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1. Introduction
For a closed Finsler manifold (M,F), the eigenvalues of geometric operators is important in
geometric analysis. In studying of the p-Laplace equation several parts of mathematics for
instance: Calculus of Variation, Partial Differential Equation, Potential Theory and Analytic
Function have a momentous impress. Recently, there are many research about properties of the
eigenvalues of p-Laplacian on Finsler manifolds and Riemannian manifolds to estimate the
spectrum in terms of the other geometric structures of the manifold ( [6,8,14,16]).

Also, geometric flows have been a topic of active research interest in mathematics and other
sciences ( [10–13]). Yamabe flow ( [7,9,17]) which is extension of Hamilton’s Ricci flow ( [4,10])
is the best known example of a geometric evolution equation. The Yamabe flow is related to
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dynamical systems in the infinite-dimensional space of all metrics on a given manifold. One of
the aims of such flows is to obtain metrics with special properties. Special cases arise when the
metric is invariant under a group of transformations and this property is preserved by the flow.

Let M be a manifold with a Finsler metric g0 (or F0), the family g(t) (or Ft) of Finsler
metrics on M is called an un-normalized Yamabe flow when it satisfies the equations

∂t(g i j)=−Hg g i j, g(0)= g0, (1.1)

it implies that

∂t logF =−1
2

Hg, F(t = 0)= Fo, (1.2)

where Hg = gi jRici j , which introduced by Akbarzadeh in [1] and Ric is the Ricci tensor of g(t),
Rici j = (1

2 F2Ric)yi y j . In fact the Yamabe flow is a system of partial differential equations of
parabolic type which was introduced by Hamilton on Riemannian manifolds for the first time in
1982 and author with A. Razavi (see [3]) studied Yambe flow equation in Berwald manifold. The
Yamabe flow has been proved to be a very useful tool to improve metrics in Finsler geometry,
when M is compact. One often considers the normalized Yamabe flow

∂t g = (−Hg +Avg(Hg))g, g(0)= g0, (1.3)

it implies that

∂t logF = 1
2

(−Hg +Avg(Hg)), F(0)= F0, (1.4)

where Avg(Hg)= 1
VolSM

∫
SM HgdVSM and under this normalized Yamabe flow, the volume of the

solution metrics remains constant in time. Short time exitance and uniqueness for solution
to the Yamabe flow on [0,T) have been shown by T. Aubin in [2] and by A. Bahri in [5] for
Riemannian manifolds and by the author with A. Razavi in [3] for Berwald manifolds.

2. Preliminaries
Let M be an n-dimensional C∞ manifold. For a point x ∈ M, denote by TxM the tangent space
at x ∈ M, and by TM =∪x∈MTxM the tangent bundle of M. Any element of TM has the form
(x, y), where x ∈ M and y ∈ TxM.

Definition 2.1. A Finsler metric on a manifold M is a function F : TM0 → [0,∞) which has the
following properties:

(i) F(x,αy)=αF(x, y), ∀ α> 0;

(ii) F(x, y) is C∞ on TM0 ;

(iii) For any non-zero tangent vector y ∈ TxM, the associated quadratic form g y : TxM×TxM →
R on TM is an inner product, where

g y (u,v) := 1
2

∂2

∂s∂r
[
F2 (x, y+ su+ rv)

]∣∣∣∣
s=r=0

.

The pair (M,F) is called a Finsler manifold.
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Let us denote by SxM the set consisting of all rays [y] := {λy|λ> 0}, where y ∈ TxM0. The
sphere bundle of M, i.e. SM, is the union of SxM ’s:

SM =∪
x

SxM

SM has a natural (2n−1)-dimensional manifold structure. We denote the elements of SM
by (x, [y]) where y ∈ TxM0. If there is not any confusion we write (x, y) for (x, [y]). In a local
coordinate system (xi, yi) we have g i j(x, y)= 1

2
∂2F2

∂yi∂y j (x, y) and (gi j) := (g i j)−1.

The geodesics of F are characterized locally by d2xi

dt2 +2G i(x, dx
dt )= 0 where

G i = 1
4

gil
{

2
∂g jl

∂xk − ∂g jk

∂xl

}
y j yk. (2.1)

Definition 2.2. The coefficients of the Riemann curvature Ry = R i
kdxi ⊗ ∂

∂xi are given by

R i
k := 2

∂G i

∂xk − ∂2G i

∂x j∂yk y j +2G j ∂2G i

∂y j∂yk − ∂G i

∂y j
∂G j

∂yk . (2.2)

The Ricci scalar function of F is given by Ric := 1
F2 R i

i . A companion of the Ricci scalar is
the Ricci tensor

Rici j :=
(
1
2

F2Ric
)

yi y j
. (2.3)

Definition 2.3. A Finsler metric is said to be an Einstain metric if the Ricci scalar function is
a function of x alone, equivalently Rici j =R(x)g i j (see [15]).

Definition 2.4. Let (M,F) be a Finsler manifold, the Sasakian metric g̃ of g on TM0 is defined
as

g̃ = g i jdxi ⊗dx j + g i j
δyi

F
⊗ δy j

F
(2.4)

then g̃ is a Riemannian metric on TM0 and
{

δ
δxi ,F ∂

∂yi

}
is a coordinate bases on TM0, where

δ
δxi = ∂

∂xi −G j
i
∂
∂y j and

{
dxi, δyi

F

}
is the dual of

{
δ
δxi ,F ∂

∂yi

}
where δyi = d yi +G i

jdx j .

Remark 2.5. The Levi-Civita connection ∇̃ on TM0 with respect to the Sasakian metric g̃ is
locally expressed as follows:

∇̃ δ

δx j

δ

δxi =−
(
Ck

i j +
1
2

Rk
i j

)
∂

∂yk +Fk
i j

δ

δxk ,

∇̃ ∂

∂y j

∂

∂yi = Ck
i j

∂

∂yk − g ih(Fh
j k −Gh

j k)ghk δ

δxk ,

∇̃ δ

δx j

∂

∂yi = Fk
i j

∂

∂yk +
(
Ck

i j +
1
2

g ihRh
l j g

lk
)
δ

δxk = ∇̃ ∂

∂yi

δ

δx j +Gk
i j

∂

∂yk , (2.5)

where

Ck
i j =

1
2

gkh ∂g i j

∂yh , Fk
i j =

1
2

gkh
(
δghi

δx j + δgh j

δxi − δg i j

δxh

)
, Gk

i j =
∂Gk

j

∂yi ,
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and

Rk
i j =

δGk
i

δx j −
δGk

j

δxi ,
[
δ

δxi ,
δ

δx j

]
= Rk

i j
∂

∂yk ,
[
δ

δxi ,
∂

∂y j

]
=Gk

i j
∂

∂yk .

Lemma 2.6 ( [15]). For a Sasakian metric g̃ and any f : TM →R, there exists a unique vector
field Y ∈X (TM) such that

g̃(Y , X̃ )= d f (X̃ ), ∀ X̃ ∈X (TM), (2.6)

where

X̃ = X i
1
δ

δxi + X i
2F

∂

∂yi ,

and X i
1, X i

2 are C∞ function on TM. Here we take Y = 0 if d f = 0.

Denote the vector field Y in (2.6) by ∇̃ f . We call ∇̃ f the gradient of f and define the
divergence div X̃ as follows:

div X̃ = tr∇̃X̃ = tr(∇̃X̃ )(·, ·).
Definition 2.7. According to the above definition,the gradient of a function f is

∇̃ f = gi j δ f
δxi

δ

δx j +F2 gi j ∂ f
∂yi

∂

∂y j , (2.7)

therefore, the norm of ∇̃ f with respect to the Riemannian metric g̃ is given by

|∇̃ f |2 = g̃(∇̃ f ,∇̃ f )= gi j δ f
δxi

δ f
δx j +F2 gi j ∂ f

∂yi
∂ f
∂y j . (2.8)

Definition 2.8. Let M be a compact Finsler manifold. The Laplace operator of f on TM is
defined as follows:

∆ f = div(∇̃ f )

= g̃i j∂i∂ j f − g̃i jΓ̃k
i j∂k f

= gi j δ2 f
δxiδx j + gi jF2 ∂2 f

∂yi∂y j − gi j(1Γ̃k
i j)

δ f
δxk −F gi j(2Γ̃k

i j)
∂ f
∂yk

where Γ̃k
i j is Christoffel symbols of ∇̃ and

1Γ̃k
i j =

(
∇̃ ∂

∂yi

∂

∂y j

)
dxk or 1Γ̃k

i j =
(
∇̃ ∂

∂yi

∂

∂y j

)
δyk

F
,

and

2Γ̃k
i j =

(
∇̃ δ

δxi

δ

δx j

)
dxk or 2Γ̃k

i j =
(
∇̃ δ

δxi

δ

δx j

)
δyk

F
,

therefore using (2.7), we have:

∆ f = gi j

(
∂2 f

∂xi∂x j −
∂Gr

j

∂xi
∂ f
∂yr −Gr

j
∂2 f

∂xi∂yr −Gs
i
∂2 f

∂ys∂x j +Gr
jG

s
i
∂2 f

∂ys∂yr

)
+ gi jF2 ∂2 f

∂yi∂y j

+ gi j
(
C k

i j +
1
2

Rk
i j

)
δ f
δxk −F gi jF k

i j
δ f
δxk −F gi jC k

i j
∂ f
∂yk −F2 gi j g ih(G h

j l −F h
j l)glk δ f

δyk .
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Definition 2.9. Let M be a compact Finsler manifold. The p-Laplace operator of f : TM →R,
f ∈W1,p(TM) for 1< p <∞ is defined as follows:

4p f = div(|∇̃ f |p−2∇̃ f )= |∇̃ f |p−2∆ f + (p−2)|∇̃ f |p−4(Hess f )(∇̃ f ,∇̃ f ), (2.9)

where

(Hess f )(X ,Y )= ∇̃(∇̃ f )(X ,Y )=Y · (X · f )− (∇̃Y X ) · f , X ,Y ∈X (SM),

and in local coordinate, we have:

(Hess f )(∂i,∂ j)= ∂i∂ j f − Γ̃k
i j∂k f .

Note 2.10. If f is a function of x alone, or suppose that is the lifting of f : M →R then

∆ f = gi j
(
∂2 f

∂xi∂x j − gi j(1Γ̃k
i j)

∂ f
∂xk

)
. (2.10)

2.1 Eigenvalues of the p-Laplacian
Definition 2.11. Let (Mn,F) be a compact Finsler manifold and f : SM →R. We say that λ is
an eigenvalue of the p-Laplace operator whenever

g̃∆p f +λ| f |p−2 f = 0 (2.11)

then f is said to be the eigenfunction associated to λ, or equivalently they satisfy in

λ=
∫

SM |∇̃ f |pdv∫
SM | f |pdv

. (2.12)

Normalized eigenfunctions are defined as follows:∫
SM

f | f |p−2dv = 0,
∫

SM
| f |pdv = 1. (2.13)

Suppose that (Mn, g(t)) is a solution of the yamabe flow on the smooth manifold (Mn, g0) in the
interval [0,T) and

λ(t)=
∫

SM
|∇̃ f (x, y)|pdvt (2.14)

defines the evolution of an eigenvalue of p-Laplacian under the variation of g(t) whose
eigenfunction associated to λ(t) is normalized. Suppose that for any metric g(t) on Mn

Spec
p

( g̃)= {0=λ0(g)≤λ1(g)≤λ2(g)≤ ·· · ≤λk(g)≤ ·· · }

is the spectrum of ∆p = g̃∆p .

In what follows we assume the existence and C1-differentiability of the elements λ(t) and
f (t), under a Yamabe flow deformation g(t) of a given initial metric. We prove some propositions
about the problem of the spectrum variation under a deformation of the metric given by a
Yamabe flow equation.

3. Variation of λ(t)

In this part, we will give some useful evolution formulas for λ(t) under the Yamabe flow. Let
(Mn, g(t)), t ∈ [0,T), be a deformation of Finsler metric g0. Assume that λ(t) is the eigenvalue of
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∆p , f = f (x, y, t) satisfies

∆p f +λ| f |p−2 f = 0

and
∫

SM | f |pdv = 1, using (2.8), we have:

d
dt

|∇̃ f |2 = ∂

∂t
(gi j)

δ f
δxi

δ f
δx j + gi j ∂

∂t

(
δ f
δxi

)
δ f
δx j + gi j δ f

δxi
∂

∂t

(
δ f
δx j

)
+ ∂(F2)

∂t
gi j ∂ f

∂yi
∂ f
∂y j

+F2 ∂

∂t
(gi j)

∂ f
∂yi

∂ f
∂y j +2F2 gi j ∂ f ′

∂yi
∂ f
∂y j , (3.1)

where
∂

∂t
(gi j)=−gil g jk ∂

∂t
(glk) (3.2)

and
∂

∂t

(
δ f
δxi

)
= ∂

∂t

(
∂ f
∂xi −Gr

i
∂ f
∂yr

)

= ∂ f ′

∂xi −Gr
i
∂ f ′

∂yr −
∂

∂t
(Gr

i )
∂ f
∂yr

= δ f ′

δxi −
∂

∂t
(Gr

i )
∂ f
∂yr (3.3)

therefore, a substitution of (3.2) and (3.3) in (3.1), implies that:

Proposition 3.1. Let (Mn, g(t)) be a deformation of Finsler manifold (Mn, g0), then
d
dt

|∇̃ f |p = p
2
|∇̃ f |p−2

{
−gil g jk ∂

∂t
(glk)

δ f
δxi

δ f
δx j +2gi j δ f ′

δxi
δ f
δx j −2gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j

}

+ p
2
|∇̃ f |p−2

{
2F

∂F
∂t

gi j ∂ f
∂yi

∂ f
∂y j −F2 gil g jk ∂

∂t
(glk)

∂ f
∂yi

∂ f
∂y j +2F2 gi j ∂ f ′

∂yi
∂ f
∂y j

}
. (3.4)

On the other hand we have
d
dt

(dv)=
{

gi j ∂

∂t
(g i j)−n

∂

∂t
(logF)

}
dv. (3.5)

Now, we get the following two integrability conditions:

0= d
dt

∫
SM

| f |pdv = p
∫

SM
f f ′| f |p−2dv+

∫
SM

| f |p d
dt

dv

which implies

p
∫

SM
f f ′| f |p−2dv =−

∫
SM

| f |p
{

gi j ∂

∂t
(g i j)−n

∂

∂t
(logF)

}
dv. (3.6)

Now, if we suppose that g(t) is a solution of the un-normalized Yamabe flow (1.2) and (1.1), then
we have:
dλ
dt

=
∫

SM

(
d
dt

|∇̃ f |p
)

dv+
∫

SM
|∇̃ f |p d

dt
(dv)

= p
2

∫
SM

{
−gil g jk(−Hg glk)

δ f
δxi

δ f
δx j +2gi j δ f ′

δxi
δ f
δx j −2gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j

}
|∇̃ f |p−2dv
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+ p
2

∫
SM

{
2F2

(
−1

2
Hg

)
gi j ∂ f

∂yi
∂ f
∂y j −F2 gil g jk(−Hg glk)

∂ f
∂yi

∂ f
∂y j +2F2 gi j ∂ f ′

∂yi
∂ f
∂y j

}
|∇̃ f |p−2dv

+
∫

SM
|∇̃ f |p

{
gi j(−Hg g i j)−n

(
−1

2
Hg

)}
dv

= p−n
2

∫
SM

Hg|∇̃ f |pdv+ p
∫

SM
g̃(∇̃ f ′,∇̃ f )|∇̃ f |p−2dv

− p
∫

SM
gi j d

dt
(Gr

i )
∂ f
∂yr

δ f
δx j |∇̃ f |p−2dv− p

2

∫
SM

F2Hg gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv

where ∂
∂t (G

r
i ) is obtained as follows:

Gr = 1
4

grl
{

2
∂g jl

∂xk − ∂g jk

∂xl

}
y j yk, Gr

i =
∂Gr

∂yi

Hence
∂

∂t
(Gr

i )=
∂

∂yi (Gr)′

= ∂

∂yi

{
1
4

(
∂

∂t
grl

){
2
∂g jl

∂xk − ∂g jk

∂xl

}
y j yk

}

+ ∂

∂yi

{
1
4

grl
{

2
∂

∂xk

(
∂

∂t
g jl

)
− ∂

∂xl

(
∂

∂t
g jk

)}
y j yk

}

= ∂

∂yi

{
−1

2
∂Hg

∂xk yr yk + 1
4

g jk grl ∂Hg

∂xl y j yk
}

(3.7)

Using (3.6) we obtain

p
∫

SM
g̃(∇̃ f ′,∇̃ f )|∇̃ f |p−2dv = pλ

∫
SM

f ′ f | f |p−2dv =−nλ
2

∫
SM

| f |pHgdv.

We have thus proved the following proposition:

Proposition 3.2. Let (Mn, g(t)) be a solution of the un-normalized Yamabe flow on the smooth
Finsler manifold (Mn, g0). If λ(t) denotes the evolution of an eigenvalue under the Yamabe flow,
then

dλ
dt

= p−n
2

∫
SM

Hg|∇̃ f |pdv+ nλ
2

∫
SM

Hg| f |pdv− p
∫

SM
gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j |∇̃ f |p−2dv

− p
2

∫
SM

F2Hg gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv, (3.8)

where f is the associated normalized evolving eigenfunction.

Note 3.3. Let f : SM →R be a lifting of f : M →R. We have:
dλ
dt

= p−n
2

∫
SM

Hg|∇̃ f |pdv+ nλ
2

∫
SM

Hg| f |pdv,

and in this case, if Hg is a constant, then
dλ
dt

= pλ
2

Hg.
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Corollary 3.4. Let (Mn, g(t)) be a solution of the un-normalized Yamabe flow on the smooth
Riemannian manifold (Mn, g0), i.e. Ft, F0 are Riemannian metric. If λ(t) denotes the evolution
of an eigenvalue under the Yamabe flow, then Hg = Rg hence

dλ
dt

= p−n
2

∫
SM

Rg|∇̃ f |pdv+ nλ
2

∫
SM

Rg| f |pdv− p
∫

SM
gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j |∇̃ f |p−2dv

− p
2

∫
SM

F2Rg gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv, (3.9)

where Rg is the scalar curvature of M.

Corollary 3.5. Let (Mn, g(t)) be a solution of the un-normalized Yamabe flow on the smooth
homogenous Riemannian manifold (Mn, g0). If λ(t) denotes the evolution of an eigenvalue under
the Yamabe flow, then:

dλ
dt

= pRλ
2

− p
∫

SM
gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j |∇̃ f |p−2dv− pR

2

∫
SM

F2 gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv,

where R is the scalar curvature of M.

Proof. Since the evolving metric remains homogenous and a Riemannian homogenous manifold
has constant scalar curvature, so the corollary is obtained by (3.8).

Now, we give a variation of λ(t) under the normalized Yamabe flow which is similar to the
pervious proposition.

Proposition 3.6. Let (Mn, g(t)) be a solution of the normalized Yamabe flow on the smooth
Finsler manifold (Mn, g0). If λ(t) denotes the evolution of an eigenvalue under the Yamabe flow,
then:
dλ
dt

=− pλ
2

Avg(Hg)+ p−n
2

∫
SM

Hg|∇̃ f |pdv+ nλ
2

∫
SM

Hg| f |pdv

− p
∫

SM
gi j ∂

∂t
(Gs

i )
∂ f
∂ys

δ f
δx j |∇̃ f |p−2dv− p

∫
SM

F2(Hg −Avg(Hg)) gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv, (3.10)

where f is the associated normalized evolving eigenfunction, Avg(Hg)=
∫

SM Hg dv
Vol(SM) .

Proof. In the normalized case, the integrability conditions read as follows

p
∫

SM
f ′ f | f |p−2dv =−n

2

∫
SM

(−Hg +Avg(Hg))| f |pdv, (3.11)

using (3.4), (3.7) and the above equation, we can then write
dλ
dt

=
∫

SM

(
d
dt

|∇̃ f |p
)

dv+
∫

SM
|∇̃ f |p d

dt
(dvt)

= p
2

∫
SM

{
−gil g jk(−Hg +Avg(Hg))glk

δ f
δxi

δ f
δx j +2gi j δ f ′

δxi
δ f
δx j

}
|∇̃ f |p−2dv

+ p
2

∫
SM

{
2F2(−Hg +Avg(Hg))gi j ∂ f

∂yi
∂ f
∂y j −F2 gil g jk(−Hg +Avg(Hg))glk

∂ f
∂yi

∂ f
∂y j

}
|∇̃ f |p−2dv
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+ p
2

∫
SM

{
−2gi j ∂

∂t
(Gr

i )
∂ f
∂yr

δ f
δx j +2F2 gi j ∂ f ′

∂yi
∂ f
∂y j

}
|∇̃ f |p−2dv+ n

2

∫
SM

(−Hg +Avg(Hg))|∇̃ f |pdv

=− p−n
2

∫
SM

(−Hg +Avg(Hg))|∇̃ f |pdv+ p
∫

SM
g̃(∇̃ f ′,∇̃ f )|∇̃ f |p−2dv

− p
∫

SM
gi j d

dt
(Gr

i )
∂ f
∂yr

δ f
δx j |∇̃ f |p−2dv− p

2

∫
SM

F2(−Hg +Avg(Hg)) gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv

(3.12)

but

p
∫

SM
g̃(∇̃ f ′,∇̃ f )|∇̃ f |p−2dv = pλ

∫
SM

f ′ f | f |p−2dv

=−nλ
2

∫
SM

| f |p(−Hg +Avg(Hg))dv (3.13)

and ∂
∂t (G

s
i ) is obtained by replacing F ′ and g′

i j from (1.4) and (1.3), respectively, in (3.7). Thus
the proposition is obtained by replacing (3.13) in (3.12).

Corollary 3.7. Let (Mn, g(t)) be a solution of the normalized Yamabe flow on the smooth
Riemannian manifold (Mn, g0). If λ(t) denotes the evolution of an eigenvalue under the Yamabe
flow, then:
dλ
dt

=− pλ
2

Avg(Rg)+ p−n
2

∫
SM

Rg|∇̃ f |pdv+ nλ
2

∫
SM

Rg| f |pdv

− p
∫

SM
gi j ∂

∂t
(Gs

i )
∂ f
∂ys

δ f
δx j |∇̃ f |p−2dv−p

∫
SM

F2(Rg−Avg(Rg)) gi j ∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv, (3.14)

where R is the scalar curvature of M.

Corollary 3.8. Let (Mn, g(t)) be a solution of the normalized Yamabe flow on the smooth
homogenous Riemannian manifold (Mn, g0). If λ(t) denotes the evolution of an eigenvalue under
the Yamabe flow, then:

dλ
dt

=−p
∫

SM
gi j ∂

∂t
(Gs

i )
∂ f
∂ys

δ f
δx j |∇̃ f |p−2dv

where R is the scalar curvature of M.

Proof. Since the evolving metric remains homogenous and a Riemannian homogenous manifold
has constant scalar curvature, so the corollary is obtained by (3.10).

4. Examples

In this section, we will find the variational formula for some of Finsler manifolds.

Example 4.1. Let (Mn, g0) be an Einstein manifold with constant Ricci i.e. there exists a
constant a such that Ric(F0)= aF2

0 . Therefore Rici j(g0)= ag i j(0). Assume we have a solution to
the Yamabe flow which is of the form

g(t)= u(t)g0, u(0)= 1

Journal of Informatics and Mathematical Sciences, Vol. 8, No. 5, pp. 335–346, 2016



344 Eigenvalues variation of the p-Laplacian under the Yamabe Flow on SM: S. Azami

where u(t) is a positive function. We compute
∂g
∂t

= u′(t)g0, Hg = an
u(t)

,

for this to be a solution of the un-normalized Yamabe flow, we require

u′(t)g0 =−Hg g =− an
u(t)

u(t)g0 =−ang0,

this shows that

u′(t)=−na,

therefore

u(t)=−nat+1,

so that we have

g(t)= (1−nat)g0

which says that g(t) is an Einstein metric. Therefore

Hg = an
1−nat

.

Also

G i(t)= 1
4

gil
{

2
∂g jl

∂xk − ∂g jk

∂xl

}
y j yk

= 1
4

(g0)il
{

2
∂(g0) jl

∂xk − ∂(g0) jk

∂xl

}
y j yk =G i(0),

therefore
∂

∂t
(G i

r)= 0.

Using the un-normalized Yamabe flow equation (1.1) and (3.8) ,we obtain the following relation:
dλ
dt

= p−n
2

∫
M

an
1−nat

|∇̃ f |pdv+ nλ
2

∫
M
| f |p an

1−nat
dv− p

2

∫
SM

F2
0

an
1−nat

gi j
0
∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv

= panλ
2(1−nat)

− pan
2(1−nat)

∫
SM

F2
0 gi j

0
∂ f
∂yi

∂ f
∂y j |∇̃ f |p−2dv.

Remark 4.2. Let (Mn,F0) be a Finsler manifold of dimension n ≥ 3. Suppose that the flag
curvature k = k(x) is isotropic and a function of x ∈ M alone then k = constant and therefore
(Mn,F0) is Einstein and the variation of its eigenvalues is similar to Example 4.1.

Example 4.3. If we suppose that Ft = u(t)F0, u(0)= 1 is a solution of the Yamabe flow, then:

Hg = (u(t))−2Hg0 .

Now the Yamabe flow (1.2) implies that

∂(u(t))−2

∂t
=−Hg0 .

By integration we have:

u−2(t)=−Hg0 t+ c,
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with condition u(0)= 1 we have:

u−2(t)= 1−Hg0 t,

therefore

F2
t = 1

1−Hg0 t
F2

0 . (4.1)

By replacing above identities in (3.8) we obtain the variation of an eigenvalue.

In next example we determine the behavior of the evolving spectrum on the Yamabe solitons.

Definition 4.4. Let (M, g(t)) is a solution of the Yamabe flow. We says g(t) is Yamabe soliton,
when satisfies in g2

t = u(t)ϕ∗
t g2

0 where ϕt is a family of diffeomorphisms.

Example 4.5. Let (M,F) and (M,F) be two closed Finsler manifolds and

ϕ : (M, g)→ (M,F)

an isometry, then for p = 2 we have
g̃∆◦ϕ∗ =ϕ∗ ◦ g̃∆.

Therefore given a diffeomorphism ϕ : M → M we have that

ϕ : (SM,ϕ∗ g̃)→ (SM, g̃)

is an isometry, hence we conclude that (SM,ϕ∗ g̃),and (SM, g̃) have the same spectrum

Spec( g̃)=Spec(ϕ∗ g̃)

with eigenfunction fk and ϕ∗ fk respectively. If g(t) is a Yamabe soliton on (Mn, g0) then

Spec( g̃(t))= 1
u(t)

Spec( g̃0),

so that λ(t) satisfies

λ(t)= 1
u(t)

,
dλ
dt

=− u′(t)
(u(t))2 .

5. Conclusion
In this paper we obtain the evolution formulas for the eigenvalue of p-Laplacian on SM under
the Yamabe flow. Furthermore, we find the variational formula for Einstein Finsler manifold
and determine the behavior of evolving eigenvalue on the Yamabe soliton.
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