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1. Introduction
The transmission eigenvalue problem, first discussed by Colton and Monk [14] in 1988, is a new
type of boundary value problem for elliptic equations and arises in inverse scattering theory for
inhomogeneous media. In the case of acoustic wave, it is formulated as

∆v(x)+k2n(x)v(x)= 0, x ∈ D,

∆w(x)+k2w(x)= 0, x ∈ D,

v(x)−w(x)= 0, x ∈ ∂D,
∂(v(x)−w(x))

∂ν
= 0, x ∈ ∂D,


(1.1)
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where w(x), v(x) denote acoustic wave field, d is a bounded simply connected domain with
C2 boundary ∂D and n(x) denotes the refractive index which is a positive real valued
function. The complex values of k > 0 for which the boundary value problem (1.1) has a
nontrivial solution are called transmission eigenvalues. On the other hand, the problem
of reconstructing the material properties, i.e., the refractive index, from the knowledge of
transmission eigenvalues is called inverse transmission eigenvalue problem.

The transmission eigenvalue problem mainly arises in acoustic and electromagnetic
wave scattering in inhomogeneous media. Indeed, The acoustic wave scattering problem in
inhomogeneous media can be formulated as

∆u(x)+k2n(x)u(x)= 0, x ∈ R3,

u = eikx·d +us,

lim
r→∞ r

(
∂us

∂r − ikus
)
= 0,

 (1.2)

where r = |x|, d is a unit vector denoting the direction of propagation and us denotes
the scattering field. From (1.2) it can easily be seen that for fixed k, the scattering field
us has the following asymptotic behavior as r →∞,

us(x)= eikr

r

{
u∞(x̂,d)+O

(
1
r

)}
, (1.3)

where u∞(x̂,d) is called the far field pattern corresponding to the scattering field us. By (1.3),
the far field operator F : L2(S2)→ L2(S2) is defined by

(F g)(x̂) :=
∫

S2
u∞(x̂,d)g(d)ds(d).

The far field operator F plays an important role in inverse scattering theory and it is well
known that this operator is injective with dense range provided that k is not a transmission
eigenvalue (Colton and Kress [11]).

For a long time, research on the transmission eigenvalue problem mainly focused on proving
that transmission eigenvalues form at most a discrete set. From a practical point of view,
the discreteness of transmission eigenvalues is of great importance since the sampling methods
for reconstructing the support of an inhomogeneous medium fail if the interrogating frequency
corresponds to a transmission eigenvalue (Colton and Kress [11]).

On the other hand, due to the non-selfadjointness of (1.1), the existence of transmission
eigenvalues for general media remained open for more than twenty years until Päivärinta
and Sylvester [26] showed the existence of at least one transmission eigenvalue provided that
the contrast m in the medium is large enough. The study on the existence of transmission
eigenvalues was completed by Cakoni et al. [6] where the existence of an infinite set of
transmission eigenvalues was proven only under the assumption that the contrast m in
the medium does not change sign and is bounded away from zero. The first transmission
eigenvalue was also estimated here.

It was shown by Cakoni et al. [4,5], and Harris [19,21] that transmission eigenvalues can be
determined by the scattering data and since they provide information about the material
properties of the scattering object, can play an important role in a variety of problems
in target identification. In [17, 23, 24, 28] various numerical algorithms were studied to

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 4, pp. 375–398, 2025



Reconstruction of a Discontinuous Refractive Index Using Modified Transmission. . . : Y. C. Kim and C. W. O 377

compute transmission eigenvalues. For example, Gintides and Pallikarakis [17] transformed
the transmission eigenvalue problem (1.1) into a variational form, i.e., finding a function
u ∈ H2

0(D) such that∫
D

1
η2 −n(x)

(∆u+k2η2u)(∆φ̄+k2n(x)φ̄)= 0, for all φ ∈ H2
0(D)

and computed the transmission eigenvalues by Galerkin method. The eigenfunctions of
the eigenvalue problem

Lφi(x)=µiφi(x), x ∈ D,

φi(x)= 0,
∂φi(x)
∂ν

= 0, x ∈ ∂D

were chosen as a Hilbert basis in H2
0(D), where L =∆∆.

Recently, transmission eigenvalue problems with conductive boundary conditions have
attracted great attention (Diao et al. [15], Harris [20], Harris and Kleefeld [22]).

The study on inverse transmission eigenvalue problems have mainly focused on the case of
spherically symmetric refractive index. In this case, transmission eigenvalue problem becomes
a boundary value problem of nonstandard ordinary differential equations.

Suppose that the inhomogeneous medium domain is a ball of radius 1 and n(x) is spherically
symmetric, i.e., n(x)= n(r). The Laplacian in r3 is given by

∆= ∂2

∂r2 + 2
r
∂

∂r
+ 1

r2
∂2

∂θ2 + cotθ
r2

∂

∂θ
+ 1

r2 sin2ϕ

∂2

∂ϕ2

in spherical coordinates (r,θ,ϕ), therefore, the boundary value problem (1.1) is transformed into

v′′+ 2
r

v′+k2n(r)v = 0, 0< r < 1,

w′′+ 2
r

w′+k2w = 0, 0< r < 1,

v(1)−w(1)= 0,

v′(1)−w′(1)= 0.

Now applying the transformation u := rv, V := rw, the above boundary value problem reads

u′′+k2n(r)u = 0, 0< r < 1,

V ′′+k2V = 0, 0< r < 1,

u(0)=V (0)= 0, u(1)=V (1), u′(1)=V ′(1).

From the second equation, we can see that the solution V (r) satisfying V (0) = 0 must be a
constant multiple of sin(kr)

k . Thus, the transmission eigenvalue problem (1.1) becomes a boundary
value problem for an ordinary differential equation

u′′+λn(r)u = 0, r ∈ (0,1),

u(0,λ)= 0, u(1,λ)cos
p
λ−u′(1,λ) sin

p
λp

λ
= 0,

 (1.4)

where λ= k2 is a spectral parameter and the refractive index n(r) is a positive real function.
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The function

∆(λ) := u(1,λ)cos
p
λ−u′(1,λ)

sin
p
λp

λ
(1.5)

is called the characteristic function of the transmission eigenvalue problem (1.4). It is well known
that this is an entire function of order less than 1

2 and all eigenvalues λn of the transmission
eigenvalue problem (1.4) coincide with the zeros of the characteristic function ∆(λ)([1]), where
u(r,λ) is the solution to the initial value problem

u′′+λn(r)u = 0, r ∈ (0,1),

u(0,λ)= 0, u′(0,λ)= 1.

}
(1.6)

In addition, there exists a real constant γ such that

∆(λ)= γλd
∞∏

n=d+1

(
1− λ

λn

)
. (1.7)

We define the quantity A := ∫ 1
0 =p

n(r)dr.
It was shown by Aktosun et al. [1] that n(r) can be uniquely determined from all transmission

eigenvalues in case A < 1 and from all transmission eigenvalues and constant γ in case A = 1.
Similar problems were discussed by Bondarenko and Buterin [2], Cakoni et al. [3], Cakoni
and Haddar [7], Chen [8] and in general, there must be additional information (for example
information about the refractive index in subintervals) (Gesztesy and Simon [16], Wang and
Shieh [30], Wei and Wei [31]).

Modified transmission eigenvalues were introduced in order to reconstruct the refractive
index without above constrains and additional information and to avoid the dependence of
transmission eigenvalues on the frequency (Cogar et al. [9,10], Stratouras [27]).

If there exist nontrivial solutions w̃, ṽ satisfying
∆w̃+k2n(r)w̃ = 0, x ∈ D,

∆ṽ+k2η2ṽ = 0, x ∈ D,

ṽ = w̃, ∂ṽ
∂ν

= ∂w̃
∂ν

, x ∈ ∂D,

 (1.8)

then k was called a modified transmission eigenvalue, where η> 0 is a given sufficiently large
constant. It was proved that the refractive index n(r) can be uniquely determined from the
modified transmission eigenvalues (Cogar et al. [9]).

On the other hand, applying Liouville transformation

ξ=
∫ r

0

√
n(s)ds, z(ξ) := (n(r))

1
4 y(r), r = r(ξ)

to the transmission eigenvalue problem, we get Sturm-Liouville problem

− z′′+ q(ξ)z =λz, ξ ∈ (0,a),

z(0,λ)= 0, z(a,λ)cos
p
λ− z′(a,λ)

sin
p
λp

λ
= 0.

The existence of real eigenvalues and asymptotic behavior of the Sturm-Liouville problem and
related inverse problems have also received great attention (Mclaughlin and Polyakov [25], Wei
and Xu [32], Xu et al. [34]). The classic inverse Sturm-Liouville problem for mixed spectrum
data has also generated much interest (Wang [29], Wei and Xu [33]).
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In most studies on the inverse transmission eigenvalue problem, the refractive index was
assumed to be continuous, especially, twice continuously differentiable and the problem of
reconstructing it from the knowledge of transmission eigenvalues has been discussed in case
the refractive index is of relatively small value.

In practice, the refractive index of the media can be discontinuous and may have arbitrary
values. The inverse transmission eigenvalue problem with discontinuous refractive index was
considered by Gintides and Pallikarakis [18], where the refractive index was required to satisfy
n(1)= 1 and either n(r)> 1 or 0< n(r)< 1. Accordingly, the aim of this paper is to eliminate the
above constraints on the refractive index by using the modified transmission eigenvalues.

This paper is organized as follows. In Section 2, we formulate the modified transmission
eigenvalue problem in discontinuous media and discuss the asymptotic behavior of the
characteristic function. In Section 3, we establish the uniqueness of the inverse modified
transmission eigenvalue problem in discontinuous media and present some numerical examples
to validate our theoretical results.

2. The Modified Transmission Eigenvalue Problem in Discontinuous
Media and the Characteristic Function

2.1 Formulation of the Modified Transmission Eigenvalue Problem in Discontinuous
Media

We assume that d is the unit sphere in r3 and the refractive index is spherically symmetric, i.e.,
n(x)= n(r). For the modified transmission eigenvalue problem

∆w̃+k2n(r)w̃ = 0, x ∈ D,

∆ṽ+k2η2ṽ = 0, x ∈ D,

w̃− ṽ = 0, x ∈ ∂D,
∂(w̃−ṽ)
∂ν

= 0, x ∈ ∂D.


(2.1)

We introduce the spherical coordinates (r,θ,φ). We seek spherically symmetric eigenfunctions
in the form

w̃(r,θ)= bl
yl(r)

r
Pl(cosθ), ṽ(r,θ)= al jl(kηr)Pl(cosθ), (2.2)

where jl is a spherical Bessel function, Pl Legendre polynomial, al , bl constants and yl(r)
satisfies the following initial value problem:

y′′l (r)+
(
k2n(r)− l(l+1)

r2

)
yl(r)= 0, 0< r < 1,

lim
r→0

(
yl (r)

r − jl(kηr)
)
= 0.

 (2.3)

It is well known (Colton and Kress [11]) that k is a modified transmission eigenvalue if and
only if

d̃l(k)= det

(
yl(1) − jl(kη)

d
dr

(
yl (r)

r

)
r=1

−k j′l(kη)

)
= 0. (2.4)

In this paper, we consider the case where the refractive index n(r) is discontinuous in
d ∈ (0,1). We assume that n(r) is twice continuously differentiable in [0,d), (d,1] and has
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finite one-sided limits lim
r→d−0

n′′(r), lim
r→d+0

n′′(r), and n′(1) = 0. We consider the following jump

conditions (Gintides and Pallikarakis [18]),

n(d+)= an(d−), (2.5)

n′(d+)= a−1n′(d−)+bn(d−), (2.6)

a > 0, |a−1|+ |b| > 0. (2.7)

Using Liouville transformation

ξ(r)=
∫ r

0

√
n(ρ)dρ, z(ξ)= n(r)

1
4 yl(r),

the differential equation of (2.3) is transformed into the following form:
d2z(ξ)

dξ2 +
(
k2 − l(l+1)

ξ2 − p(ξ)
)

z(ξ)= 0, 0< ξ< A, (2.8)

where

A =
∫ 1

0

√
n(ρ)dρ, p(ξ)= l(l+1)

r2n(r)
− l(l+1)

ξ2 + n′′(r)
4n(r)2 − 5

16
n′(r)3

n(r)3 .

The following result holds for the solution z to (2.8).

Lemma 2.1 ([18]). The solution z(ξ) to (2.8) is discontinuous at ξ = d̃ and satisfies the jump
conditions:

z(d̃+)= ãz(d̃−), (2.9)

dz(d̃+)
dξ

= ã−1 dz(d̃−)
dξ

+ b̃z(d̃−), (2.10)

|ã−1|+ |b̃| > 0, (2.11)

where

d̃ =
∫ d

0

√
n(ρ)dρ, ã = a

1
4 , b̃ = 1

4

[
n′(d+)

n(d+)3/2 ã− n′(d−)

n(d−)5/4n(d+)
1
4

]
.

2.2 The Asymptotic Behavior of the Characteristic Function
First, we give the expression of the characteristic function and asymptotic behavior in case
L = 0. In this case, y0(r) satisfies

y′′0 (r)+k2n(r)y0(r)= 0, 0< r < 1, y0(0)= 0, y′0(0)= 1

and by Liouville transformation, it is transformed into
d2z
dξ2 + (k2 − p(ξ))z = 0, 0< ξ< A, z(0)= 0,

dz(0)
dξ

= n(0)−1/4, (2.12)

where

p(ξ)= n′′(r)
4n(r)2 − 5

16
n′(r)3

n(r)3 .

The characteristic function can be rewritten as

d̃0(k)= det

(
y0(1) sinkη

kη
y′0(1) coskη

)
.
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Lemma 2.2 ([18]). The solution z(ξ) to (2.12) satisfies the following Volterra integral equation,

z(ξ)= sinkξ

kn(0)
1
4
+

∫ ξ

0
p(t)

sin(ξ− t)
k

z(t)dt, 0≤ ξ≤ d̃ (2.13)

= 1

kn(0)
1
4

[
ãsinkd̃ cosk(ξ− d̃)+ ã−1 coskd̃ sink(ξ− d̃)+ b̃

k
sinkd̃ sink(ξ− d̃)

]

+ 1
k

∫ d̃

0
[ãsink(d̃− t)cosk(ξ− d̃)+ ã−1 cosk(d̃− t)sink(ξ− d̃)

+ b̃
k

sink(d̃− t)sink(ξ− d̃)]p(t)z(t)dt+
∫ ξ

d̃
p(t)

sink(ξ− t)
k

z(t)dt, d̃ < ξ≤ A. (2.14)

Furthermore, the solution z to (2.13), (2.14) is an entire function of order 1
2 with respect to k2.

The characteristic function corresponding to the modified transmission eigenvalue problem is
more complicated than that of the classical transmission eigenvalue problem due to the absence
of the assumption n(1)= 1.

The following lemma shows the asymptotic behavior of the characteristic function d̃0(k).

Lemma 2.3. Assume that the refractive index is piecewise C2 and (2.5)-(2.7) hold. Then,
the characteristic function d̃0(k) satisfies the following asymptotic formula,

d̃0(k)= 1

k[n(0)n(1)]
1
4

[
1
4

(ã+ ã−1)
(
1−

p
n(1)
η

)
sink(A+η)

+ 1
4

(ã+ ã−1)
(
1+

p
n(1)
η

)
sink(A−η)+ 1

4
(ã− ã−1)

(
1+

p
n(1)
η

)
sink(η− A+2d̃)

−1
4

(ã− ã−1)
(
1−

p
n(1)
η

)
sink(η+ A−2d̃)

]
+O

(
1
k2

)
. (2.15)

Proof. By applying the Liouville transformation, we obtain

y0(1)= 1

n(1)
1
4

z(A), y′0(1)= dz(ξ)
dξ

n(r)
1
2 n(r)−1/4 − 1

4
z(ξ)n(r)−5/4n′(r)

∣∣∣
ξ=A,r=1

and from the asymptotic formula for z(ξ) and dz(ξ)
dξ ([18, Proposition 8]),

z(ξ)= 1

kn(0)
1
4

[ãsinkd̃ cosk(ξ− d̃)+ ã−1 coskd̃ sink(ξ− d̃)]+O
(

1
k2

)
,

dz(ξ)
dξ

= 1

n(0)
1
4

[−ãsinkd̃ sink(ξ− d̃)+ ã−1 coskd̃ cosk(ξ− d̃)]+O
(

1
k

)
.

We get the following asymptotic formula for d̃0(k):

d̃0(k)= coskη · y0(1)− sinkη
kη

· y′0(1)

= 1

k[n(0)n(1)]
1
4

{ãsinkd̃ cosk(A− d̃)coskη+ ã−1 coskd̃ sink(A− d̃)coskη

·
p

n(1)
η

[−ãsinkd̃ sink(A− d̃)sinkη+ ã−1 coskd̃ cosk(A− d̃)sinkη]}+O
(

1
k2

)
.

Simplifying the above expression using trigonometric formulas, we obtain (2.15).
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Next, we consider the expression of the characteristic function and its asymptotic behavior
for the case L ≥ 1.

Lemma 2.4 ([18]). In case r>d, the solution to (2.3) satisfies the asymptotic behavior

yl(r)= 1

kn(r)
1
4 n(0)

l
2+ 1

4

[
ã+1
2ã

sin
(
kξ− lπ

2

)
+ 1− ã2

2ã
sin

(
kξ+ lπ

2
−2kd̃

)]
+O

(
lnk
k2

)
.

From Lemma 2.4, yl(1) and y′l(1) can be rewritten as

yl(1)= 1

kn(1)
1
4 n(0)

l
2+ 1

4

[
ã2 +1

2ã
sin

(
Ak− lπ

2

)
+ 1− ã2

2ã
sin

(
Ak+ lπ

2
−2kd̃

)]
+O

(
lnk
k2

)
,

y′l(1)= n(1)
1
2

n(1)
1
4 n(0)

l
2+ 1

4

[
ã2 +1

2ã
cos

(
Ak− lπ

2

)
+ 1− ã2

2ã
cos

(
Ak+ lπ

2
−2kd̃

)]
+O

(
lnk
k

)
.

Substituting this result together with the asymptotic formula of jl(kη) and j′l(kη),

jl(kη)= 1
kη

cos
(
kη− lπ

2
− π

2

)(
1+O

(
1
kη

))
,

j′l(kη)= 1
kη

cos
(
kη− lπ

2

)(
1+O

(
1
kη

))
to (2.4), we have

d̃l(k)= 1

kn(1)
1
4 n(0)

l
2+ 1

4

{[
n(1)

1
2

η

ã2 +1
2ã

cos
(
Ak− lπ

2

)
sin

(
kη− lπ

2

)
+ n(1)

1
2

η

· 1− ã2

2ã
cos

(
Ak+ lπ

2
−2kd̃

)
sin

(
kη− lπ

2

)]
+

[
ã2 +1

2ã
sin

(
Ak− lπ

2

)
cos

(
kη− lπ

2

)
+1− ã2

2ã
sin

(
Ak+ lπ

2
−2kd̃

)
cos

(
kη− lπ

2

)]}
+O

(
lnk
k2

)

= 1

kn(1)
1
4 n(0)

l
2+ 1

4

[
1
4

(
ã+ ã−1)(1− n(1)

1
2

η

)
sin(kA+kη− lπ)

+ 1
4

(ã+ ã−1)

(
1+ n(1)

1
2

η

)
sin(kA−kη)+ 1− ã2

4ã

(
1− n(1)

1
2

η

)
sin(kA+kη−2kd̃)

+1− ã2

4ã

(
1+ n(1)

1
2

η

)
sin(kA−kη−2kd̃+ lπ)

]
+O

(
lnk
k2

)
. (2.16)

3. Uniqueness of the Modified Inverse Transmission Eigenvalue
Problem and Numerical Examples

3.1 Uniqueness of the Modified Transmission Eigenvalue Problem
We use only the transmission eigenvalues with spherically symmetric eigenfunctions as
the knowledge of the modified transmission eigenvalues, i.e., we restrict our attention to
the case when L = 0.
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As seen in the asymptotic formula (2.15), the characteristic function includes A, n(1) and
jump constants ã, d̃. So our first goal is to show that these values are uniquely determined by
the knowledge of the modified transmission eigenvalues.

Firstly, we prove that A is uniquely determined by the knowledge of the modified
transmission eigenvalues.

Let us introduce the notation D̃0(k)= k[n(0)n(1)]
1
4 d̃0(k). Then we have

D̃0(k)= 1
4

(ã+ ã−1)
(
1−

p
n(1)
η

)
sink(A+η)+ 1

4
(ã+ ã−1)

(
1+

p
n(1)
η

)
sink(A−η)

+ 1
4

(ã− ã−1)
(
1+

p
n(1)
η

)
sink(η− A+2d̃)

− 1
4

(ã− ã−1)
(
1−

p
n(1)
η

)
sink(η+ A−2d̃)+O

(
1
k

)
, (3.1)

where A+η > |η− A|, |η− A+2d̃|, |η+ A−2d̃|. Therefore, by Theorem 2.5 and corollaries in
[13], it is straightforward to verify that if n(1) ̸= η2 and A ̸= η, then the density of all zeros on
the right half plane of D̃0(k) is A+η

π
. Therefore, A can be uniquely determined by the modified

transmission eigenvalues.
Secondly, we prove that n(1) is uniquely determined by the knowledge of the modified

transmission eigenvalues.
Since y(1) and y(1)′ in the expression of the characteristic function d̃0(k) are entire functions

of order 1
2 with respect to k2 ([18, Corollary 7]), it implies that the characteristic function

d̃0(k) is also an entire function of order 1
2 with respect to k2. Hence, we can apply Hadamard’s

factorization theorem and conclude that

d̃0(k)= c̃0k2
∞∏
j=1

(
1− k2

k2
j0

)
. (3.2)

Lemma 3.1 ([9]). If ϕ(x) is an entire function which is almost-periodic and bounded on the real
line, then each of the limits

lim
T→∞

1
T

∫ T

a
ϕ(k)sin(αk)dk ,

lim
T→∞

1
T

∫ T

a
ϕ(k)cos(αk)dk

exists for any real α and a fixed constant a.

Lemma 3.2. If n(r)< η2 (0≤ r ≤ 1), then the modified transmission eigenvalues corresponding
to η uniquely determine n(1).

Proof. We introduce the following notations:

ψ(k)= k3
∞∏
j=1

(
1− k2

k2
j0

)
,

γ0 = 1

c̃0[n(0)n(1)]
1
4

.
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Then ψ(k)= γ0D̃0(k) and from (3.1), we have

ψ(k)= γ0[M sink(A+η)+N sink(A−η)

+P sink(η− A+2d̃)+Q sink(η+ A−2d̃)]+O
(

1
k

)
, (3.3)

where

M = 1
4

(ã+ ã−1)
(
1−

p
n(1)
η

)
, N = 1

4
(ã+ ã−1)

(
1+

p
n(1)
η

)
,

P = 1
4

(ã− ã−1)
(
1+

p
n(1)
η

)
, Q =−1

4
(ã− ã−1)

(
1−

p
n(1)
η

)
.

Since A is known by the modified transmission eigenvalues, applying Lemma 3.1 with a > 0
sufficiently large, we see that the limits

L1 = lim
T→∞

∫ T

a
ψ(k)sink(A+η)dk ,

L2 = lim
T→∞

∫ T

a
ψ(k)sink(A−η)dk

exist and are known. Computing these limits by (3.3), we have

L1 = γM
2

, L2 = γN
2

and therefore we have that
L1

L2
= 1−p

n(1)/η
1+p

n(1)/η
.

Hence, n(1) is determined.
Next, we show that jump constants ã, d̃ of the refractive index can be uniquely determined

by the modified transmission eigenvalues.
The characteristic function can be rewritten as

d̃0(k)
c̃0

= γ0

k

[
1
4

(ã+ ã−1)
(
1−

p
n(1)
η

)
sink(A+η)

+ 1
4

(ã+ ã−1)
(
1+

p
n(1)
η

)
sink(A−η)+ 1

4
(ã− ã−1)

(
1+

p
n(1)
η

)
sink(η− A+2d̃)

−1
4

(ã− ã−1)
(
1−

p
n(1)
η

)
sink(η+ A−2d̃)

]
+O

(
1
k2

)
, (3.4)

where A and n(1) are uniquely determined by the transmission eigenvalues.

Lemma 3.3 ([18]). Let z be the solution of (2.12) and (2.13) and ν= |Imk|. Then, for k sufficiently
large, there exist some positive constants C and d such that:∣∣∣∣∣z(ξ)− sinkξ

kn(0)
1
4

∣∣∣∣∣≤ 1
|k|2 Ceνξ, 0≤ ξ≤ d̃,∣∣∣∣∣dz(ξ)

dξ
− coskξ

n(0)
1
4

∣∣∣∣∣≤ 1
|k|Ceνξ, 0≤ ξ≤ d̃,
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∣∣∣∣∣z(ξ)− 1

kn(0)
1
4

[ãsinkd̃ cosk(ξ− d̃)+ ã−1 coskd̃ sink(ξ− d̃)]

∣∣∣∣∣≤ 1
|k|2 Deνξ, d̃ ≤ ξ≤ A,∣∣∣∣∣dz(ξ)

dξ
− 1

n(0)
1
4

[−ãsinkd̃ sink(ξ− d̃)+ ã−1 coskd̃ cosk(ξ− d̃)]

∣∣∣∣∣≤ 1
|k|Deνξ, d̃ ≤ ξ≤ A.

Lemma 3.4 ([35]). Let f (z) be an entire function such that

| f (z)| ≤ CeA|z|

for positive constants A and C and all values of z, and∫ ∞

−∞
| f (x)|2 dx <∞.

Then there exists a function φ ∈ L2[−A, A] such that

f (z)=
∫ A

−A
φ(t)eiztdt.

Lemma 3.5. Jump constants ã, d̃ can be uniquely determined from the modified transmission
eigenvalues.

Proof. Assume that two transmission eigenvalue problems corresponding to different
discontinuous refractive indices n1(r) and n2(r) have the same transmission eigenvalues.
We denote the characteristic quantities for each problem by d̃i(k), c̃i , γi , d̃i , ãi , Mi , Ni ,
Pi , Q i for i = 1,2, where d̃i(k), c̃i , γi denote d̃0i(k), c̃0i , γ0i . Since two problems have the same
eigenvalues, (3.2) implies that for any k ∈ C,

d̃1(k)/c̃1 = d̃2(k)/c̃2

and from (3.4), we have that
γ1

k
[M1 sink(A+η)+N1 sink(A−η)+P1 sink(η− A+2d̃1)+Q1 sink(η+ A−2d̃1)]

= γ2

k
[M2 sink(A+η)+N2 sink(A−η)+P2 sink(η− A+2d̃2)+Q2 sink(η+ A−2d̃2)]

for all sufficiently large k > 0. Thus, we get(
(γ1M1 −γ2M2)sink(A+η)+ (γ1N1 −γ2N2)sink(A−η)+γ1P1 sink(η− A+2d̃1)

−γ2P2 sink(η− A+2d̃2)+γ1Q1 sink(η+ A−2d̃1)−γ2Q2 sink(η+ A−2d̃2)
)= 0.

In the case d̃1 = d̃2 = d̃,(
(γ1M1 −γ2M2)sink(A+η)+ (γ1N1 −γ2N2)sink(A−η)

+ (γ1P1 −γ2P2)sink(η− A+2d̃)+ (γ1Q1 −γ2Q2)sink(η+ A−2d̃)
)= 0.

If d̃ ̸= A
2 , then η− A + 2d̃ ̸= η+ A − 2d̃ and therefore, sink(η− A + 2d̃) and sink(η+ A − 2d̃)

are linearly independent. Since all trigonometric terms are independent, it implies that each
coefficient equals zero respectively in order that the equality holds, i.e.,

γ1M1 = γ2M2,
γ1N1 = γ2N2,
γ1P1 = γ2P2,
γ1Q1 = γ2Q2.

(3.5)
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Eq. (3.5) implies that
ã2

1+1
ã2

1−1
= ã2

2+1
ã2

2−1
and 1+ 2

ã2
1−1

= 1+ 2
ã2

2−1
. Therefore, ã1 = ã2 and accordingly

γ1 = γ2.
Likewise, if d̃ = A

2 , then by the linear independency of trigonometric functions
γ1M1 = γ2M2,
γ1N1 = γ2N2,
(γ1P1 −γ2P2)+ (γ1Q1 −γ2Q2)= 0.

(3.6)

From the third of (3.6), we have that

γ1(P1 +Q1)= γ2(P2 +Q2),

γ1

[
1
4

(ã1 − ã−1
1 )

(
1+

p
n(1)
η

)
− 1

4
(ã1 − ã−1

1 )
(
1−

p
n(1)
η

)]
= γ2

[
1
4

(ã2 − ã−1
2 )

(
1+

p
n(1)
η

)
− 1

4
(ã2 − ã−1

2 )
(
1−

p
n(1)
η

)]
.

By straightforward calculations, we have γ1(ã1 − ã−1
1 ) = γ2(ã2 − ã−1

2 ) and combining this with
the first of (3.6), we have ã1 = ã2 and γ1 = γ2.

In the case d̃1 ̸= d̃2,(
(γ1M1 −γ2M2)sink(A+η)+ (γ1N1 −γ2N2)sink(A−η)+γ1P1 sink(η− A+2d̃1)

−γ2P2 sink(η− A+2d̃2)+γ1Q1 sink(η+ A−2d̃1)−γ2Q2 sink(η+ A−2d̃2)
)= 0.

. If A = d̃1 + d̃2, then
γ1M1 = γ2M2,
γ1N1 = γ2N2,
γ1P1 = γ2Q2,
γ1Q1 = γ2P2.

Similar arguments show that ã1 = ã2 and γ1 = γ2.
Likewise, in case A = 2d̃1 or A = 2d̃2 or else, we have ã1 = ã2 and γ1 = γ2 from{

γ1P2 = 0,
γ1Q2 = 0,

or

{
γ1P1 = 0,
γ1Q1 = 0,

{
γ1P1 = 0,
γ1P2 = 0.

Eq. (2.11) implies that we should obtain b̃1 = b̃2 = 0 in order to get a contradiction.
Since ã1 = ã2 = 1, using Liouville transformation formula together with (2.14) and the

assumption n′(1)= 0, we have the following characteristic function:

d̃0(k)= 1

k[n(0)n(1)]
1
4

[
−1

2

(
1−

p
n(1)
η

)
sink(A+η)+ 1

2

(
1+

p
n(1)
η

)
sink(η− A)

]

+ b̃

k2[n(0)n(1)]
1
4

[p
n(1)
η

sinkd̃ cosk(A− d̃)sinkη−sinkd̃ sink(A− d̃)coskη
]

+ 1

kn(1)
1
4

∫ d̃

0

[
−
p

n(1)
η

sink(d̃−t)sink(A−d̃)sinkη+
p

n(1)
η

cosk(d̃− t)cosk(A− d̃)sinkη

−sink(d̃− t)cosk(A− d̃)coskη−cosk(d̃− t)sink(A− d̃)coskη
]

p(t)z(t)dt
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+ b̃

k2n(1)
1
4

∫ d̃

0
[
p

n(1)
η

sink(d̃− t)cosk(A− d̃)sinkη−sink(d̃− t)sink(A− d̃)coskη]

· p(t)z(t)dt+ 1

kn(1)
1
4

∫ A

d̃
[
p

n(1)
η

cosk(A− t)sinkη−sink(A− t)coskη]p(t)z(t)dt. (3.7)

Simplifying the second term yields

b̃

k2[n(0)n(1)]
1
4

[p
n(1)
η

sinkd̃ cosk(A− d̃)sinkη−sinkd̃ sink(A− d̃)coskη
]

= b̃

k2[n(0)n(1)]
1
4

[
1
4

(
1+

p
n(1)
η

)
cosk(A−η)+ 1

4

(
1−

p
n(1)
η

)
cosk(A+η)

− 1
4

(
1+

p
n(1)
η

)
cosk(η− A+2d̃)− 1

4

(
1−

p
n(1)
η

)
cosk(η+ A−2d̃)

]
.

Hence, we can rewrite (3.7) as

d̃0(k)= 1

k[n(0)n(1)]
1
4

[
−1

2

(
1−

p
n(1)
η

)
sink(A+η)+ 1

2

(
1+

p
n(1)
η

)
sink(η− A)

]

+ b̃

k2[n(0)n(1)]
1
4

[
1
4

(
1+

p
n(1)
η

)
cosk(A−η)+ 1

4

(
1−

p
n(1)
η

)
cosk(A+η)

− 1
4

(
1+

p
n(1)
η

)
cosk(η− A+2d̃)− 1

4

(
1−

p
n(1)
η

)
cosk(η+ A−2d̃)

]
+ sinkη

k2[n(0)n(1)]
1
4

∫ A

0

p
n(1)
η

cosk(A− t)sinkt · p(t)dt

− coskη

k2[n(0)n(1)]
1
4

∫ A

0
sink(A− t)sinkt · p(t)dt+ E(k)

k2n(1)
1
4

, (3.8)

where

E(k)= ksinkη
∫ d̃

0

p
n(1)
η

cosk(A− t)p(t)

[
z(t)− sinkt

kn(0)
1
4

]
dt

+ksinkη
∫ A

d̃

p
n(1)
η

cosk(A− t)p(t)

[
z(t)− sinkt

kn(0)
1
4

]
dt

+ b̃sinkη
∫ d̃

0

p
n(1)
η

cosk(A− d̃)sink(d̃− t)p(t)z(t)dt

−kcoskη
∫ d̃

0
sink(A− t)p(t)

[
z(t)− sinkt

kn(0)
1
4

]
dt

−kcoskη
∫ A

d̃
sink(A− t)p(t)

[
z(t)− sinkt

kn(0)
1
4

]
dt

− b̃coskη
∫ d̃

0
sink(A− d̃)sink(d̃− t)p(t)z(t)dt. (3.9)

Note that E(k) is an even function of k and if k is a real number, then E(k) is also a real valued
function.
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Moreover, by lemma 3.3 we get∫ ∞

−∞
|E(x)|2 <∞, |E(x)| ≤ Ce(A+η)|Imk|, C > 0.

Thus, by Lemma 3.4, there exists V ∈ L2(0, A+η) such that

E(k)=
∫ A+η

0
V (t)cosktdt.

On the other hand,
sinkη

k2[n(0)n(1)]
1
4

∫ A

0

p
n(1)
η

cosk(A− t)sinktp(t)dt− coskη

k2[n(0)n(1)]
1
4

∫ A

0
sink(A− t)sinktp(t)dt

= 1

4k2[n(0)n(1)]
1
4

[(
1+

p
n(1)
η

)
cosk(η− A)+

(
1−

p
n(1)
η

)
cosk(η+ A)

]∫ A

0
p(t)dt

− coskη

2k2[n(0)n(1)]
1
4

∫ A

0
cosk(A−2t)p(t)dt− sinkη

2k2[n(0)n(1)]
1
4

p
n(1)
η

∫ A

0
sink(A−2t)p(t)dt.

Now, applying variable transformation to the last two terms of the above equation, we can
rewrite the integrals as∫ A

0
sink(A−2t)p(t)dt =

∫ A

0
W(t)sinktdt,∫ A

0
cosk(A−2t)p(t)dt =

∫ A

0
U(t)cosktdt,

where

U(t) := 1
2

[
p

(
A+ t

2

)
− p

(
A− t

2

)]
, W(t) :=−1

2

[
p

(
A+ t

2

)
− p

(
A− t

2

)]
.

Thus,

d̃0(k)= 1

k[n(0)n(1)]
1
4

[
−1

2

(
1−

p
n(1)
η

)
sink(A+η)+ 1

2

(
1+

p
n(1)
η

)
sink(A−η)

]

+ b̃

k2[n(0)n(1)]
1
4

[
1
4

(
1+

p
n(1)
η

)
cosk(A−η)+ 1

4

(
1−

p
n(1)
η

)
cosk(A+η)

− 1
4

(
1+

p
n(1)
η

)
cosk(η− A+2d̃)− 1

4

(
1−

p
n(1)
η

)
cosk(η+ A−2d̃)

]
+ 1

4k2[n(0)n(1)]
1
4

[(
1+

p
n(1)
η

)
cosk(η− A)+

(
1−

p
n(1)
η

)
cosk(η+ A)

]∫ A

0
p(t)dt

− coskη

2k2[n(0)n(1)]
1
4

∫ A

0
U(t)cosktdt− sinkη

2k2[n(0)n(1)]
1
4

p
n(1)
η

∫ A

0
W(t)sinktdt

+ 1

k2n(1)
1
4

∫ A+η

0
V (t)cosktdt. (3.10)

Since γ1 = γ2 and d̃1(k)/c̃1 = d̃2(k)/c̃2, it can be seen that

d̃1(k)= n2(0)
1
4

n1(0)
1
4

d̃2(k).
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Therefore, with the aid of (3.10), we have
(b̃1 − b̃2)

4k2[n1(0)n(1)]
1
4

[(
1+

p
n(1)
η

)
cosk(A−η)+

(
1−

p
n(1)
η

)
cosk(A+η)

]

− 1

4k2[n1(0)n(1)]
1
4

(
1+

p
n(1)
η

)
[b̃1 cosk(η− A+2d̃1)− b̃2 cosk(η− A+2d̃2)]

− 1

4k2[n1(0)n(1)]
1
4

(
1−

p
n(1)
η

)
[b̃1 cosk(η+ A−2d̃1)− b̃2 cosk(η+ A−2d̃2)]

+ 1

4k2[n1(0)n(1)]
1
4

[(
1+

p
n(1)
η

)
cosk(η− A)+

(
1−

p
n(1)
η

)
cosk(η+ A)

]
·
∫ A

0
(p1(t)− p2(t))dt

= coskη

2k2[n1(0)n(1)]
1
4

∫ A

0
(U1(t)−U2(t))cosktdt

+ sinkη

2k2[n1(0)n(1)]
1
4

p
n(1)
η

∫ A

0
(W1(t)−W2(t))sinktdt

+ 1

k2n(1)
1
4

∫ A+η

0

(
n2(0)

1
4

n1(0)
1
4

V2(t)−V1(t)

)
cosktdt. (3.11)

Multiplying both sides of (3.11) by 2k2[n1(0)n(1)]
1
4 cosk(η− A+2d̃1)T−1 and integrating with

respect to k from τ to T yields

(b̃1 − b̃2)O
(

1
T

)
+

[∫ A

0
(p1(t)− p2(t))dt

]
O

(
1
T

)
− b̃1

(
1+

p
n(1)
η

)(
1
4
+O

(
1
T

))
+ b̃2O

(
1
T

)
=

p
n(1)
η

∫ A

0

[
(W1(t)−W2(t))

∫ T

τ

1
T

sinkηcosk(η− A+2d̃1)sinktdk
]

dt

+
∫ A

0

[
(U1(t)−U2(t))

∫ T

τ

1
T

coskηcosk(η− A+2d̃1)cosktdk
]

dt

+2
∫ A+η

0

[
(n2(0)

1
4 V2(t)−n1(0)

1
4 V1(t))

∫ T

τ

1
T

cosk(η− A+2d̃1)coskt
]

dk. (3.12)

We can rewrite the right hand side of (3.12) as∫ A

0
(W1(t)−W2(t)) fT dt+

∫ A

0
(U1(t)−U2(t))hT dt+2

∫ A+η

0
(n2(0)

1
4 V2(t)−n1(0)

1
4 V1(t))gT dt,

where | fT |, |hT |, |gT | ≤ 1, fT ,hT , gT tends to zero as T →∞ almost everywhere. Thus, we have
b̃1 = 0.

Similarly, multiplying both sides of (3.12) by 2k2[n1(0)n(1)]
1
4 cosk(η− A + 2d̃2)T−1 and

integrating with respect to k from τ to T yields b̃2 = 0.
This is a contradiction to (2.11). Hence it can be concluded that d̃1 = d̃2.
Finally, we prove that the refractive index can be uniquely reconstructed from the modified

transmission eigenvalues.
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Let us find the solution to the first differential equation of the modified transmission
eigenvalue problem (2.1) in the form w̃(r,θ)= bl yl(r)Pl(cosθ) in case n(r) is twice continuously
differentiable. Then, yl(r) satisfies

y′′l (r)+ 2
r

y′l(r)+ (k2n(r)− l(l+1)
r

)yl(r)= 0 (3.13)

and can be written in the form ([10,20]),

yl(r)= jl(kηr)+
∫ r

0
G(r, s,k) jl(kηs)ds, (3.14)

where jl(kηr) is a Bessel function of order L and is the solution to y′′l (r)+ 2
r y′l(r)+k2η2 yl(r)= 0.

Furthermore, recalling the results from [12,18], a similar argument shows that in case n(r) is
discontinuous, the integral kernel G(r,S,k) also satisfies

r2
[
∂2G
∂r2 + 2

r
∂G
∂r

+k2n(r)G
]
= s2

[
∂2G
∂s2 + 2

s
∂G
∂s

+k2η2G
]

, (3.15)

G(r, r,k)= k2

2r

∫ r

0
tm(t)dt, (3.16)

G(r, s,k)=O((rs)
1
2 ), 0< s ≤ r < 1 (3.17)

and integral equation

G(r, s,k)= 1
2

k2
p

rs

∫ p
rs

0
tm(t)dt− k2

p
rs

∫ p r
s

1

∫ p
rs

0
t2τ

[
n(tτ)− η2

τ4

]
G(tτ, t/τ,k)dtdτ , (3.18)

where m(r)= η2 −n(r).
Furthermore, G is an entire function of k, of exponential type and satisfies

G(r, s,k)= 1
2

k2
p

rs

∫ p
rs

0
tm(t)dt(1+O(k2)). (3.19)

Substituting (3.19) to (3,14) and again substituting (3.14) to the characteristic function d̃l(k)
and using the asymptotic behavior of spherical Bessel function jl , similar arguments with [3]
show that the coefficient c̃2l+2 of k2l+2 in the Taylor expansion is determined as

c̃2l+2 =
π

(2l+1Γ(l+3/2))2

∫ 1

0
t2l+2m(t)dt. (3.20)

On the other hand, from the asymptotic formula (2.16) of the characteristic function d̃l(k), it can
be seen that d̃l(k) is an entire function of order l with respect to k and therefore, by Hadamard’s
factorization theorem it can be rewritten as

d̃l(k)= k2l+2 c̃2l+2

∞∏
n=1

(
1− k2

k2
nl

)
.

Now, we define a constant

γl =
1

c̃2l+2n(0)
l
2+ 1

4

(3.21)

and show that it can be uniquely determined by the knowledge of the modified transmission
eigenvalues.
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Lemma 3.6. The constant γl is uniquely determined by the modified transmission eigenvalues.

Proof. If k is sufficiently large, from the asymptotic formula (2.16) of d̃l(k), we have that

d̃l(k)
c̃2l+2

= γl

kn(1)
1
4

[
1
4

(ã+ ã−1)
(
1− n(1)

1
2

η

)
sin(kA+kη− lπ)+ 1

4
(ã+ ã−1)

(
1+ n(1)

1
2

η

)
sin(kA−kη)

+ 1− ã2

4ã

(
1− n(1)

1
2

η

)
sin(kA+kη−2kd̃)+ 1− ã2

4ã

(
1+ n(1)

1
2

η

)
sin(kA−kη−2kd̃+ lπ)

]
.

We follow similar arguments with the proof of Lemma 3.5 and assume that two transmission
eigenvalue problems corresponding to the discontinuous refractive indices n1(r) and n2(r)
respectively, have the same transmission eigenvalues. Let us denote the coefficients of
trigonometric functions sin(kA+ kη− lπ), sin(kA− kη), sin(kA+ kη−2kd̃) and sin(kA− kη−
2kd̃+ lπ) by Mi , Ni , Pi , Q i (i = 1,2). Then, we have
γl1

k
[M1 sin(kA+kη− lπ)+N1 sin(kA−kη)+P1 sin(kA+kη−2kd̃)+Q1 sin(kA−kη−2kd̃+ lπ)]

= γl2

k
[M2 sin(kA+kη− lπ)+N2 sin(kA−kη)

+P2 sin(kA+kη−2kd̃)+Q2 sin(kA−kη−2kd̃+ lπ)].

Here, we took into account the fact that n(1), A, ã and d̃ are uniquely determined.
Thus, we have

(γl1M1 −γl2M2)sin(kA+kη− lπ)+ (γl1N1 −γl2N2)sin(kA−kη)

+ (γl1P1 −γl2P2)sin(kA+kη−2kd̃)+ (γl1Q1 −γl2Q2)sin(kA−kη−2kd̃+ lπ)]

= (−1)l(γl1M1 −γl2M2)sin(kA+kη)+ (γl1N1 −γl2N2)sin(kA−kη)

+ (γl1P1 −γl2P2)sin(kA+kη−2kd̃)+ (−1)l(γl1Q1 −γl2Q2)sin(kA−kη−2kd̃)= 0.

Since sin(kA + kη), sin(kA − kη), sin(kA + kη− 2kd̃) and sin(kA − kη− 2kd̃) are linearly
independent for sufficiently large η> 0, we have that

(−1)l(γl1M1 −γl2M2)= 0,
γl1N1 −γl2N2 = 0,
γl1P1 −γl2P2 = 0,
(−1)l(γl1Q1 −γl2Q2)= 0.

Thus, we can conclude that γl1 = γl2.

Theorem 3.1. Suppose that the refractive index n(r) is a piecewise C2 function satisfying (2.5)-
(2.7) and n′(1) = 0. If n(0) is known, then n(r) is uniquely determined by the knowledge of all
modified transmission eigenvalues counting multiplicity.

Proof. Assume that two refractive indices n1(r) and n2(r) satisfying n1(0)= n2(0)= n(0) have
the same corresponding modified transmission eigenvalues. From (3.20), the following equality
holds: ∫ 1

0
t2l+2mi(t)dt =

(
2l+1Γ

(
l+ 3

2

))2

n(0)
l
2+ 1

4γl iπ
, i = 1,2. (3.22)
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Clearly, mi(r)= η2 −ni(r)> 0 and by Lemmas 3.2 and 3.6, n(1) and

γl =
1

c2l+2n(0)
l
2+ 1

4

are uniquely determined by the knowledge of the modified transmission eigenvalues.
Furthermore, as n(0) is already known, the right hand side of (3.22) is uniquely determined.
Hence, taking into account the proof of Theorem 16 in [18], we can conclude that n1(r) =
n2(r).

3.2 Numerical Examples
Using similar arguments with [17], it can easily be seen that the modified transmission
eigenvalue problem (2.1) is equivalent to the boundary value problem

(∆+k2n(x))
1

η2 −n(x)
(∆+k2η2)u = 0, u = w−v ∈ H2

0(D)

and the corresponding variational problem is formulated as finding a function u ∈ H2
0(D) such

that ∫
D

1
η2 −n(x)

(∆u+k2η2u)(∆φ̄+k2n(x)φ̄)= 0, ∀ φ ∈ H2
0(D). (3.23)

For the numerical experiment, we use the Galerkin method as in [17] to seek the weak
solution of the modified transmission eigenvalue problem.

Let {φi}∞i be a set of eigenfunctions of the problem

Lφi(x)=µiφi(x), x ∈ D,

φi(x)= 0, ∂φi(x)
∂ν

= 0, x ∈ ∂D,

}
(3.24)

where L =∆∆.
Eigenfunctions can be easily computed and form a Hilbert basis in H2

0(D).
Then, the weak solution of the modified transmission eigenvalue problem, i.e., the solution

u to the variational form (3.23) can be approximated as

u(N)
k =

N∑
i=1

ciφi. (3.25)

We substitute u(N)
k into (3.23) and use the eigenfunctions φi , i = 1, . . . ,n, as test functions.

Then, the approximate nonlinear eigenvalue problem is written in the following matrix form

[A(N) − (k(N))2B(N) + (k(N))4C(N)]c = 0 , (3.26)

where

A(N) =
∫

D

1
η2 −n(x)

∆φi∆φ̄ jdx , (3.27)

B(N) =−
(∫

D

n(x)
η2 −n(x)

∆φiφ̄ jdx+
∫

D

η2

η2 −n(x)
φi∆φ̄ jdx

)
, (3.28)

C(N) =
∫

D

η2n(x)
η2 −n(x)

φiφ̄ jdx (3.29)

are N ×N matrices and c = (c1, c2, . . . , cN)T , i, j = 1, . . . ,n.
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In our numerical experiments we show that the refractive index can be uniquely determined
by the modified transmission eigenvalues without assuming that the contrast does not change
sign.

We consider the case where the refractive index is constant and piecewise constant.
First, let d be a circular domain of radius R with constant refractive index n(x)= n. It is well

known that n is uniquely determined by the knowledge of only the lowest positive transmission
eigenvalue provided that it is known a priori that either n > 1 or 0< n < 1 [11].

Accordingly, we show through numerical experiment that in a circular domain with
constant refractive index, we can recover the refractive index from the lowest positive modified
transmission eigenvalue without its prior knowledge.

The lowest positive modified transmission eigenvalue can be computed analytically. By
similar arguments with [17], we see that the lowest positive modified transmission eigenvalue
is the lowest positive solution to

det
(
Jm(kηR) Jm(k

p
nR)

J′
m(kηR) J′

m(k
p

nR)

)
= 0, m = 0, 1, . . . , (3.30)

where Jm are Bessel functions of the first kind. This relation can be derived easily from
separation of variables for Helmholtz equation.

We construct a basis {φi}N
i=1 with the eigenfunctions of (3.24) in order to approximate

the lowest positive modified transmission eigenvalue by (3.26). In polar coordinates, the
eigenfunctions for one eigenvalue µ are linear combinations of

Ji(µr)cos iθ, Ji(µr)sin iθ, I i(µr)cos iθ, I i(µr)sin iθ.

The eigenvalues µ can be computed from the relation:

det
(
Ji(kR) J′

i(kR)
I i(kR) I ′i(kR)

)
= 0, i = 0,1, . . . .

We construct a basis with 12 eigenfunctions {φi}12
i=1 and compute the 12× 12 matrices

A(N),B(N),C(N) for r = 1 in (3.26).
Then, we use the MATLAB function polyeig to solve the eigenvalue problem (3.26) for

different values of n in the interval (0,20].
We estimate n by minimizing |k(N)

0 −k0|, the absolute difference between the lowest positive
solution k0 to (3.30) and the approximation k(N)

0 of (3.26).
The results are shown in Table 1.
Table 1 illustrates that the constant refractive index can be reconstructed from the modified

transmission eigenvalues without prior knowledge of the refractive index.
Next, let d be a circular domain of radius R with piecewise constant refractive index

n(x)=
(
n1, x ∈ D1,
n2, x ∈ D2.

)
We use four modified transmission eigenvalues for the numerical experiment of reconstruction.
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Table 1. Reconstructions for constant refractive index

Original n Parameter η Eigenvalue k0 Approximation k(N)
0 Estimated n

0.4 3 1.3095 1.3097 0.39

0.7 3 1.3405 1.3407 0.69

3 5 0.8372 0.8371 3

6 10 0.3969 0.3969 6

10 10 0.4099 0.4099 10

12 10 0.4186 0.4186 12

20 15 0.2706 0.2706 20

These transmission eigenvalues can be computed analytically from the equation:

det


Jm(kηR) 0 Jm(k

p
n2R) Nm(k

p
n2R)

J′
m(kηr)|r=R 0 J′

m(k
p

n2r)|r=R N ′
m(k

p
n2r)|r=R

0 Jm(k
p

n1r1) Jm(k
p

n2r1) Nm(k
p

n2r1)
0 J′

m(k
p

n1r)|r=r1 J′
m(k

p
n2r)|r=r1 N ′

m(k
p

n2r)|r=r1

= 0. (3.31)

This relation is analogous with (3.30). Analogously to the case of constant refractive index, we
estimate n1, n2 and r1 by minimizing the sum of absolute differences between analytically
computed modified transmission eigenvalue and approximated transmission eigenvalues when
varying n1 in (0,1), n2 in [2,20] and r1 in (0,1), respectively. The results are shown in Table 2.

Table 2. Reconstructions of piecewise constant refractive index

Original n1,n2, r1 Parameter η Eigenvalues k0, k1, k2,
k3

Approximations k̃0, k̃1,
k̃2, k̃3

Estimated ñ1, ñ2, r̃1

13, 5, 0.5 10 0.4017, 0.5216, 0.6439,
0.7640

0.4027, 0.5235, 0.6460,
0.7662

13, 4.5, 0.5

10, 8, 0.4 10 0.4043, 0.5257 0.6477,
0.7673

0.4043, 0.5265 0.6489,
0.7689

10,7.5, 0.5

0.5, 3, 0.5 10 0.3880,0.7111,
0.5174,0.6413

0.3881, 0.5183, 0.6425,
0.7135

0.4, 2.5, 0.6

0.6, 5, 0.6 10 0.3901,0.5196, 0.6435,
0.7156

0.3892, 0.5199 0.6444,
0.7156

0.8, 4.8, 0.7

Table 2 illustrates that the piecewise constant refractive index can be reconstructed from
the modified transmission eigenvalues without prior knowledge of the refractive index.

Finally, we assume that d is a spherically stratified domain with k-layers such that
D =⋃k

i=1 D i and {∂D i}k
i=1 are concentric circles. The refractive index is given by

n(x)=


n1, x ∈ D1,
...

nk, x ∈ Dk.
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The transmission eigenvalues are the zeros of the determinant of a 2k×2k matrix, analogous to
(3.31). With similar discussions to [17], we approximate the transmission eigenvalues using a
Newton method.

We can write the N ×N matrices A(N), B(N) and C(N) in the following form:

A(N) =
k∑

l=1

1
η2 −nl

Al , (3.32)

B(N) =
k∑

l=1

nl

η2 −nl
B(1)

l +
k∑

l=1

η2

η2 −nl
B(2)

l , (3.33)

C(N) =
k∑

l=1

nlη
2

η2 −nl
Cl , (3.34)

where Al = ∫
Dl
∆φi∆φ̄ jdx, B(1)

l = ∫
Dl
∆φiφ̄ jdx, B(2)

l = ∫
Dl
φi∆φ̄ jdx and Cl = ∫

Dl
φiφ̄ jdx for

i, j = 1, . . .n, L = 1, . . .,k.
If we set al := 1/(η2 −nl), then (3.32)-(3.34) can be rewritten as

A(N) =
k∑

l=1
al Al , (3.35)

B(N) =−
k∑

l=1
B(1)

l +
k∑

l=1
η2al(B(1)

l +B(2)
l ) , (3.36)

C(N) =
k∑

l=1
(η4al −η2)Cl . (3.37)

Now the inverse transmission eigenvalue problem has the following form: given a set
of modified transmission eigenvalues S = {µi}k

i=1, find scalars {al}k
l=1 such that the pencil

P(λ)=λ4C(N) +λ2B(N) + A(N) has spectrum σ(A(N),B(N),C(N))= S.
We denote the set of unknown coefficients by a = (a1,a2, . . . ,ak).
We solve the nonlinear system f (a) := ( f1(a), . . . , fk(a))T = (0, . . . ,0)T using the Newton

method where

f i(a)= det

[
µ4

i

k∑
l=1

(η4al −η2)Cl +µ2
i

(
−

k∑
l=1

B(1)
l +

k∑
l=1

η2al(B(1)
l +B(2)

l )

)
+

k∑
l=1

al Al

]
.

The numerical algorithm of inverse transmission eigenvalue problem based on the Newton
method is constructed analogously to [17].

In this paper, we have tested the algorithm for the simple case of spherically stratified
domain with two layers.

In case of unit disc with n1 = 5, n2 = 8 and inner radius r1 = 0.6, given as initial estimate for
the indices, the mean value 6.5 was reconstructed as n1 = 5.000, n2 = 8.000 after 7 iterations
with tolerance 10−12.

In case of unit disc with n1 = 12, n2 = 6 and inner radius r1 = 0.8, given as initial estimate for
the indices, the mean value 9.5 was reconstructed as n1 = 12.000, n2 = 6.000 after 9 iterations
with tolerance 10−12.
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4. Conclusion
In this paper, we have studied the transmission eigenvalue problem and its inverse problem
which are of great practical importance such as Radar, sonar, geophysical exploration, medical
imaging and non-destructive test. First, we have formulated the modified transmission
eigenvalue problem in case of discontinuous refractive index and estimated the asymptotic
behavior of the characteristic function. Second, we have proved the uniqueness of the inverse
transmission eigenvalue problem of reconstructing the refractive index and its discontinuous
positions from the knowledge of the modified transmission eigenvalues. Our numerical examples
indicated the validity of our theoretical results.
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