) ∈ graph(A+ρM).

Since M is RMM (and hence (A+ρM)X = X for ρ > 0), there exists an (u1, u∗1) ∈
graph(A+ρM) such that A(u0) +ρu∗0 = A(u1) +ρu∗1, and as a result, we have

ρ〈u∗0 − u∗1, A(u0)− A(u1)〉=−〈A(u0)− A(u1), A(u0)− A(u1)〉 ≥ 0.

Now aplying the (r)-strong monotonicity of A (and hence ‖A(x)−A(y)≥ r‖x− y‖),
we infer that u0 = u1, and as a result, we conclude u∗0 = u∗1, a contradiction to
(u0, u∗0) /∈ graph(A+ρM). ¤
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Example 2.2. Let A : X → X be (r)-strongly monotone. Let f : X → R be a locally
Lipschitz function such that

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈ graph(∂ f ),

and R(A+ ∂ f ) = X . Then clearly A+ ∂ f is strongly hypermonotone, and for
(u, u∗) ∈ X × X and

〈u∗ − v∗, A(u)− A(v)〉 ≥ 0 ∀ (v, v∗) ∈ graph(A+ ∂ f ),

we have (u, u∗) ∈ graph(A+ ∂ f ). Thus, A+ ∂ f is maximal hypermonotone.

Proposition 2.2 ([19]). Let X be a real Hilbert space, let A : X → X be (r)-strongly
monotone, and let M : X → 2X be RMM. Then the generalized resolvent operator
associated with M and defined by

RM
ρ,A(u) = (A+ρM)−1(u) ∀ u ∈ X ,

is ( 1
r
)-Lipschitz continuous.

Proposition 2.3 ([19]). Let X be a real Hilbert space, let A : X → X be (r)-strongly
monotone, and let M : X → 2X be RMM. Then the generalized resolvent operator
associated with M and defined by

RM
ρ,A(u) = (A+ρM)−1(u) ∀ u ∈ X ,

satisfies

〈u− v, A(RM
ρ,A(u))− A(RM

ρ,A(v))〉 ≥ ‖A(RM
ρ,A(u))− A(RM

ρ,A(v))‖2.

Proposition 2.4 ([19]). Let X be a real Hilbert space, let A : X → X be (r)-strongly
monotone, and let M : X → 2X be RMM. Then the generalized resolvent operator
associated with M and defined by

RM
ρ,A(u) = (A+ρM)−1(u) ∀ u ∈ X ,

satisfies

〈A(u)− A(v), A(RM
ρ,A(A(u)))− A(RM

ρ,A(A(v)))〉
≥ ‖A(RM

ρ,A(A(u)))− A(RM
ρ,A(A(v)))‖2.

When A= I in Proposition 2.4, we have the well-known result in literature.

Proposition 2.5. Let X be a real Hilbert space, and let M : X → 2X be maximal
monotone. Then the resolvent operator associated with M and defined by

RM
ρ (u) = (I+ρM)−1(u) ∀ u ∈ X ,

satisfies

〈u− v, RM
ρ (u)− RM

ρ (v)〉 ≥ ‖RM
ρ (u)− RM

ρ (v)‖2,

that is, the resolvent operator RM
ρ is firmly nonexpansive.
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3. Generalized Proximal Point Algorithm

This section deals with an introduction of a generalized version of the proximal
point algorithm and its applications to approximation solvability of the inclusion
problem (1.1) based on the relative A-maximal monotonicity (RMM).

Proposition 3.1 ([19]). Let Jk = A− A◦ J M
ρ,A ◦ A. If, in addition,

〈A(u)− A(v), A(J M
ρ,A(A(u)))− A(J M

ρ,A(A(v)))〉
≥ ‖A(J M

ρ,A(A(u)))− A(J M
ρ,A(A(v)))‖2.

then

‖A(J M
ρ,A(A(u)))− A(J M

ρ,A(A(v)))‖2 + ‖Jk(u)− Jk(v)‖2

≤ ‖A(u)− A(v)‖2 ∀ u, v ∈ X . (3.1)

Theorem 3.1. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone,
and let M : X → 2X be RMM. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1.1).
(ii) For an u ∈ X , we have

u= RM
ρ,A(A(u)).

where RM
ρ,A(u) = (A+ρM)−1(u).

In the following theorem, we apply the generalized proximal point algorithm
to approximating the solution of (1.1), and as a result, we establish the weak
convergence.

Theorem 3.2. Let X be a real Hilbert space, let A : X → X be (r)-strongly monotone
and weakly continuous, and let M : X → 2X be RMM. For an arbitrarily chosen initial
point x0, suppose that the sequence {x k} is generated by the generalized proximal
point algorithm

A(x k+1) = (1−αk)A(x
k) +αk yk ∀ k ≥ 0, (3.2)

and yk satisfies

‖yk − A(RM
ρk ,A(A(x

k)))‖ ≤ εk,

where RM
ρk ,A = (A+ρk M)−1, and {εk}, {αk}, {ρk} ⊆ [0,∞) are scalar sequences.

Suppose that {x k} is bounded in the sense that there exists at least one solution
to 0 ∈ M(x). Then the sequence {x k} converges weakly to a unique solution x∗ of
(1.1) with

∑∞
k=0 εk <∞, infαk > 0, supαk < 2, α= limsupk→∞αk, and infρk > 0.

Proof. Let x∗ be a zero of M . We infer from Theorem 3.1 that any solution to (1.1)
is a fixed point of J M

ρk ,A ◦A. Thus, RM
ρk ,A(A(x

∗)) = x∗ and for Jk = A−A◦ J M
ρ,A ◦A, we

need to show that

Jk(x
k) = A(x k)− A(RM

ρ,A(A(x
k)))→ 0.
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Now we begin with the result, that follows, in light of Proposition 2.4 that

〈A(x k)− A(x∗), Jk(x
k)− Jk(x

∗)〉 ≥ ‖Jk(x
k)− Jk(x

∗)‖2, (3.3)

that is, Jk is firmly nonexpansive with respect to A.
Next we start the main part of the proof by expressing (for all k ≥ 0),

A(zk+1) = (1−αk)A(x
k) +αkA(RM

ρk ,A(A(x
k)))

= (A−αkJk)(x
k).

For all k ≥ 0, using (3.3), we have

‖A(zk+1)− A(x∗)‖2

= ‖A(x k)−αkJk(x
k)− A(x∗)‖2

= ‖A(x k)− A(x∗)‖2 − 2αk〈A(x k)− A(x∗), Jk(x
k)〉+α2

k‖Jk(x
k)‖2

≤ ‖A(x k)− A(x∗)‖2 − 2αk‖Jk(x
k)− Jk(x

∗)‖2] +α2
k‖Jk(x

k)‖2

= ‖A(x k)− A(x∗)‖2 − [2αk −α2
k]‖Jk(x

k)‖2.

Since αk[2−αk]> 0, we have

‖A(zk+1)− A(x∗)‖ ≤ ‖A(x k)− A(x∗)‖. (3.4)

Since A(x k+1) = (1−αk)A(x k) +αk yk, we have

A(x k+1)− A(x k) = αk(y
k − A(x k)) .

It follows that

‖A(x k+1)− A(zk+1)‖
= ‖(1−αk)A(x

k) +αk yk − [(1−αk)A(x
k) +αkRM

ρk ,A(A(x
k))]‖

= ‖αk(y
k − RM

ρ,A(A(x
k)))‖

≤ αkεk.

Next, we estimate using the above arguments

‖A(x k+1)− A(x∗)‖ ≤ ‖A(zk+1)− A(x∗)‖+ ‖A(x k+1)− A(zk+1)‖
≤ ‖A(zk+1)− A(x∗)‖+αkεk

≤ ‖A(x k)− A(x∗)‖+αkεk. (3.5)

Therefore, we have

‖A(x k+1)− A(x∗)‖ ≤ ‖A(x k)− A(x∗)‖+αkεk. (3.6)

Combining (3.6) for k ≥ 0, we have

‖A(x k+1)− A(x∗)‖ ≤ ‖A(x0)− A(x∗)‖+
k∑

j=0

α jε j
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≤ |A(x0)− A(x∗)‖+ 2
∞∑

k=0

εk. (3.7)

Since A is (r)-strongly monotone (and hence, ‖A(u)− A(v)≥ r‖u− v‖), we have

‖x k+1 − x∗‖ ≤ 1

r


|A(x0)− A(x∗)‖+ 2

∞∑

k=0

εk


 . (3.8)

We infer now that the sequence {x k} is bounded.
Using (3.7), we further derive the estimate leading to Jk(x k)→ 0.

‖A(x k+1)− A(x∗)‖2

= ‖A(zk+1)− A(x∗) + A(x k+1)− A(zk+1)‖2

≤ ‖A(zk+1)− A(x∗)‖2 + 2〈A(zk+1)− A(x∗), A(x k+1)− A(zk+1)〉
+‖A(x k+1)− A(zk+1)‖2

≤ ‖A(x k)− A(x∗)‖2 −αk[2−αk]‖Jk(x
k)‖2

+2αkεk(‖A(x k)− A(x∗)‖+ 2αkεk) +α
2
kε

2
k.

Since {εk} is summable (and hence {ε2
k} is summable) and

∑∞
k=0αk < ∞), it

implies, for all k, that

‖A(x k+1 − A(x∗)‖2 ≤ ‖A(x0)− A(x∗)‖2

+2αkεk

�
‖A(x0)− A(x∗)‖+ 2

k∑

j=0

α jε j

�

+
k∑

j=0

α2
j ε

2
j −αk[2−αk]

k∑

j=0

‖J j(x
j)‖2.

It follows that
∑∞

j=0 ‖J j(x j)‖2 <∞ implies Jk(x k)→ 0 as k→∞.
Now, by the Generalized Representation Lemma, for all k, there is a unique

point (uk, vk) ∈ M such that A(uk) + ρk vk = A(x k). Since Jk(x k) → 0 and uk =
(RM
ρk ,A ◦ A)(x k), it implies A(x k)− A(uk)→ 0. Furthermore, ρk vk = A(x k)− A(uk),

and hence vk = ρ−1
k Jk(x k)→ 0, where ρk is bounded away from zero. As {x k} is

bounded in light of (3.8), it must have a weak cluster point, say x ′. Suppose that
{x k( j)}∞j=0 be a subsequence such that x k( j) w→ x ′.

Since A(x k)− A(uk) → 0 and A is (r)-strongly monotone (and hence, A is (r)-
expanding, that is, ‖A(x k) − A(uk)‖ ≥ r‖x k − uk‖), it follows that x k − uk → 0.
Given that A is weakly continuous, we have A(uk( j))

w→ A(x ′). Finally, consider a
point (u, v) ∈ M . Then relative A-maximal monotonicity of M ensures that

〈A(u)− A(uk), v − vk〉 ≥ 0 ∀ k ≥ 0.

Thus, we have

〈A(u)− A(x ′), v − 0〉 ≥ 0.
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Since M is relative A-maximal monotone, and (u, v) is arbitrary, we have (x ′, 0) ∈
M . As a result, x ′ is a solution to (1.1). Moreover, the uniqueness of the solution
easily follows. ¤

(ii) For A= I (identity), Theorem 3.2 reduces to ([1, Theorem 3]).

Theorem 3.3. Let X be a real Hilbert space, and let M : X → 2X be maximal
monotone. For an arbitrarily chosen initial point x0, suppose that the sequence {x k}
is generated by the generalized proximal point algorithm

x k+1 = (1−αk)x
k +αk yk ∀ k ≥ 0, (3.9)

and yk satisfies

‖yk − J M
ρk ,A(x

k)‖ ≤ εk ,

where J M
ρk
= (I +ρk M)−1, and {εk}, {αk}, {ρk} ⊆ [0,∞) are scalar sequences.

Then the sequence {x k} converges weakly to a unique solution x∗ of (1.1) with
where

∑∞
k=0 εk <∞, infαk > 0, supαk < 2, α= limsupk→∞αk, and infρk > 0.

4. Concluding Remark

In literature [26, 27], the Yosida regularization/approximation has been applied
in the context of solving evolution equations as well as evolution inclusions in
Hilbert and Banach space settings, where the Yosida regularization and Yosida
approximation, respectively, of the form

Mρ,regular = M(I +ρM)−1,

and

Mρ,app = ρ
−1(I − (I +ρM)−1) for ρ > 0,

are considered. As a matter of fact, both are mutually equivalent in nature and to
applications.

Based on our construction in Proposition 3.1, we generalized the Yosida
approxi-mation to the case of A-maximal monotonicity as

Mρ,app = ρ
−1(A− A(A+ρM)−1A) for ρ > 0,

and applied to the solvability of a class of first-order evolution inclusions
empowered by the maximal accretivity/maximal monotonicity in a forthcoming
communication.
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