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1. Introduction
Two members in the vast array of integer sequences are the Pell {Pn}∞n=0 and Pell-Lucas {Qn}∞n=0
sequences, which are defined by the recurrence relations

Pn+2 = 2Pn+1 +Pn, Qn+2 = 2Qn+1 +Qn; n ≥ 0 ,

where P0 = 0, P1 = 1, Q0 = 2 and Q1 = 2 [1,5]. The Pell and Pell-Lucas numbers are generated
by the Binet’s formula and matrices as well as the recurrence relations. For the characteristic
equation φ2 −2φ−1= 0, since the roots of this equation are φ1,2 = 1±p

2, it is known that Pn
and Qn numbers can be expressed with the Binet’s formula in the form [1]:

Pn = φn
1 −φn

2

2
p

2
, Qn =φn

1 +φ−n
2 ,
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where φ1 = 1+p
2 is the silver ratio. Also, Pn and Qn numbers can be derived by taking

successive integer powers of 2×2 matrices and multiplying of their different powers [1,2]:

Mn =
[

Pn+1 Pn

Pn Pn−1

]
, Nn =

[
1
2Qn 2Pn

Pn
1
2Qn

]
, Hn =

[−1
2 Qn−1 2Pn

−Pn
1
2Qn+1

]
.

As known, the integer sequences are not widely identified for any rational or real numbers
that are not integers. However, in literature authors have defined a lot of methods that may be
used to characterize the Pell and Pell-Lucas numbers with rational or real subscripts [6–8]. The
characterisation of the Pell and Pell-Lucas numbers is given in [6,7] studies of Horadam who
has observed geometrical connection between Pell-type numbers and circles. These studies show
how the Pell and Pell-Lucas numbers are associated with sets of coaxal circles. Thus, author
revealed the point with Euclidean plane (x, y) , where x and y are given by

x =
{(
φ2n −cos(n−1)π

)
/2
p

2φn, y= 0, for {Pn} ,(
φ2n +cos(n−1)π

)
/φn, y= 0, for {Qn} , φ= 1+p

2.

Each of these points makes one function which gives classical the Pell Pn and Pell-Lucas Qn
numbers when n is any integer, and also yields the real Pell Px and Pell-Lucas Qx numbers
for any real number n = x in the following:

Px = φ2x −cos(π(x−1))
2
p

2φx
, Qx = φ2x +cos(π(x−1))

φx ,
(
φ= 1+

p
2
)
.

Although the identities Px−1 +Px+1 = Qx and 2Px +Qx = 2Px+1 are valid for the real Pell Px
and Pell-Lucas Qx numbers, the identity P2x = PxQx is destroyed. Thus, Horadam [8] defined
the following Pell and Pell-Lucas curves with complex notation:

Px = φx − exπiφ−x

2
p

2
, Qx =φx + exπiφ−x. (1)

The Px and Qx can be called as the Binet’s formula for the Pell and Pell-Lucas numbers with
real subscripts, respectively. The Px and Qx defined in (1) hold for analogous identities of the
classical Pell and Pell-Lucas numbers [5,8]:

Px−1 +Px+1 =Qx, 2Px +Qx = 2Px+1, P2x = PxQx.

Finally, for all x ≥ 0 real quantity, in [3] authors described the exponential representations for
Px and Qx by given

Px =
[
φx − (−1)λ(x)φ−x]/p8,

Qx =φx + (−1)λ(x)φ−x, φ= 1+
p

2,

and in the same study, authors defined the polynomial exponential representations for Px ,
(x ≥ 0) and Qx , (x > 0) by given

Px =
λ[(x−1)/2]∑

j=0

(
x−1− j

j

)
2x−1−2 j, Qx =

λ[x/2]∑
j=0

x
x+ j

(
x− j

j

)
2x−2 j .

These representations coincide with Pn and Qn numbers when n is a positive integer. Besides,
certain properties of these numbers such as

PxQx =
{

P2x, if φ (x)< 1/2
Q2x/

p
8, if φ (x)≥ 1/2

,
P−x = (−1)λ(x) Qx/

p
8

Q−x = (−1)λ(x)+1p8Px
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are established, where λ (x) is the greatest integer, not exceeding x and φ (x)= x−λ (x)> 0 is
the fractional part of x .

The purpose of this paper is to reveal the Pell and Pell-Lucas numbers given with the Binet’s
formula in (1), by using the square root of the matrices Mn and Nn [1,2,9]. However, the main
goal of this study is not to calculate the square roots of a 2×2 matrix. On the other hand,
in literature, certain methods have been studied [4,10,11] for computing the square roots of
arbitrary 2×2 matrices.

2. Main Results
The main results of the paper are the following.

Theorem 1. Let Mn/2
i (i = 1,2,3,4) denotes a square roots of the Pell matrix Mn . Then,

Mn/2
1,2 =±

[
P(n+2)/2 Pn/2

Pn/2 P(n−2)/2

]
, Mn/2

3,4 = ±1

2
p

2

[
Q(n+2)/2 Qn/2

Qn/2 Q(n−2)/2

]
.

Proof. We apply the Cayley-Hamilton method for computing square roots of the Pell matrix
Mn [11]. The matrix Mn has got the square roots matrices in forms:

p
Mn = ±1√

T ±2
√

det(Mn)

[
Mn ±

√
det(Mn)I

]
, (2)

where I is the identity matrix, and T =Qn is the trace of the matrix Mn . As det(Mn)= enπi,

we have
√

det(Mn)= enπi/2 . Thus, it is obtained that
√

T ±2
√

det(Mn)=√
φn ±

√
enπiφ−n . It

is seen that the matrix Mn has four non-integral square roots. Firstly, we choose that
p

Mn = ±1
φn/2 + enπi/2φ−n/2

[
Pn+1 + enπi/2 Pn

Pn Pn−1 + enπi/2

]
.

Using the Binet’s formula and algebraic manipulation, we can write the values of elements
(1,1) and (1,2) for the right side matrix as

±(
φn/2 − enπi/2φ−n/2)(Pn+1 + enπi/2)

φn − enπiφ−n =±P(n+2)/2

and
±(

φn/2 − enπi/2φ−n/2)Pn

φn − enπiφ−n = ±(
φn/2 − enπi/2φ−n/2)Pn

2
p

2Pn
=±Pn/2.

The elements (2,1) and (2,2) can be found in the similar way. In this case, we find the two
square roots matrices,

Mn/2
1 =

[
P(n+2)/2 Pn/2

Pn/2 P(n−2)/2

]
, Mn/2

2 =−
[

P(n+2)/2 Pn/2

Pn/2 P(n−2)/2

]
. (3)

When we pick the other circumstance of the matrix equation (2), we have
p

Mn = ±(
φn/2 + enπi/2φ−n/2)
φn − enπiφ−n

[
Pn+1 − enπi/2 Pn

Pn Pn−1 − enπi/2

]
.

The value of the element (1,1) is written by algebraic manipulation for the right side matrix as

±(
φn/2 + enπi/2φ−n/2) (

Pn+1 − enπi/2)
φn − enπiφ−n = ±Q(n+2)/2

2
p

2
.
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The other elements are given in the same way. Thus, the other two square roots matrices are
acquired as follow:

Mn/2
3 = 1

2
p

2

[
Q(n+2)/2 Qn/2

Qn/2 Q(n−2)/2

]
, Mn/2

4 = −1

2
p

2

[
Q(n+2)/2 Qn/2

Qn/2 Q(n−2)/2

]
. (4)

Moreover, it is known that the square root of the 2×2 matrix Mn is another 2×2 matrix
Mn/2

i (i = 1,2,3,4) such that Mn = Mn/2
i Mn/2

i . If we take the matrix Mn/2
i (i = 1,2) , these

identities

P2
(n+2)/2 +P2

n/2 = Pn+1, P(n+2)/2Pn/2 +Pn/2P(n−2)/2 = Pn

are obtained by equating of corresponding elements for equal matrices. In addition, as Mn/2
i

(i = 3,4) , considering the elements for the square roots matrices leads to

Q2
(n+2)/2 +Q2

n/2 = 8Pn+1, Q(n+2)/2Qn/2 +Qn/2Q(n−2)/2 = 8Pn.

And also, taking the determinant of the matrices Mn/2 yields

P(n+2)/2P(n−2)/2 −P2
n/2 = enπi/2, Q(n+2)/2Q(n−2)/2 −Q2

n/2 =−8enπi/2

which are a general case of the Cassini-like formula for the Pell and Pell-Lucas numbers with
specialized rational subscripts, respectively.

Hence the matrices Mn/2
i (i = 1,2,3,4) are nonsingular, the notation M−n/2

i denotes the
inverse of matrices Mn/2

i in (3) and (4), which are given as:

M−n/2
1,2 = ±1

enπi/2

[
P(n−2)/2 −Pn/2

−Pn/2 P(n+2)/2

]
, M−n/2

3,4 = ±1

2
p

2enπi/2

[−Q(n−2)/2 Qn/2

Qn/2 −Q(n+2)/2

]
.

A lot of elementary formula for these numbers can be found by equating of corresponding
elements for the equal matrices such as Mk/2M(n+1)/2 = M(k+n+1)/2 , MnM1/2 = M(2n+1)/2 and
Mn/2M(n+1)/2 = M(2n+1)/2 .

Theorem 2. For all integers k and n , the following equalities are valid:

(i) P(k+n+1)/2 = Pk/2P(n+3)/2 +P(k−2)/2P(n+1)/2 ,

(ii) 8P(k+n+1)/2 =Q(k+2)/2Q(n+1)/2 +Qk/2Q(n−1)/2 ,

(iii) P(2n+1)/2 = PnP3/2 +Pn−1P1/2 ,

(iv) Q(2n+1)/2 = Pn+1Q1/2 +PnQ−1/2 ,

(v) P(2n+1)/2 = P(n+2)/2P(n+1)/2 +Pn/2P(n−1)/2 ,

(vi) 8P(2n+1)/2 =Qn/2Q(n+3)/2 +Q(n−2)/2Q(n+1)/2 ,

(vii) enπi/2P(k−n)/2 = Pk/2P(n+2)/2 −P(k+2)/2Pn/2 ,

(viii) 8enπi/2P(k−n)/2 =Q(k+2)/2Qn/2 −Qk/2Q(n+2)/2 .

Proof. The equalities (i)-(ii) can be found by the matrix equation Mk/2
i M(n+1)/2

i = M(k+n+1)/2
1

(i = 1,2,3,4) . For i = 1 (or i = 2) , M(k+n+1)/2
1 can be written as

M(k+n+1)/2
1 =

[
P(k+n+3)/2 P(k+n+1)/2

P(k+n+1)/2 P(k+n−1)/2

]
(5)
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and

Mk/2
1 M(n+1)/2

1 =
[

P(k+2)/2P(n+3)/2 +Pk/2P(n+1)/2 P(k+2)/2P(n+1)/2 +Pk/2P(n−1)/2

Pk/2P(n+3)/2 +P(k−2)/2P(n+1)/2 Pk/2P(n+1)/2 +P(k−2)/2P(n−1)/2

]
. (6)

We obtained the equality (i) from the right side equations in (5) and (6). If we pick M(k+n+1)/2
1 =

Mk/2
3 M(n+1)/2

3 for i = 3 (or i = 4) , the equality (ii) is established. Considering the equations
MnM1/2

i = M(2n+1)/2
1 (i = 1,3) and Mn/2

i M(n+1)/2
i = M(2n+1)/2

1 (i = 1,2,3,4) , the equalities (iii)-(iv)
and the equalities (v)-(vi) are found, respectively. Computing the equation M(k−n)/2

i = Mk/2
i M−n/2

i
(i = 1,2,3,4) , we have the equalities (vii)-(viii).

The next goal is to find different relations between the Pell and Pell-Lucas numbers with
specialized rational subscripts by using the square roots of matrix Nn [2].

Theorem 3. Let Nn/2
i (i = 1,2,3,4) denotes a square root of the matrix Nn . Then it has a type

of following form

Nn/2
1,2 = ±1

2

[
Qn/2 4Pn/2

2Pn/2 Qn/2

]
, Nn/2

3,4 =±
p

2

[
Pn/2 Qn/2/2

Qn/2/4 Pn/2

]
.

Proof. By applying of the Cayley-Hamilton method for computing the square roots of the matrix
Nn , we have got square roots matrices in the form

p
Nn = ±1√

T ±2
√

det(Nn)

[
Nn ±

√
det(Nn)I

]
, (7)

where I is the identity matrix, and T =Qn is the trace of the matrix Nn . As det(Nn)= enπi,

we have
√

det(Nn)= enπi/2 . Therefore, it is obtained that
√

T ±2
√

det(Nn)=√
φn ±

√
enπiφ−n .

It is seen that the matrix Nn has four non-integral square roots matrices. From this point of
view, we first select as

Nn/2 = ±1(
φn/2 + enπi/2φ−n/2

) [Qn
2 + enπi/2 2Pn

Pn
Qn
2 + enπi/2

]
.

Using the Binet’s formula and algebraic manipulation, we write down the values of elements
(1,1) and (1,2) for the right side matrix

±(
φn/2 − enπi/2φ−n/2) (

Qn +2enπi/2)
2

(
φn − enπiφ−n

) = ±(
φn − enπiφ−n)(

φn/2 + enπi/2φ−n/2)
4
p

2Pn
= ±Qn/2

2
and

±2Pn
(
φn/2 − enπi/2φ−n/2)
φn − enπiφ−n = ±2Pn

(
φn/2 − enπi/2φ−n/2)

2
p

2Pn
=±2Pn/2 .

The other elements are given in the same way. In the present case, we determine the two square
roots matrices

Nn/2
1 =

[ Qn/2
2 2Pn/2

Pn/2
Qn/2

2

]
, Nn/2

2 =−
[ Qn/2

2 2Pn/2

Pn/2
Qn/2

2

]
.
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When we prefer the other situation in the matrix equation (7), the other two square roots
matrices are procured by computing of values for all elements in the right side matrix

Nn/2
3 =

[ p
2Pn/2 Qn/2/

p
2

Qn/2/2
p

2
p

2Pn/2

]
, Nn/2

4 =−
[ p

2Pn/2 Qn/2/
p

2

Qn/2/2
p

2
p

2Pn/2

]
.

We suppose that Nn/2
i (i = 1,2,3,4) is one of the square roots of the matrix Nn . By equating

corresponding elements of the matrix equation Nn/2
i Nn/2

i = Nn : the following identities are
given

Q2
n/2 +8P2

n/2 = 2Qn, Pn/2Qn/2 = Pn,

and so taking the determinant of the matrices Nn/2
i (i = 1,2,3,4) yields

Q2
n/2 −8P2

n/2 = 4enπi/2 .

In addition to equalities in the Theorem 2, different equalities for the Pell and Pell-Lucas
numbers with specialized rational subscripts can be found by equating of corresponding elements
for the matrix equations Nk/2N(n+1)/2 = N(k+n+1)/2 , NnN1/2 = N(2n+1)/2 and Nn/2N(n+1)/2 =
N(2n+1)/2 . Hence the matrices Nn/2

i (i = 1,2,3,4) are nonsingular, the inverse of matrices
Nn/2

i are shown with the matrix notation N−n/2
i , which are given by

N−n/2
1,2 = ±1

2enπi/2

[
Qn/2 −4Pn/2

−2Pn/2 Qn/2

]
, N−n/2

3,4
= ±p2

enπi/2

[−Pn/2 Qn/2/2

Qn/2/4 −Pn/2

]
.

Theorem 4. For all integer n and k , the following equalities are valid:

(i) 2Q(n+k+1)/2 =Q(n+1)/2Qk/2 +8P(n+1)/2Pk/2 ,

(ii) 2P(n+k+1)/2 = P(n+1)/2Qk/2 +Q(n+1)/2Pk/2 ,

(iii) 2P(2n+1)/2 = PnQ1/2 +QnP1/2 ,

(iv) 2Q(2n+1)/2 =QnQ1/2 +8PnP1/2 ,

(v) 2Q(2n+1)/2 =Qn/2Q(n+1)/2 +8Pn/2P(n+1)/2 ,

(vi) 2P(2n+1)/2 = Pn/2Q(n+1)/2 +Qn/2P(n+1)/2 ,

(vii) 2enπi/2Q(k−n)/2 =Qk/2Qn/2 −8Pk/2Pn/2 ,

(viii) 2enπi/2P(k−n)/2 = Pk/2Qn/2 −Qk/2Pn/2 .

Proof. The equalities (i)-(ii) can be found by equating of corresponding elements for the matrix
equation N(n+1)/2

i Nk/2
i = N(n+k+1)/2

1 (i = 1,2,3,4) . The equations of matrices NnN1/2
i = N(2n+1)/2

1
(i = 1,3) and Nn/2

i N(n+1)/2
i = N(2n+1)/2

1 (i = 1,2,3,4) give to equalities (iii)-(iv) and (v)-(vi),
respectively. The equalities (vii)-(viii) are derived from the equations Nk/2

i N−n/2
i = N(k−n)/2

1
(i = 1,2,3,4) .

Clearly, the computing square roots of different matrix generators of the Pell and Pell-Lucas
numbers [2,9] can be carried out in the above mentioned fashion.

Now, we write the extended matrices Mr/q and Nr/q for q ∈Z+ and r ∈Z . So we can obtain
the Pell and Pell-Lucas number with rational subscripts. To do this, we use the connection
between the equation p (x) = a21x2 + (a22 −a11) x− a12 , where ai j are elements of the 2×2
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matrix Mr (or Nr ), and the roots of these matrices by the Abel’s functional equation [10]. The
polynomial p (x)= Pr(x2 −2x−1) is related to the matrices Mr . Let A(x)= ∫ dx

p(x) be, then

A(x)=
∫

dx
Pr

(
x−φ)(

x+φ−1
) = 1

2
p

2Pr
ln

(
x−φ

x+φ−1

)
.

We define ΦMr (x) = Pr+1x+Pr
Pr x+Pr−1

for the matrix Mr . The Abel’s functional equation A (ΦMr (x)) =
A(x)+k is satisfied for the certain real constant k . Then,

A
(

Pr+1x+Pr

Prx+Pr−1

)
= 1

2
p

2Pr
ln

( x
(
Pr+1 −φPr

)+Pr −φPr−1

x
(
Pr+1 +φ−1Pr

)+Pr +φ−1Pr−1

)

= A (x)+ 1

2
p

2Pr
ln

(
erπiφ−r

φr

)
,

(
φ= 1+

p
2

)
.

A closed formula for the q th roots of matrix Mr is obtained from the functional equation
ΦMr/q (x)= A−1(A (x)+ k

q
)
, where the inverse function of A (x) is shown with A−1 (x) given by

A−1 (x)= φ−1ex2
p

2Pr +φ
1− ex2

p
2Pr

.

It follows that

ΦMr/q (x)= A−1

(
ln

(
x−φ

x+φ−1

) 1
2
p

2Pr + 1

2
p

2Pr
ln

(
erπi/qφ−r/q

φr/q

))

= φ−1 (
x−φ)

erπi/qφ−r/q +φ(
x+φ−1)φr/q(

x+φ−1
)
φr/q − (

x−φ)
erπi/qφ−r/q

= x
(
φr/q+1 − e(r+q)πi/qφ−r/q−1)+φr/q − erπi/qφ−r/q

x
(
φr/q − erπi/qφ−r/q

)+ (
φr/q−1 − e(r−q)πi/qφ−r/q+1

) = xPr/q+1 +Pr/q

xPr/q +Pr/q−1
.

Hence the matrix Mr/q is related to the function ΦMr/q (x) , we have

Mr/q =±
[
P(r+q)/q Pr/q

Pr/q P(r−q)/q

]
. (8)

If we take the matrix Nr/q , that is, it can be computed by the function ΦNr/q (x) , we have

Nr/q = ±1
2

[
Qr/q 4Pr/q

2Pr/q Qr/q

]
. (9)

Taking the determinant of matrix equations (8) and (9) yields

P(r+q)/qP(r−q)/q −P2
r/q = erπi/q ,

Q2
r/q −8P2

r/q = 4erπi/q .

By considering different rational powers of the matrices M and N , the following matrices
equations can be used to obtain identities involving terms of the Pell and Pell-Lucas numbers
with rational subscripts:

M(rs+qt)/qs = Mr/qM t/s, (r, t ∈Z and q, s ∈Z+).

N(rs+qt)/qs = Nr/qN t/s .
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We have

P(rs+qt)/qs = Pr/q+1Pt/s +Pr/qPt/s−1 = Pr/qPt/s+1 +Pr/q−1Pt/s ,

2P(rs+qt)/qs = Pr/qQt/s +Qr/qPt/s, 2Q(rs+qt)/qs =Qr/qQt/s +8Pr/qPt/s .

Thus, we see that analogous identities of the Pell and Pell-Lucas numbers with integral
subscripts seems to be hold for the Pell and Pell-Lucas numbers with rational subscripts.

3. Conclusion
By using the generalized Binet’s forms of the Pell and Pell-Lucas numbers given in (1), we
presented the two method which generated identities for the Pell and Pell-Lucas numbers with
rational subscripts. One of them is based on the square roots of the 2×2 matrices Mn and
Nn . The second method is based on the Abel’s functional equation. By using different matrix
generators of the Pell and Pell-Lucas numbers, more general identities could be obtained for the
Pell and Pell-Lucas numbers with rational subscripts (or real subscripts).
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