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Abstract. A Bézier curve in the plane whose control points are disks is called a disk Bézier curve.
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1. Preliminaries
In this section Bernstein polynomials and Bézier curves are defined and some of their properties
are stated. The Bernstein polynomials of degree n are defined by

Bn
i (t)=

(
n
i

)
(1− t)n−i ti, i = 0,1, . . . ,n.

The product of two Bernstein polynomials with chebyshev weight function of second kind is
given by

Bm
i (t)Bn

j (t)2t(1− t)=
2
(m

i
)(n

j
)

(m+n+2
i+ j+1

)Bm+n+2
i+ j+1 (t).
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The integral of these product with weight function is an (m+1)× (n+1)-matrix Gm,n, whose
elements are

g i j =
∫ 1

0
Bm

i (t)Bn
j (t)2t(1− t)dt =

2
(m

i
)(n

j
)

(m+n+3)
(m+n+2

i+ j+1

) , i = 0, . . . ,m, j = 0,1, . . . ,n. (1.1)

The matrix Gm,m is real, symmetric, and positive definite [8].
Let R be the set of all real numbers and R+ be the set of non-negative real numbers.
A disk centred at p = (x0, y0) ∈R2 with radius r0∈R+ is given by

(p) := (x0, y0)r0 := {(x, y) ∈R2 : (x− x0)2 + (y− y0)2 ≤ r0
2}. (1.2)

where (x0, y0) ∈R2 is the center and r0∈R+ is the radius. For any two disks (p)= (x0, y0)r0 and
(q)= (x1, y1)r1 , addition and scalar multiplication are defined as follows:

(p)+ (q)= (x0 + x1, y0 + y1)(r0+r1) (1.3)

s(p)= (sx0, sy0)|s|r0 , for s ∈R, (1.4)

where |s| is the absolute value of s.
For constants si and disks (xi, yi)r i , i = 0,1, . . . ,n, the last definition can be generalized as

n∑
i=0

si(xi, yi)r i =
(

n∑
i=0

sixi,
n∑

i=0
si yi

)
n∑

i=0
|si |r i

. (1.5)

Now, we are ready to define the disk Bézier curves in the following definition.

Definition 1.1 (Disk Bézier curves). A disk Bézier curve of degree n corresponding to n+1
disks (pi)= (xi, yi)r i , i = 0,1, . . . ,n, is defined as follows:

(Pn)(t) :=
n∑

i=0
(pi)Bn

i (t), 0≤ t ≤ 1, (1.6)

where Bn
i (t) are the Bernstein polynomials of degree n, and (pi), i = 0,1, . . . ,n, are the control

disks.

An example of quadratic disk Bézier curve is shown in Figure 1.
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Figure 1. Quadratic disk Bézier curve.
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Disk Bézier curve (Pn)(t) can be expressed explicitly in terms of center curve and radius
curve as

(Pn)(t) := (pn(t))r(t), (1.7)

where

pn(t) :=
n∑

i=0
piBn

i (t)=
n∑

i=0
(xi, yi)Bn

i (t)

and

r(t)=
n∑

i=0
r iBn

i (t)

are the center curve and the radius curve of (Pn)(t) with control points pi = (xi, yi), i = 0,1, . . . ,n
and r i , i = 0,1, . . . ,n, respectively.

The Delta operator ∆ is defined on disks as analogous generalization of ∆ on Bézier points
(see [2]).

Definition 1.2 (Delta operator). Define the operator ∆ on the disk (pi) as follows:

∆0(pi)= (pi), ∆k(pi)=∆k−1(pi+1)−∆k−1(pi), k ≥ 1, i = 0,1, . . . ,n−k.

The k-th derivatives of disk Bézier curves can be given in formulas similar to the formulas
of the derivatives of Bézier curves (see [2]).

The k-th derivatives of the disk Bézier curve in (1.6) at t = 0,1 are given in terms of the
delta operator as follows:

dk

dtk (Pn)(0)= n!
(n−k)!

∆k(p0) , (1.8)

dk

dtk (Pn)(1)= n!
(n−k)!

∆k(pn−k) . (1.9)

In the following section we review geometric continuity of disk Bézier curves and discuss
the problem of degree reduction of disk Bézier curves.

2. Gk-Degree Reduction of Disk Bézier Curves

Geometric Continuity is denoted by Gk. In [12], weighted G1 multi degree reduction of Bézier
curves is considered. Disk Bézier curves (Pn)(t) and (Qm)(t) are said to be Gk-continuous at
t = 0,1 if there exists a strictly increasing parametrization s(t) : [0,1] → [0,1] with s(0) = 0,
s(1)= 1, and

(Qm)(i)(t)= (Pn)(i)(s(t)), t = 0,1, i = 0,1, . . . ,k. (2.1)

The problem of degree reduction of disk Bézier curve can be stated as follow: for a given disk
Bézier curve (Pn)(t) of degree n, find a disk Bézier curve (Qm)(t) of degree m, where m < n, such
that (Qm)(t) bounds (Pn)(t) as tight as possible. In this paper, we included Chebyshev weight
function of second kind and consider geometric continuity conditions between the adjacent disk
Bézier curves. This means (Qm)(t) has to satisfy the following conditions:
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(1) (Pn)(t) and (Qm)(t) are Gk-continuous,

(2) the L2-error between (Pn)(t) and (Qm)(t) is minimum, and

(3) (Pn)(t)⊆ (Qm)(t), 0≤ t ≤ 1.

The curves (Pn)(t) and (Qm)(t) can be written in matrix form as

(Pn)(t)=
n∑

i=0
(pi)Bn

i (t)=: Bn(Pn), 0≤ t ≤ 1, (2.2)

(Qm)(t)=
m∑

i=0
(qi)Bm

i (t)=: Bm(Qm), 0≤ t ≤ 1, (2.3)

where Bn = (Bn
0 (t),Bn

1 (t), . . . ,Bn
n(t)) and (Pn) = ((p0), . . . , (pn))t are row vectors formed by

Bernstein polynomials and column vectors formed by the Bézier disks respectively. Similarly,
Bm and (Qm) are defined alike.

We use L2-norm to measure distances between the center Bézier curves p and q, and the
radius Bézier curves r and r̃. Our strategy in this paper is to minimize

ε=
∫ 1

0
‖Bn(Pn)−Bm(Qm)‖22t(1− t)dt . (2.4)

Under the satisfaction of one of the conditions:

(1) G0-continuity at the boundaries, and

(2) G1-continuity at the boundaries.

In the following sections, we investigate, in particular, the cases of G0-, and G1-continuity
with degree reduction of disk Bézier curves.

3. G0-Degree Reduction
G0-continuity of (Qm)(t) and (Pn)(t) at the disks corresponding to t = 0,1, requires the
satisfaction of the following two conditions:

(Qm)(t)= (Pn)(s(t)), t = 0,1. (3.1)

This means the two curves have common end disks:

(q0)= (p0), (qm)= (pn). (3.2)

The disks (q0) and (qm) are determined by G0-continuity conditions at the boundaries.
The elements of (Qm) are decomposed into two parts. The part of constraints control disks
(Qm)c = [(q0), (qm)]t and the part of free control disks (Qm) f = (Qm)\ (Qm)c = [(q1), . . . , (qm−1)]t.
Similarly, Bm is decomposed in the same way. The distance between (Qm)(t) and (Pn)(t) is
measured using L2-norm; therefore, the error term becomes

ε=
∫ 1

0
‖Bn(Pn)−Bm(Qm)‖2t(1− t)dt

=
∫ 1

0
‖Bn(Pn)−Bc

m(Qm)c −B f
m(Qm) f ‖2t(1− t)dt. (3.3)
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Differentiating with respect to the unknown control disks (Qm) f we get

∂ε

∂(Qm) f = 2
∫ 1

0
B f

m (Bn(Pn)−Bc
m(Qm)c −B f

m(Qm) f ) t(1− t)dt.

Evaluating the integral and equating to zero gives

∂ε

∂(Qm) f =Gp
m,n(Pn)−Gc

m,m(Qm)c −G f
m,m(Qm) f = 0, (3.4)

where

Gp
m,n :=Gm,n(1, . . . ,m−1;0,1, . . . ,n) ,

Gc
m,m :=Gm,m(1, . . . ,m−1;0,m) ,

G f
m,m :=Gm,m(1, . . . ,m−1;1, . . . ,m−1) ,

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.
Now the case of G0-degree reduction is illustrated. The center curve of disk Bézier curve is

expanded into x and y components together with their radius curve. Therefore, our system of
equations has x̃k, ỹk, r̃k variables for k = 1, . . . ,m−1.

The following vectors are defined to express the linear system in explicit form:

Pn = [x0, . . . , xn, y0, . . . , yn, r0, . . . , rn]t,

QF
m = [x̃1, . . . , x̃m−1, ỹ1, . . . , ỹm−1, r̃1, . . . , r̃m−1]t,

QC
m = [x̃0, x̃m, ỹ0, ỹm, r̃0, r̃m]t.

Let ⊕ be the direct sum. Define the matrices

GP
m,n =Gp

m,n ⊕Gp
m,n ⊕Gp

m,n,

GC
m,m =Gc

m,m ⊕Gc
m,m ⊕Gc

m,m, (3.5)

GF
m,m =G f

m,m ⊕G f
m,m ⊕G f

m,m.

The matrix GF
m,m inherits the properties of the Gram matrix G f

m,m.
The coordinate form of the expansion of (3.4) becomes

GF
m,mQF

m =GP
m,nPn −GC

m,mQC
m. (3.6)

From (3.6) we can find the unknowns as

QF
m = (GF

m,m)−1
(
Gp

m,nPn −GC
m,mQC

m

)
. (3.7)

Note that the matrix GF
m,m is not singular. Moreover, it is real, symmetric, and positive definite;

therefore, the solution of the system always exist.
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4. G1-Degree Reduction
G1-continuity of (Qm)(t) and (Pn)(t) at the disks corresponding to t = 0,1, requires the two
curves (Pn)(t) and (Qm)(t) to be G0-continuous and satisfy the following conditions

(Qm)′(t)= s′(t)(Pn)′(s(t)), s′(t)> 0, t = 0,1. (4.1)

This means that the direction of the tangents at the two end disks of (Qm) and (Pn) should
coincide, but they need not to be of equal length. As in [10, 11] s′(i)= δi , i = 0,1, are used to get

(Qm)′(t)= δi(Pn)′(i), i = 0,1. (4.2)

The two control disks at either end of the curve are obtained by solving (3.1) and (4.2):

(q0)= (p0), (qm)= (pn),

(q1)= (p0)+ n
m
∆(p0)δ0, (qm−1)= (pn)− n

m
∆(pn−1)δ1.

The disks (q0), (q1), (qm−1) and (qm) are determined by G1-continuity conditions at the
boundaries; accordingly, the elements of (Qm) are decomposed into two parts. The part of
constraints control disks (Qm)c = [(q0), (q1), (qm−1), (qm)]t and the part of free control disks
(Qm) f = (Qm)\(Qm)c = [(q2), . . . , (qm−2)]t. Similarly, Bm is decomposed in the same way. The
distance between (Qm)(t) and (Pn)(t) is measured using L2-norm; therefore, the error term
becomes

ε=
∫ 1

0
‖Bn(Pn)−Bm(Qm)‖2t(1− t)dt

=
∫ 1

0
‖Bn(Pn)−Bc

m(Qm)c −B f
m(Qm) f ‖2t(1− t)dt. (4.3)

The error ε := ε((Qm) f ,δ0,δ1) is a function of (Qm) f ,δ0, and δ1. Differentiating with respect to
the unknown control disks (Qm) f we get

∂ε

∂(Qm) f = 2
∫ 1

0
B f

m.(Bn(Pn)−Bc
m(Qm)c −B f

m(Qm) f ).t(1− t)dt.

Evaluating the integral and equating to zero gives

∂ε

∂(Qm) f =Gp
m,n(Pn)−Gc

m,m(Qm)c −G f
m,m(Qm) f = 0, (4.4)

where

Gp
m,n :=Gm,n(2, . . . ,m−2;0,1, . . . ,n) ,

Gc
m,m :=Gm,m(2, . . . ,m−2;0,1,m−1,m) ,

G f
m,m :=Gm,m(2, . . . ,m−2;2, . . . ,m−2) ,

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.

Journal of Informatics and Mathematical Sciences, Vol. 8, No. 1, pp. 17–27, 2016



Weighted G0- and G1-Degree Reduction of Disk Bézier Curves: A. Rababah and Y.F. Hamza 23

Differentiating (4.3) with respect to δi and equating to zero gives

∂ε

∂δ0
=

(
G1

m,n(Pn)−G1;c
m,m(Qm)c −G1; f

m,m(Qm) f
)
·∆(p0)= 0 , (4.5)

∂ε

∂δ1
=

(
Gm−1

m,n (Pn)−Gm−1;c
m,m (Qm)c −Gm−1; f

m,m (Qm) f
)
·∆(pn−1)= 0 , (4.6)

where for j = 1, m−1:

G j
m,n :=Gm,n( j;0,1, . . . ,n) ,

G j;c
m,m :=Gm,m( j;0,1,m−1,m) ,

G j; f
m,m :=Gm,m( j;2, . . . ,m−2) .

(4.7)

The center curve of disk Bézier curve is expanded into x and y components together
with their radius curve. Therefore, the variables of our system of equations are x̃k, ỹk, r̃k,
k = 2, . . . ,m−2, δ0 and δ1. To express the system in a clear form, we have to decompose each of
q1 and qm−1 into a constant part and a part involving δ0 and δ1, respectively. Let v1 and vm−1

be the constant part of q1 and qm−1 respectively. Similarly r̃1 and r̃m−1 are decomposed alike.
Let s1 and sm−1 be the constant parts of r̃1 and r̃m−1 respectively. Hence

v1 = p0, vm−1 = pn,

s1 = r0, sm−1 = rn.

The following vectors are defined to express the linear system in explicit form:

Pn = [x0, . . . , xn, y0, . . . , yn, r0, . . . , rn]t ,

QF
m = [x̃2, . . . , x̃m−2, ỹ2, . . . , ỹm−2, r̃2, . . . , r̃m−2,δc

0,δc
1,δr

0,δr
1]t ,

QC
m = [x̃0, vx

1, vx
m−1, x̃m, ỹ0, vy

1 , vy
m−1, ỹm, r̃0, s1, sm−1, r̃m]t .

Define the matrices A, B, Lc
m,n, Lcc

m,m, L f c
m,m, Lr

m,n, Lcr
m,m, L f r

m,m as follows

A =
[
∆p0 0

0 ∆pn−1

][
Gm,m(1,1) Gm,m(1,m−1)

Gm,m(m−1,1) Gm,m(m−1,m−1)

][
∆p0 0

0 ∆pn−1

]
,

B =
[
∆r0 0

0 ∆rn−1

][
Gm,m(1,1) Gm,m(1,m−1)

Gm,m(m−1,1) Gm,m(m−1,m−1)

][
∆r0 0

0 ∆rn−1

]
,

Lc
m,n =

[
G1

m,n∆x0 G1
m,n∆y0

Gm−1
m,n ∆xn−1 Gm−1

m,n ∆yn−1

]
, Lr

m,n =
[

G1
m,n∆r0

Gm−1
m,n ∆rn−1

]
,

Lcc
m,m =

[
G1;c

m,m∆x0 G1;c
m,m∆y0

Gm−1;c
m,m ∆xn−1 Gm−1;c

m,m ∆yn−1

]
, Lcr

m,m =
[

G1;c
m,m∆r0

Gm−1;c
m,m ∆rn−1

]
,

L f c
m,m =

[
G1; f

m,m∆x0 G1; f
m,m∆y0

Gm−1; f
m,m ∆xn−1 Gm−1; f

m,m ∆yn−1

]
, L f r

m,m =
[

G1; f
m,m∆r0

Gm−1; f
m,m ∆rn−1

]
.
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Let ⊕ be the direct sum. Define the matrices

Gp++
m,n =Gp

m,n ⊕Gp
m,n ⊕Gp

m,n ,

Gc++
m,m =Gc

m,m ⊕Gc
m,m ⊕Gc

m,m , (4.8)

G f++
m,m =G f

m,m ⊕G f
m,m ⊕G f

m,m .

Further define L+
m,n,Lc+

m,m,L f+
m,m as

L+
m,n = Lc

m,n ⊕Lr
m,n ,

Lc+
m,m = Lcc

m,m ⊕Lcr
m,m ,

L f+
m,m = L f c

m,m ⊕L f r
m,m .

After some mathematical manipulations the coordinate form of the expansion of (4.4) together
with (4.5) and (4.6) becomes

GF
m,mQF

m =GP
m,nPn −GC

m,mQC
m, (4.9)

where

GP
m,n =

[
Gp++

m,n

L+
m,n

]
, GC

m,m =
[

Gc++
m,m

Lc+
m,m

]
, GF

m,m =
G f++

m,m
n
m (L f+

m,m)t

L f+
m,m

n
m (A⊕B)

 .

The square matrix GF
m,m is a block matrix formed by G f++

m,m, (L f+
m,m)t, L f+

m,m, and A⊕B. The
matrix G f++

m,m is a positive definite, and the matrix A⊕B excluding ∆c0 and ∆cn−1 parts, is also
positive definite. Therefore, the matrix GF

m,m is non-singular [11].
From (4.9) we can find the unknowns as

QF
m = (GF

m,m)−1
(
GP

m,nPn −GC
m,mQC

m

)
. (4.10)

5. Examples and Comparisons
In this section, we illustrate four examples to demonstrate the effectiveness of the proposed
method and compares the error functions produced by weighted G0-, weighted G1-, G0-, and
G1-degree reduction. For the purpose of comparison different kind of lines are used as follows:

• long-dashed: Weighted G0 (WG0),

• short-dashed: G0,

• dotted: Weighted G1 (WG1),

• solid: G1.

Example 1 (see Example 1 in [11], see also [1]). A disk Bézier curve (Pn)(t) of degree nine is
reduced to disk Bézier curve (Qm)(t) of degree eight using WG0- and WG1-degree reduction
methods. Figure 2 depicts the curve and comparisons of the error functions.
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Figure 2. Example 1, (a) original curve, (b) comparison of WG0 and G0 (c) comparison of WG1 and G1.

Example 2 (see Example 2 in [11], see also [1]). A disk Bézier curve (Pn)(t) of degree six is
reduced to disk Bézier curve (Qm)(t) of degree five using WG0- and WG1-degree reduction
methods. Figure 3 depicts the curve and comparisons of the error functions.
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(a) (b) (c)

Figure 3. Example 2, (a) original curve, (b) comparison of WG0 and G0 (c) comparison of WG1 and G1.

Example 3 (see Example 3 in [11], see also [3]). A disk Bézier curve (Pn)(t) of degree eight
is reduced to disk Bézier curve (Qm)(t) of degree five using WG0- and WG1-degree reduction
methods. Figure 4 depicts the curve and comparisons of the error functions.
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Figure 4. Example 3, original curve (left), comparisons of the error functions (right).
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Example 4 (see Example 4 in [11], see also [4]). A disk Bézier curve (Pn)(t) of degree seven
is reduced to disk Bézier curve (Qm)(t) of degree six using WG0- and WG1-degree reduction
methods. Figure 5 depicts the curve and comparisons of the error functions.

100 200 300 400 500

100

200

300

400

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

Figure 5. Example 4, original curve (left), comparisons of the error functions (right).

6. Conclusions
In this paper we introduced a weighted degree reduction of disk Bézier curve with G0- and
G1-continuity at the end disks. Due to the effect of the weight function, our proposed WG0 and
WG1 has a smaller approximation error at the center than the methods in [11].The examples
and figures show the efficiency, simplicity, and applicability of the method.
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