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1. Introduction
Gathering reliable data on sensitive or socially stigmatized issues such as drug use, length of
time living with AIDS, sexual practices, tax evasion, or domestic violence can be extremely
difficult. When direct questioning methods are used, respondents may either withhold
information or give inaccurate answers due to fear, embarrassment, or social pressure. This
can lead to serious flaws in the data and undermine the credibility of the research findings.
To address this problem and encourage greater honesty and participation, researchers have
developed various indirect questioning techniques. These approaches are designed to safeguard
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respondent anonymity and privacy, thereby increasing the likelihood of obtaining truthful and
complete responses in surveys dealing with sensitive topics.

Therefore, in such situations, methods that ensure respondent anonymity offer an effective
solution. Two widely adopted approaches that provide this protection are the Randomized
Response Technique (RRT) and the Scrambled Response Technique (SRT). The concept of
randomized response was first introduced by Warner [18]. Later, the scrambled response
technique was proposed by Pollock and Bek [10]. Since then, several researchers have made
significant contributions to this field, including Eichhorn and Hayre [5], Saha [14], Diana and
Perri [3,4], Perri and Diana [9], and as well as Priyanka et al. [12]. These works have collectively
enriched the literature on indirect questioning methods aimed at improving data reliability in
sensitive surveys.

Surveys focusing on key socio-economic issues such as unemployment, wages, and various
labor and health-related factors are routinely conducted by government agencies over time.
However, these surveys are often prone to measurement errors, which can affect the reliability
and validity of the collected data. One common source of such error is sampling error, which
occurs when data is gathered from a subset of the population rather than the entire group,
leading to potential inaccuracies in the results.

To address these challenges, several renowned researchers have proposed effective
estimation techniques that account for measurement errors in assessing population
characteristics. Pioneering work in this area has been carried out by Mahalanobis [8],
Deming [1], Raj [13], Sukhatme et al. [17], Sarndal et al. [15], Gregoire and Salas [6],
Vishwakarma et al. [16] and Priyanka et al. [11]. Their contributions have played a significant
role in improving the accuracy and effectiveness of survey based research under conditions of
measurement error.

Building on the contributions of renowned researchers in the field, this study focuses on
addressing the challenges associated with sensitive survey variables by employing various
Scrambled Response Techniques (SRT) alongside a range of various calibration estimators in the
presence of measurement errors. To evaluate the effectiveness of the proposed methodology, a
simulation study using real-life data has been carried out. This study compares the performance
of the estimators under two conditions, one involving measurement error and the other assuming
no measurement error.

The simulation results demonstrate that the proposed approach consistently delivers higher
efficiency than the standard SRT methods with measurement error. These findings emphasize
the robustness and practical applicability of the model in effectively handling sensitive survey
data while maintaining respondent privacy and improving data accuracy.

2. Survey Setup and Notation
Consider a finite population U = (U1,U2, . . . ,UN) consisting of N distinct and identifiable units.
Let y denote the sensitive variable of interest, and x represent a non-sensitive auxiliary variable.
The population means of y and x are denoted by Ȳ and X̄ , respectively. Our goal is to estimate
the mean Ȳ while accounting for the presence of measurement errors.

A sample sn of size n is drawn from the population according to a sampling design d, where
each unit Ui has an inclusion probability πi = P(Ui ∈ sn), and each pair of units (Ui,U j) has a
joint inclusion probability πi j = P(Ui,U j ∈ sn). Define ∆i j =πi j −πiπ j as the covariance between
inclusion indicators.
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Within this sampling framework, we intend to apply the scrambled response technique to
effectively address the sensitivity of the study variable.

3. Scrambled Response Technique under Measurement Error
Following the methodology introduced by Priyanka et al. [12], we employ various Scrambled
Response Techniques (SRT) to estimate the population mean of a sensitive variable. In this work,
their original framework is extended by incorporating various calibration estimators under
the presence of measurement errors with SRT.

To preserve respondent privacy in surveys involving sensitive topics, the true values of
sensitive variables are deliberately perturbed using scrambling variables-an approach known
as the SRT. Building on established literature in this area, we present a model in which
the sensitive variable y is transformed into a scrambled response variable z as follows:

SRT-I

z = y
[
O1 + O2

y

]
, (1)

where O1 and O2 are scrambling variables that may follow any suitable distribution. Under
this transformation, the population mean Ȳ of the sensitive variable can be recovered from
the observed mean Z̄ using:

Ȳts = Z̄− Ō2

Ō1
. (2)

Additionally, the correlation between the scrambled response variable z and the auxiliary
variable x is given by:

ρzx =
ρ yxσyŌ1√

σ2
y(σ2

O1
+ Ō2

1)+σ2
O1

Ȳ 2 +σ2
O2

.

The general model in eq. (1) encompasses several well-known scrambling models as special
cases, depending on the choice of scrambling variables. Two notable cases are outlined below.

Case 1 (SRT-II): If we set O1 = 1 in eq. (1), the model simplifies to the additive scrambling
model proposed by Pollock and Bek [10]:

za = y+O2 . (3)

The corresponding estimate of the population mean becomes:

Ȳa = Z̄a − Ō2 (4)

with

ρzx =
ρ yxσy√
σ2

y +σ2
O2

, C2
z =

σ2
y +σ2

O2

(Ȳ + Ō2)2

Case 2 (SRT-III): Setting O2 = 0 in eq. (1), we obtain the multiplicative model discussed by
Eichhorn and Hayre [5]:

zm = yO1 (5)
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and the estimator of the population mean is:

Ȳm = Z̄m

Ō1
(6)

with

ρzx =
ρ yxŌ1Cy√

σ2
y(σ2

O1
+ Ō2

1)+ Ȳ 2σ2
O1

, C2
z =

√
σ2

y(σ2
O1

+ Ō2
1)+ Ȳ 2σ2

O1

(Ȳ Ō1)2
.

SRT-IV: We consider the model proposed by Saha [14], in which the sensitive variable y is
perturbed into a scrambled variable zs as follows:

zs =O1(y+O2). (7)

Based on this scrambling mechanism, the estimator for the population mean is given by:

Ȳs = Z̄s − Ō1Ō2

Ō1
(8)

The associated statistical expressions are:

ρzx =
ρ yxŌ1Sy√

S2
O1

(S2
y + Ȳ 2 +S2

O2
+ Ō2

2)+ Ō2
1(S2

y +S2
O2

)

C2
z =

S2
O1

(S2
y + Ȳ 2 +S2

O2
+ Ō2

2)+ Ō2
1(S2

y +S2
O2

)

Ō2
1(Ȳ 2 + Ō2

2 +2Ō2Ȳ )

SRT-V: Diana and Perri [4] proposed a further refinement of the scrambling mechanism.
According to their model, the sensitive variable y is transformed into z using

z =O1[χyO2 + (1−χy)y], χy ∈ [0,1). (9)

The corresponding estimator for the population mean is:

Ȳdp = Z̄dp −χyŌ2

χy + (1−χy)Ō1
. (10)

The associated expressions for correlation and coefficient of variation are

ρzx =
ρ yxŌ1Sy(1−χy(opt))p

a0
, C2

z =
a0

X̄2
,

where

a0 = χ2
y(opt)[S

2
O2

(S2
O1

+ Ō2
1)+S2

O1
Ō2

2]+ (1−χy(opt))2[S2
O1

(S2
y + Ȳ 2)+S2

yŌ2
1]

+2χy(opt)(1−χy(opt))Ō2Ȳ S2
O1

and the optimal value of χy is given by

χy(opt) =
[

S2
O1

(S2
y + Ȳ 2 − Ō2Ȳ )S2

yŌ2
1

S2
O1

(S2
O2

+ Ō2
2 +S2

y + Ȳ 2 −2Ō2Ȳ )+S2
O2

Ō2
1 +S2

yŌ2
1

]
.

Remark 3.1. The scrambling variables O1 and O2 are assumed to satisfy the following
conditions:

E(O1)= Ō1, E(O2)= Ō2, V (O1)=σ2
O1

, V (O2)=σ2
O2

.
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Remark 3.2. The notations (Ȳ j); j ∈ {ts,a,m, s,dp} refer to the population mean of the sensitive
variable y under the SRT-1, SRT-II, SRT-III, SRT-IV and SRT-V scrambling models, respectively.

Remark 3.3. To construct an appropriate estimator for the sensitive population mean Ȳ , it is
first necessary to obtain a reliable estimator for the scrambled response mean Z̄. This estimator
is then substituted into eqs. (2), (4), (6), (8), and (10), corresponding to the different scrambling
models. The following section is dedicated to the development of such an estimator for Z̄.

3.1 Measurement Error in Scrambled Response Framework
We now extend the scrambled response model to account for measurement errors in
both the observed scrambled response variable and the auxiliary variable. Let ze and
xe denote the observed (error-prone) versions of the true scrambled response z and the
auxiliary variable x, respectively. Under the classical additive measurement error model,
their relationships are defined as:

zei = zi +ui, xei = xi +vi, for i = 1,2, . . . , N,

where ui and vi are the measurement errors associated with z and x, respectively. These errors
are assumed to be normally distributed with zero means and variances σ2

u and σ2
v. Furthermore,

the measurement errors in the study and auxiliary variables are allowed to be correlated.

4. Proposed Estimators in the Presence of Measurement Error
Horvitz-Thompson Estimator for the Scrambled Response Variable
In the context of the proposed sampling design, we aim to estimate the population mean of a
sensitive variable under measurement error using the classical Horvitz-Thompson estimator
(Horvitz and Thompson [7]). The adjusted form of this estimator, accounting for measurement
error in the observed scrambled response, is given by

Ĥme
h = 1

N

∑
i∈sn

γi zei, where γi = 1
πi

, (11)

where zei represents the observed (error-prone) scrambled response for unit i, πi is the inclusion
probability of unit i, and N is the total population size.

4.1 Calibration-Based Estimators under Measurement Error
Calibration is a widely used and powerful technique in survey sampling for improving parameter
estimation, especially when auxiliary information is available. It enhances the precision and
robustness of estimators by adjusting the survey weights so that they align with known
population totals. The effectiveness of calibration heavily relies on the quality and relevance
of auxiliary variables-particularly their accuracy, availability, and, most importantly, their
correlation with the study variable.

When auxiliary variables are highly correlated with the variable of interest, calibration
can substantially reduce the variance of estimators and mitigate non-sampling errors, such
as measurement error. Deville and Sarndal [2] introduced a general calibration framework
that uses a chi-square-type distance function to compute adjusted weights. Building upon their
approach, calibration methods have since been extended to contexts involving measurement
error and sensitive or coded responses.
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To improve the performance of the traditional Horvitz-Thompson estimator, we apply a
calibration approach wherein the original design weights γi are replaced by calibrated weights
wi , computed using known auxiliary information. In this context, we propose three calibration
estimators for estimating the population mean in the presence of measurement error: a basic
calibration estimator, a ratio-type calibration estimator, and an exponential-type calibration
estimator,

Hme
C = 1

N

∑
i∈sn

wi zei, (12)

Hme
R = 1

N

∑
i∈sn

wi zei

(
X i

xei

)
, (13)

Hme
E = 1

N

∑
i∈sn

wi zei exp
(

X i − xei

X i + xei

)
. (14)

To determine the calibrated weights wi , we minimize the following chi-square-type distance
function

Θ̂1(wi,γi)=
n∑

i=1

(wi −γi)2

γiQ i
, (15)

subject to the calibration constraint:
1
N

∑
i∈sn

wixei = X̄ , (16)

where Q i is a known constant, and X̄ is the population mean of the auxiliary variable.
The goal is to compute weights wi that are as close as possible to the original design weights

γi , while satisfying the constraint in eq. (16). This leads to a constrained optimization problem,
which is solved by minimizing the following Lagrangian:

Γme
1 = Θ̂1(wi,γi)−2λ1

(
1
N

∑
i∈sn

wixei − X̄

)
. (17)

Differentiating Γme
1 with respect to wi and equating the derivative to zero yields

wi = γi +λ1xeiαiQ i. (18)

Solving for the Lagrange multiplier λ1, we obtain

λ1 =
X̄ −∑

i∈sn γixei∑
i∈sn αiQ ix2

ei
. (19)

Substituting this value back into eq. (18), the calibrated weight becomes

wi = γi +γiQ i

(
X̄ −∑

i∈sn γixei
)
xei∑

i∈sn γiQ ix2
ei

. (20)

Finally, substituting wi from eq. (20) into eqs. (12)-(14), we obtain the following explicit forms
of the calibrated estimators under SRT in presence of measurement error as

Ĥme
C = 1

N

∑
i∈sn

zei + g1

[
X̄ − 1

N

∑
i∈sn

γixei

]
, (21)

Ĥme
R = 1

N

∑
i∈sn

zei

(
X i

xei

)
+ g2

[
X̄ − 1

N

∑
i∈sn

γixei

]
, (22)
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Ĥme
E = 1

N

∑
i∈sn

zei exp
(

X i − xei

X i + xei

)
+ g3

[
X̄ − 1

N

∑
i∈sn

γixei

]
, (23)

where the coefficients g1, g2, g3 are given by

g1 =
∑

i∈sn xei zeiγiQ i∑
i∈sn x2

eiγiQ i
, g2 =

∑
i∈sn xei zei

(
X i
xei

)
γiQ i∑

i∈sn x2
eiγiQ i

, g3 =
∑

i∈sn xei zei exp
(

X i−xei
X i+xei

)
γiQ i∑

i∈sn x2
eiγiQ i

.

5. Analysis Under Simple Random Sampling Without Replacement
(SRSWOR)

To examine the behaviour of the proposed calibration estimators within the framework of
Simple Random Sampling Without Replacement (SRSWOR), we consider the standard inclusion
probabilities associated with this sampling design. Under SRSWOR, the first-order and second-
order inclusion probabilities for each unit are defined as

πi = n
N

, πi j = n(n−1)
N(N −1)

, i ̸= j.

Assuming a constant value for the calibration parameter, i.e., Q i = 1, the calibration estimators
Ĥme

r for r ∈ {C,R,E} under this design are denoted by Ĥme∗
r . These modified estimators take

the following explicit forms:

Ĥme∗
C = z̄en +G1(X̄ − x̄en), where G1 =

∑
i∈sn xei zei∑

i∈sn x2
ei

, (24)

Ĥme∗
R = z̄en · X̄

x̄en
+G2(X̄ − x̄en), where G2 =

∑
i∈sn xei zei · X i

xei∑
i∈sn x2

ei
, (25)

Ĥme∗
E = z̄en ·exp

(
X̄ − x̄en

X̄ + x̄en

)
+G3(X̄ − x̄en), where G3 =

∑
i∈sn xei zei ·exp

(
X i−xei
X i+xei

)
∑

i∈sn x2
ei

, (26)

where z̄en and x̄en denote the sample means of the observed scrambled response variable
and the observed auxiliary variable under measurement error, respectively. These estimators
incorporate both auxiliary information and calibration adjustments to enhance accuracy in
the presence of measurement error.

6. Properties of the Proposed Estimators under Measurement Error
To evaluate the statistical properties of the proposed estimators Ĥme∗

r for r ∈ {C,R,E} under
the presence of measurement error, we introduce the following notation:

K0 = z̄en

Z̄
−1, K1 = x̄en

X̄
−1 such that E(K i)= 0 for i = 0,1.

The corresponding second-order moments are given by

E(K2
0)=

(
1
n
− 1

N

)
S2

z +S2
u

Z̄2
,

E(K2
1)=

(
1
n
− 1

N

)
S2

x +S2
v

X̄2
,

E(K0K1)=
(

1
n
− 1

N

)
ρzxSzSx +ρuvSuSv

Z̄ X̄
.
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Using this notation, the Horvitz-Thompson estimator Ĥme∗
h under SRSWOR can be expressed

as

Ĥme∗
h = Z̄(1+K0),

Ĥme∗
h − Z̄ = Z̄K0.

Taking the square of the estimation error and expectation, we obtain the approximate variance
(ignoring the finite population correction) given by

V (Ĥme∗
h )≈ 1

n
(S2

u +S2
z). (27)

Now, consider the calibrated estimator Ĥme∗
C from eq. (24). Substituting in the notation gives

Ĥme∗
C = Z̄(1+K0)−G1(X̄ − X̄ (1+K1)), (28)

Ĥme∗
C − Z̄ = Z̄K0 −G1 X̄ K1. (29)

Squaring both sides and applying first-order approximations yields

[Ĥme∗
C − Z̄]2 ≈ [Z̄K0 −G1 X̄ K1]2. (30)

Taking expectations on both sides of eq. (30), the variance of Ĥme∗
C is

V [Ĥme∗
C ]= 1

n
[S2

z +S2
u +G2

1(S2
x +S2

v)−2BG1(ρzxSzSx +ρuvSuSv)]. (31)

Optimizing with respect to G1, we obtain the minimum variance when

G∗
1 = ρzxSzSx +ρuvSuSv

S2
x +S2

v
.

Substituting G∗
1 into eq. (32), the minimum variance of the calibrated estimator becomes

V [Ĥme∗
C ]opt = 1

n
δ0, (32)

where

δ0 = S2
z +S2

u + (G∗
1)2(S2

x +S2
v)−2G∗

1(ρzxSzSx +ρuvSuSv).

Similarly, for the ratio and exponential-type estimators, the variances under optimal calibration
weights G∗

2 and G∗
3 respectively are given as:

V [Ĥme∗
R ]opt = 1

n
[S2

z +S2
u + (G∗

2)2(S2
x +S2

v)+ (S2
x +S2

v)−2G∗
2(ρzxSzSx +ρuvSuSv)

−2(ρzxSzSx +ρuvSuSv)], (33)

where

G∗
2 = 2ρuvSuSv −ρzxSzSx

S2
x +S2

v
.

V [Ĥme∗
E ]opt = 1

n

[
S2

z +S2
u +

1
4

(S2
x +S2

v)+ (G∗
3)2(S2

x +S2
v)+ (S2

x +S2
v)

−2G∗
3(ρzxSzSx +ρuvSuSv)− (ρzxSzSx +ρuvSuSv)

]
, (34)

with

G∗
3 = 2ρuvSuSv −ρzxSzSx − 1

2 (S2
x +S2

v)

S2
x +S2

v
.
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7. Estimators for the Sensitive Population Mean
To estimate the sensitive population mean, the population mean of the scrambled response
variable Z̄ in eqs. (2), (4), (6), (8), and (10) is replaced with the corresponding estimators Ĥh, ĤC ,
ĤR , and ĤE . This substitution results in the respective estimators for the sensitive population
mean, denoted by ˆ̄Y jh, ˆ̄Y jC , ˆ̄Y jR , and ˆ̄Y jE ; j ∈ {ts,a,m, s,dp}.

The explicit forms of these estimators, along with their variances, are summarized in Table 1.
The variances are derived based on the optimal conditions associated with each corresponding
estimator of Z̄.

Table 1. Estimators of the Sensitive Population Mean and their Variance Expressions

Model Estimator Variance Expression

SRT-I ˆ̄Y jr = Ĥr−Ō2
Ō1

V [ ˆ̄Y jr]= V (Ĥr)
Ō2

1

SRT-II ˆ̄Y jr = Ĥr − Ō2 V [ ˆ̄Y jr]=V (Ĥr)

SRT-III ˆ̄Y jr = Ĥr
Ō1

V [ ˆ̄Y jr]= V (Ĥr)
Ō2

1

SRT-IV ˆ̄Y jr = Ĥr−Ō1Ō2
Ō1

V [ ˆ̄Y jr]= V (Ĥr)
Ō2

1

SRT-V ˆ̄Y jr = Ĥr−χyŌ2Ō1

(1−χy)Ō1
V [ ˆ̄Y jr]= V (Ĥr)opt.

[(1−χy)Ō1]2

Note. j ∈ {ts,a,m, s,dp} and r ∈ {h, C, R, E}

8. Simulation Study
To assess the performance of the proposed calibration estimators developed under the Scrambled
Response Technique (SRT) in the presence of measurement error, and to compare them with
existing estimators, a simulation study has been conducted.

For this purpose, a real-world population consisting of N = 94 districts from the southern
states of India: Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu has been considered
(Population Source: URL: https://mohfw.gov.in).

The study involves the following variables:
• X i : COVID-19 positivity rate in the ith district for the week of June 18th to June 24th,

2021.
• Yi : COVID-19 positivity rate in the ith district for the week of June 26th to 2nd July,

2021.
The scrambling variables O1 and O2 are assumed to follow normal distributions: O1 ∼N(1,1)
and O2 ∼ N(1,2). Additionally, artificial measurement error terms u and v are generated
independently from a normal distribution with mean 0 and variance 4, using MATLAB.

The known parameters of the population are

N = 94, Ȳ = 5.1756, X̄ = 5.1050, ρY X = 0.95, with sample sizes n ∈ {40,55}.

A Monte Carlo simulation with 10,000 independent replications was implemented in MATLAB

to study the performance of the estimators. Specifically, the proposed calibration estimator
Ĥme

C was compared with the Horvitz-Thompson estimator Ĥme
h , the ratio-type calibration

estimator Ĥme
R , and the exponential-type calibration estimator Ĥme

E under the scrambling
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response models: SRT-I, SRT-II, SRT-III, SRT-IV and SRT-V, all in the presence of measurement
error.

To evaluate and compare their efficiencies, Percent Relative Efficiency (PRE) values were
computed as:

PRE j1 =
V [ ˆ̄Y jh]

V [ ˆ̄Y jC]
×100, PRE j2 =

V [ ˆ̄Y jR]

V [ ˆ̄Y jC]
×100,

PRE j3 =
V [ ˆ̄Y jE]

V [ ˆ̄Y jC]
×100, j =



ts, for SRT-I,
a, for SRT-II,
s, for SRT-III,
m, for SRT-IV
dp for SRT-V,

where, for example,

V [ ˆ̄Ytsh]= 1
10,000

10,000∑
i=1

[ ˆ̄Ytshi − Ȳi]2.

Similar expressions are used to compute variances for other estimators under each scrambling
model and for each estimator type r0 ∈ {C,R,E}.

The simulation results for PRE jl , where l = 1,2,3, are reported in Table 2.

Table 2. Simulation results for the percent relative efficiency of proposed calibrated estimators in
the presence of measurement error under SRT models

j Model n = 40 n = 55

PRE j1 PRE j2 PRE j3 PRE j1 PRE j2 PRE j3

ts SRT-I 107.2516 279.7016 33997 108.8433 479.2391 16969

a SRT-II 143.9926 358.6410 26305 141.9766 499.0310 11152

m SRT-III 106.7950 150.4416 11660 107.2640 124.1921 16274

s SRT-IV 106.9398 4720.6340 17966 107.6941 2515.400 25016

SRT-V:

dp χy PRE j1 PRE j2 PRE j3 PRE j1 PRE j2 PRE j3

0.1 109.6843 170.5627 18153 109.8137 168.6864 13881

0.2 110.3145 213.4760 52090 110.3049 113.4960 42703

0.3 110.1343 109.5357 10610 110.0753 105.0940 7752

0.4 110.9766 110.3689 30414 110.3683 110.3683 21348

0.5 110.0464 110.7634 14006 110.0233 110.3961 19023

0.6 110.0652 120.4415 80593 110.0141 120.3036 64260

0.7 110.0717 121.4301 52285 110.0069 121.3133 35913

0.8 110.0087 122.5913 36109 110.0054 122.5946 25219

0.9 110.0048 124.4503 26571 110.0049 124.4850 18180
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In addition, to analyse the impact of measurement error, we compare the variances of
the estimators obtained under SRT in presence of measurement error with those computed
under an ideal scenario where no measurement error is present (i.e., setting u = v = 0). The
corresponding relative efficiencies are computed as:

PRE∗
j1 =

V [T̂ jc]

V [ ˆ̄Y jC]
×100, PRE∗

j2 =
V [T̂ jr1]

V [ ˆ̄Y jR]
×100,

PRE∗
j3 =

V [T̂ je]

V [ ˆ̄Y jE]
×100, j =



ts, for SRT-I,
a, for SRT-II,
s, for SRT-III,
m, for SRT-IV
dp for SRT-V,

where, the estimators (T̂ js, for s ∈ {c, r1, e}, are derived from the respective ˆ̄Y j estimators by
setting the measurement error components u = v = 0.

For instance,

V [T̂tsc]= 1
10,000

10,000∑
i=1

[T̂tsci − Ȳi]2.

Similar variance expressions are used for SRT-II, SRT-III, SRT-IV and SRT-V, and for all types
of estimators.

The simulation outcomes for PRE∗
jl , where l = 1,2,3, are presented in Table 3.

Table 3. Simulation results for the percent relative efficiency of the proposed calibrated estimators
without measurement error for n = 55

j Model PRE j1 PRE j2 PRE j3

ts SRT-I 0.1716 0.0294 0.0016983

a SRT-II 0.5517 0.0672 0.0062104

m SRT-III 0.0251 0.0022 0.0015876

s SRT-IV 0.0262 0.0011 0.0010142

SRT-V:

χy PRE j1 PRE j2 PRE j3

dp 0.1 0.8633 0.8322 0.01121

0.2 1.0518 1.0105 0.01142

0.3 1.2570 1.2036 0.01370

0.4 1.5904 1.5154 0.011783

0.5 2.0016 1.8977 0.01561

0.6 2.7072 2.5468 0.01912

0.7 3.6127 3.3613 0.011842

0.8 5.3904 4.9402 0.012047

0.9 9.1080 8.1624 0.012385
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9. Discussion of Simulation Results
I. Table 2 presents the Percent Relative Efficiency (PRE) of the proposed calibrated estimators

under various SRT models (SRT-I to SRT-V) in the presence of measurement error, for two
different sample sizes: n = 40 and n = 55. Some important observations from Table 2 are:

• All PRE values across SRT models and both sample sizes are greater than 100,
indicating that the proposed calibrated estimators are more efficient than the
traditional estimators under measurement error conditions.

• In SRT-I and SRT-II, the exponential calibration estimator Ĥme
E shows significantly

higher efficiency compared to the calibration estimator, with very large PRE j3 values.
• In SRT-V, where efficiency is evaluated across varying parameter of χy, a consistent

trend is observed:

PREdp1 <PREdp2 <PREdp3 .

This clearly suggests that among all estimators, the exponential calibration estimator
performs best, followed by the ratio calibration estimator.

• Comparing across models, the SRT-IV and SRT-V models, particularly at higher
values of χy, yield higher PRE values, indicating that these models provide greater
efficiency when used with exponential calibration.

• Larger sample size (n = 55) tends to produce slightly higher PREs, confirming the
expectation that larger samples lead to more stable and efficient estimators.

These results confirm the applicability and effectiveness of the proposed calibrated estimators
under SRT models with measurement error. Notably, the exponential calibration estimator
under SRT-V exhibits the highest performance, making it a strong candidate for practical
applications in sensitive variable estimation.

II. Table 3 evaluates the performance of the same proposed estimators in the absence of
measurement error. The following trends can be noted:

• PRE values for SRT-I to SRT-IV are substantially less than 100, especially for
exponential calibration, where PRE j3 values are extremely low. This indicates a
considerable loss in efficiency when applying randomization and measurement error
handling compared to using direct estimators.

• In SRT-V, as χy increases from 0.1 to 0.9, the PRE values for both PREdp1 and
PREdp2 show an increasing trend, often exceeding 1. This implies that the calibration
and ratio calibration estimators start to outperform their direct counterparts as the
variation in χy increases.

• However, PRE j3 values for the exponential estimator remain very low throughout,
even at higher χy levels, suggesting that the exponential calibration estimator is less
efficient than its direct version in the absence of measurement error.

Overall, the results in Table 3 show that although the proposed estimators are useful under
conditions of measurement error and sensitive data collection, their efficiency is lower than
their direct counterparts when such issues are not present. Nevertheless, in sensitive surveys
where direct questioning can lead to nonresponse or biased data, the use of randomized and
measurement-error-robust estimators becomes essential despite the efficiency trade-off.
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10. Concluding Remarks
The analysis of Tables 2 and 3 highlights the effectiveness of calibration based estimators for
estimating the population mean of sensitive variables in the presence of measurement error.
The proposed estimators-standard calibration, ratio calibration, and exponential calibration
consistently demonstrate high percent relative efficiency, significantly outperforming the
traditional Horvitz-Thompson estimator across various SRT models. Among these, the
exponential calibration estimator under the SRT-V model emerges as the most robust,
particularly at higher values of χy. However, a noticeable decline in precision is observed
when comparing these estimators to their direct counterparts applied to clean data, indicating
that while calibration techniques mitigate measurement error, they cannot fully recover lost
efficiency. Despite this, the use of randomized response techniques remains crucial for obtaining
truthful responses in sensitive surveys. Overall, the exponential calibration estimator within the
scrambled response technique framework offers the best trade-off between statistical efficiency
and respondent privacy, making it a practical and reliable choice for real-world applications.
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