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1. Introduction

The transmission eigenvalue problem, first discussed by Colton and Monk [14] in 1988, is a new
type of boundary value problem for elliptic equations and arises in inverse scattering theory for
inhomogeneous media. In the case of acoustic wave, it is formulated as

Av(x)+E%n(x)v(x) =0, xeD,
Aw(x) + k2w(x) =0, xeD,
v(x)—w(x)=0, x€oD,

) -—w(x)) _
— 9v - 0, X € OD,

(1.1)
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where w(x), v(x) denote acoustic wave field, d is a bounded simply connected domain with
C? boundary 4D and n(x) denotes the refractive index which is a positive real valued
function. The complex values of £ > 0 for which the boundary value problem has a
nontrivial solution are called transmission eigenvalues. On the other hand, the problem
of reconstructing the material properties, i.e., the refractive index, from the knowledge of
transmission eigenvalues is called inverse transmission eigenvalue problem.

The transmission eigenvalue problem mainly arises in acoustic and electromagnetic
wave scattering in inhomogeneous media. Indeed, The acoustic wave scattering problem in
inhomogeneous media can be formulated as

Au(x)+E%n(x)u(x) =0, xeRS3,

u= eikx-d +us’ (12)
. ou’ . _
rllrgor (% - Lkus) =0,

where r = |x|, d is a unit vector denoting the direction of propagation and u® denotes
the scattering field. From (1.2) it can easily be seen that for fixed %, the scattering field
u® has the following asymptotic behavior as r — oo,

ikr
1)}, (1.3)
r r

where uo(%,d) is called the far field pattern corresponding to the scattering field »°. By (1.3),
the far field operator F : L%(S?) — L?(S?) is defined by

FH@:= [ | un@ D@

The far field operator F' plays an important role in inverse scattering theory and it is well
known that this operator is injective with dense range provided that % is not a transmission
eigenvalue (Colton and Kress [11]]).

u®(x) =

{uoo(a?,d)+0

For a long time, research on the transmission eigenvalue problem mainly focused on proving
that transmission eigenvalues form at most a discrete set. From a practical point of view,
the discreteness of transmission eigenvalues is of great importance since the sampling methods
for reconstructing the support of an inhomogeneous medium fail if the interrogating frequency
corresponds to a transmission eigenvalue (Colton and Kress [11]).

On the other hand, due to the non-selfadjointness of (1.1I), the existence of transmission
eigenvalues for general media remained open for more than twenty years until Paivarinta
and Sylvester [26] showed the existence of at least one transmission eigenvalue provided that
the contrast m in the medium is large enough. The study on the existence of transmission
eigenvalues was completed by Cakoni et al. [6] where the existence of an infinite set of
transmission eigenvalues was proven only under the assumption that the contrast m in
the medium does not change sign and is bounded away from zero. The first transmission
eigenvalue was also estimated here.

It was shown by Cakoni et al. [4,/5], and Harris [19,[21]] that transmission eigenvalues can be
determined by the scattering data and since they provide information about the material
properties of the scattering object, can play an important role in a variety of problems
in target identification. In [[17,|23,24,[28] various numerical algorithms were studied to
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compute transmission eigenvalues. For example, Gintides and Pallikarakis [17] transformed
the transmission eigenvalue problem (1.1) into a variational form, i.e., finding a function
ue Hg(D) such that

f Q;mu +E2%u)(Ad + E*n(x)p) = 0, for all ¢p € Ha(D)
D n“ —n(x)

and computed the transmission eigenvalues by Galerkin method. The eigenfunctions of
the eigenvalue problem

Lpi(x) = pipi(x), xeD,
$i(x) =0, a‘g"ix) 0, xedD

were chosen as a Hilbert basis in H (2)(D), where L = AA.

Recently, transmission eigenvalue problems with conductive boundary conditions have
attracted great attention (Diao et al. [[15]], Harris [20], Harris and Kleefeld [22]]).

The study on inverse transmission eigenvalue problems have mainly focused on the case of
spherically symmetric refractive index. In this case, transmission eigenvalue problem becomes
a boundary value problem of nonstandard ordinary differential equations.

Suppose that the inhomogeneous medium domain is a ball of radius 1 and n(x) is spherically
symmetric, i.e., n(x) = n(r). The Laplacian in r2 is given by

02 20 1 6% coth o 1 02
Tor2  ror 12002 12 00 r2sintg ¢t

in spherical coordinates (r,0, @), therefore, the boundary value problem (1.1) is transformed into

2
"+ 20 +E2n(r)v = 0, O<r<1,
r

2
w'+ 2w + k2w =0, 0<r<1,

r
v(l)-w()=0,
vVA)-w'(1)=0.

Now applying the transformation u :=rv, V := rw, the above boundary value problem reads
W +E2n(ru=0, O<r<l,
V" +k*V =0, 0<r<l,
u(0)=V(0)=0, u(1)=V(Q1), &' (1)=V'Q).

From the second equation, we can see that the solution V(r) satisfying V(0) = 0 must be a
constant multiple of %kr). Thus, the transmission eigenvalue problem (1.1)) becomes a boundary
value problem for an ordinary differential equation

"+ An(ru=0, re(0,1), }

i (1.4)
u(0,1) =0, u(1,A)cosvVA— u’(l,/l)% =0,

where A = %2 is a spectral parameter and the refractive index n(r) is a positive real function.
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The function

sinv/A

VA
is called the characteristic function of the transmission eigenvalue problem (1.4). It is well known
that this is an entire function of order less than % and all eigenvalues 1, of the transmission
eigenvalue problem coincide with the zeros of the characteristic function A(1)([1]), where
u(r,A) is the solution to the initial value problem

AA) := u(1,A)cos VA—u'(1,1)

(1.5)

u'"+An(r)u=0, re(0,1),
(1.6)
u(0,A)=0, u'(0,1)=1.
In addition, there exists a real constant y such that
oo A
AV =yA% T] (1——). (1.7)
n=d+1 An

We define the quantity A := fol =vn(r)dr.

It was shown by Aktosun et al. [1] that n(r) can be uniquely determined from all transmission
eigenvalues in case A < 1 and from all transmission eigenvalues and constant y in case A = 1.
Similar problems were discussed by Bondarenko and Buterin [2], Cakoni et al. [3]], Cakoni
and Haddar [7]], Chen [8] and in general, there must be additional information (for example
information about the refractive index in subintervals) (Gesztesy and Simon [16], Wang and
Shieh [30], Wei and Wei [31]]).

Modified transmission eigenvalues were introduced in order to reconstruct the refractive
index without above constrains and additional information and to avoid the dependence of
transmission eigenvalues on the frequency (Cogar et al. [9,10], Stratouras [27]).

If there exist nontrivial solutions w, v satisfying
AW +E2n(r)iw =0, xeD,

AT+ 20?5 =0, x€eD, (1.8)
v=w, ¥=  xedD,

then £ was called a modified transmission eigenvalue, where 7 > 0 is a given sufficiently large
constant. It was proved that the refractive index n(r) can be uniquely determined from the
modified transmission eigenvalues (Cogar et al. [9]).

On the other hand, applying Liouville transformation

r 1

¢= [ VaGids, 20= Do), r=r@
to the transmission eigenvalue problem, we get Sturm-Liouville problem

—-2"+q®)z=2z, &€(0,a),
sin VA B

VA

The existence of real eigenvalues and asymptotic behavior of the Sturm-Liouville problem and
related inverse problems have also received great attention (Mclaughlin and Polyakov [25], Wei
and Xu [32], Xu et al. [34]). The classic inverse Sturm-Liouville problem for mixed spectrum
data has also generated much interest (Wang [29], Wei and Xu [|33]).

2(0,A)=0, z(a,A)cosVA—2z'(a,1) 0.
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In most studies on the inverse transmission eigenvalue problem, the refractive index was
assumed to be continuous, especially, twice continuously differentiable and the problem of
reconstructing it from the knowledge of transmission eigenvalues has been discussed in case
the refractive index is of relatively small value.

In practice, the refractive index of the media can be discontinuous and may have arbitrary
values. The inverse transmission eigenvalue problem with discontinuous refractive index was
considered by Gintides and Pallikarakis [18]], where the refractive index was required to satisfy
n(1) =1 and either n(r) > 1 or 0 < n(r) < 1. Accordingly, the aim of this paper is to eliminate the
above constraints on the refractive index by using the modified transmission eigenvalues.

This paper is organized as follows. In Section [2, we formulate the modified transmission
eigenvalue problem in discontinuous media and discuss the asymptotic behavior of the
characteristic function. In Section [3, we establish the uniqueness of the inverse modified
transmission eigenvalue problem in discontinuous media and present some numerical examples
to validate our theoretical results.

2. The Modified Transmission Eigenvalue Problem in Discontinuous
Media and the Characteristic Function
2.1 Formulation of the Modified Transmission Eigenvalue Problem in Discontinuous
Media
We assume that d is the unit sphere in r® and the refractive index is spherically symmetric, i.e.,
n(x) = n(r). For the modified transmission eigenvalue problem
AW +k2n(r)w =0, xeD,
AT+ k2020 =0, xeD,
~5=0, x€dD,

AB-D) - g, x€dD.
We introduce the spherical coordinates (r,0,¢). We seek spherically symmetric eigenfunctions

in the form

(2.1)

x

w(r,0) = bl@Pl(cose), u(r,0) =a;ji(knr)P;(cos0), (2.2)

where j; is a spherical Bessel function, P; Legendre polynomial, a;, b; constants and y;(r)
satisfies the following initial value problem:

v, (r)+ (k2n(r) - @)yz(r) =0, O0O<r<l1,
N 71C (2.3)
iy (12 i) <.

It is well known (Colton and Kress [11]) that % is a modified transmission eigenvalue if and
only if

. @O —jikn
dl(k):det(d " JLE ): 2.4)

(r) .
o ) I YA )

In this paper, we consider the case where the refractive index n(r) is discontinuous in
d €(0,1). We assume that n(r) is twice continuously differentiable in [0,d), (d,1] and has
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finite one-sided limits lim n'(r), lim n”(r), and n'(1) = 0. We consider the following jump

conditions (Gintides an:iﬁge;ﬁikarakrig [ Ig]),
n(d*)=an(d"), (2.5)
n'(d")=a"tn'(d7)+bn(d"), (2.6)
a>0, |la—1|+|b|>0. 2.7

Using Liouville transformation

r 1
&= [ Valde, #=ne)lno)
the differential equation of (2.3) is transformed into the following form:

d%2) [, l0+D)
R

-p)]2(0)=0, 0<é<A, (2.8)

where
1
A:fo vn(p)dp, p(&)=

I+1) 10+1) n»"G) 5 @)
- + -— .
r2n(r) &2 4n(r)2 16 n(r)3

The following result holds for the solution z to (2.8)).

Lemma 2.1 ([18])). The solution z(¢) to @.8) is discontinuous at ¢ =d and satisfies the jump
conditions:

2d) =az(d"), (2.9)

dz(d*)  __idzd”) ~ ~_

d—é_ =a d—f +b2(d ), (210)

la—1|+15] >0, (2.11)
where

1| n'(d") - n'(d™
4 | n(d+)32 n(d‘)5/4n(d+)% ’

o~ d o~
d:[ Vnlpydp, @=at, b=
0

2.2 The Asymptotic Behavior of the Characteristic Function
First, we give the expression of the characteristic function and asymptotic behavior in case
L =0. In this case, yo(r) satisfies
Y@+ B2 n(r)yo(r) =0, 0<r<1, y0(0)=0, yp(0)=1
and by Liouville transformation, it is transformed into
d?z 9 dz(0) —1/4
d_§2+(k -p())z=0, 0<¢<A, 2(0)=0, T =n(0)""", 2.12)
where
n'(r) 5 n'(r)?
p@=—0 2
4n(r)2 16 n(r)
The characteristic function can be rewritten as

sinkn
do(k) = det [PV TE |,
¥4(1) coskn
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Lemma 2.2 ([18]). The solution z(¢) to (2.12) satisfies the following Volterra integral equation,

. E . _ ~
smkcfl N p(t)Sln(f t)z(t)dt, 0<é<d (2.13)
kn(0)i k

2(8) =

~ ~ ~ ~ b ~ ~
asinkdcosk(é —d) +ad Lcoskd sink(&—d)+ Z sinkdsink(é—d)

1

 kn(0)i
d - - - -
+ %f [asink(d —t)cosk(é—d) +a Ycosk(d - t)sink(é—-d)

0

sink({—1t)

- 2(dt, d<&<A. (2.14)

_ N 3
+ % sink(d — t)sink( — d)Ip(t)z(t)dt +f~ p(t)
d

Furthermore, the solution z to (2.13), is an entire function of order % with respect to &2.
The characteristic function corresponding to the modified transmission eigenvalue problem is
more complicated than that of the classical transmission eigenvalue problem due to the absence
of the assumption n(1) =1.

The following lemma shows the asymptotic behavior of the characteristic function do(k).

Lemma 2.3. Assume that the refractive index is piecewise C2 and (2.5)-(2.7) hold. Then,
the characteristic function do(k) satisfies the following asymptotic formula,

do(k) = ;1 [E(ma—l)(l— ’ n(l))sink(A+n)
Eln(0)n(1)]s 14 n
+i(a+a—1)(1+ n(l))sink(A—n)+i(&—&‘l)(1+—”:7(1))sink(n—A+23)
—l(c’i—(’fl)(l— ”n(l))sink(mA—z&) +0(i). (2.15)
4 n k2

Proof. By applying the Liouville transformation, we obtain

, dz(&)
yo(1) = 2(A), yy(D= ac

n(r)2n(r) V4 - iz(f)n(r)_a‘*n'(r)‘f

n(1)i P

and from the asymptotic formula for z(¢) and dfi—(;() ([18, Proposition 8]),

2= — -[@sinkd cosk(é —d)+a 'coskdsink(¢ —d)]+0 (i) ,

En(0)i k2
d 1 ~ ~ ~ ~ 1
2O _ 1| Gsinkdsink(E—d)+a  coskd cosk(E —d)+0 (—) .
d¢ )i k
We get the following asymptotic formula for do(k):
~ sink
do(k) =coskn-yo(1)— mnxn -y(’)(l)

1 ~ ~ ~ ~
= ————{asinkdcosk(A —d)coskn+ a ‘coskdsink(A —d)coskn
k[n(0)n(1)]4
vn(l)

~ ~ ~ ~ 1
[-asinkd sink(A —d)sinkn+a *coskd cosk(A —d)sinknl} + O (k_z) .

n
Simplifying the above expression using trigonometric formulas, we obtain (2.15).
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Next, we consider the expression of the characteristic function and its asymptotic behavior
for the case L = 1.

Lemma 2.4 ([18]). In case r>d, the solution to (2.3) satisfies the asymptotic behavior
1 a+1 . Im\ 1-a* Ink
- — —sin|ké— — |+ —= — |
kn(r)Zn(0)§+Z 2a 2 2a k
From Lemma y1(1) and yg(l) can be rewritten as

yi(r)=

sin (kf + %T - 2ka)

+o|

1 a?+1 ! 1-a2 l ~ Ink
v = - — ? t sin(Ak——n)+—fsin(Ak+—n—2kd)] +0(n_2)’
En(l)in(0)zti | 2a 2a 2 E
1
1)z a2 +1 1-a2 5 1
y,(1)= ’f( )zl - a J: COS(Ak—l—n +—f cos(Ak+l—n—2kd)]+O(—nk).
n(l)in(0)z*: | 2@ 2 24 2 A

Substituting this result together with the asymptotic formula of j;(kn) and j;(kn),

1 In =n 1
) _ 1 _m_my (g 1
Sk kncos(k" 2 2)( +O(kn))’
. 1 I 1
Jg(kn)zEcos(kn—E) 1+O(E))
to (2.4), we have

1 1
~ 1 1za2+1 1)z
d;(k)= - - 1{ n(1): a J: cos(Ak—l—n)sin(kn—l—n)+n( )
kn(1)in(0)z*1 no 2a 2 2 n
— g2 ~ ~2
A f cos(Ak+l—n—2kd)sin(k17—l—ﬂ) + 1 tlsin(Ak—l—n)cos(kn—l—n)
26 2 2 2G 2 2
1-a2 ~ 1
2 sin(Ak+l—”—2kd)cos(kn—l—”) }+0(n—k)
26 2 2 k2
1
1 1 1)z
- - — —(6+Ei_1)(1—n( )Z)Sin(kA+k17—ln)
kn(1)in(0)z*1 U]
1 1
1 1)z 1-a? 1)z ~
+Z(a+a-1)(1+n( )2)sin(kA—k17)+ 4f‘ (1—n(n)2)sin(kA+kn—2kd)
1-G2 1)2 - 1
Lm0 O G RA — k- 2kd + Im) +0(n—k). (2.16)
4a n k2

3. Uniqueness of the Modified Inverse Transmission Eigenvalue
Problem and Numerical Examples

3.1 Uniqueness of the Modified Transmission Eigenvalue Problem

We use only the transmission eigenvalues with spherically symmetric eigenfunctions as
the knowledge of the modified transmission eigenvalues, i.e., we restrict our attention to
the case when L =0.
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As seen in the asymptotic formula (2.15), the characteristic function includes A, n(1) and
jump constants @, d. So our first goal is to show that these values are uniquely determined by
the knowledge of the modified transmission eigenvalues.

Firstly, we prove that A is uniquely determined by the knowledge of the modified
transmission eigenvalues.

Let us introduce the notation Dy(k) = k[n(O)n(l)]%ao(k). Then we have

v ’;(1)) sink(A +1)+ i(m ah (1 + ?) sinf(A —n)

Do(k) = %(5+CT1)(1—

+ i(c’i—(i‘l) (1 4 ’:7(1)) sink()— A +2d)
—%(&—&_1)(1— ’:7(1))sink(17+A—28)+0(%), (3.1

where A+n>|n—-Al|, In—-A+ 23|, n+A - 2d|. Therefore, by Theorem 2.5 and corollaries in
[13], it is straightforward to verify that if n(1) #71? and A # 1, then the density of all zeros on
the right half plane of Do(k) is ‘%. Therefore, A can be uniquely determined by the modified
transmission eigenvalues.

Secondly, we prove that n(1) is uniquely determined by the knowledge of the modified
transmission eigenvalues.

Since y(1) and y(1)' in the expression of the characteristic function do(k) are entire functions
of order % with respect to 22 ([18, Corollary 71), it implies that the characteristic function
do(k) is also an entire function of order % with respect to 22. Hence, we can apply Hadamard’s
factorization theorem and conclude that

0 2
do(k) =cok? [ | (1—%). (3.2)
J=1 ij

Lemma 3.1 ([9]D. If ¢(x) is an entire function which is almost-periodic and bounded on the real
line, then each of the limits

T—oo

1 T
lim —f @(k)sin(ak)dk,
T Ja

1 T
lim —f @(k)cos(ak)dk
T Ja

T—o0

exists for any real a and a fixed constant a.

Lemma 3.2. If n(r) <n? (0 < r < 1), then the modified transmission eigenvalues corresponding
to n uniquely determine n(1).

Proof. We introduce the following notations:

00 2

w(k) =k [] (1—’?’7),

J=1 ij
3 1

Yo=————— 1-
coln(0)n(1)]4
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Then (k) = yoDo(k) and from (3.1), we have
w(k)=yo[Msink(A +n)+ N sink(A —n)

+Psink(n—A+2g)+Qsink(n+A—23)]+0(%), (3.3)

where

M=i(&+<‘i‘1)(1— ”’;(1)), N—l(a+a—1)(1+ V”(l)),

n
le(&—ﬁ_l)(1+ n(l)), Q:—l(d’_d'—l)(l_ Vn(l))

Since A is known by the modified transmission eigenvalues, applying Lemma with a >0
sufficiently large, we see that the limits

L= hmf w(k)sink(A +n)dk,

Lo = hmf w(k)sink(A —n)dk

exist and are known. Computing these limits by (3.3), we have
M N

Y Lg= YV
2 2

and therefore we have that

L 1-Va(Dnm

Ly 1+va(Min

Hence, n(1) is determined.

L=

Next, we show that jump constants @, d of the refractive index can be uniquely determined
by the modified transmission eigenvalues.

The characteristic function can be rewritten as

do(k 1 Vvl
ok) _ 70 LGy g1y - Y ))sink(A+17)
Co k|14 n
1 vn(l 1 vn(l ~
+ Z(EZ+ al (1 + r:]( )) sink(A —n)+ Z(fi—éf_l) (1 + ’:7( )) sink(n—A +2d)
1 vn(l 1
__(5—5_1)(1— n( ))smk(n +A-2d) +O( ) (3.4)
4 n k2)’
where A and n(1) are uniquely determined by the transmission eigenvalues. O

Lemma 3.3 ([18]]). Let z be the solution of (2.12) and (2.13) and v = |Im£k|. Then, for k sufficiently
large, there exist some positive constants C and d such that:

sinké 1

2(8) - —Ce%, 0<é&<d,
En(0)i =P
dz(&) coské 1 Ve ~
- =—Ce", 0=é=d,
dé  poyi| Ikl ¢ ¢
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1 ~ ~ ~ ~ 1
2() - [@sinkd cosk(¢ —d)+a coskdsink(¢ - d)]| < Wpevf, d<&i<A,

kn(0)z
d 1 ~ ~ ~ ~ 1 ~
26) _ —[-dsinkdsink(f —d)+ad 'coskd cosk(l—d)]| < —De", d=<¢<A.
d¢  n(0)1 k|
Lemma 3.4 ([35]). Let f(z) be an entire function such that
f(2)l < Cet?!

for positive constants A and C and all values of z, and

foo | ()% dx < o0.

—00

Then there exists a function ¢ € L2[-A,A] such that

A
fz)= f P(t)e' dt.
-A

Lemma 3.5. Jump constants a, d can be uniquely determined from the modified transmission
eigenvalues.

Proof. Assume that two transmission eigenvalue problems corresponding to different
discontinuous refractive indices ni(r) and no(r) have the same transmission eigenvalues.
We denote the characteristic quantities for each problem by 3,-(k), Ci, Vi, &i, a;, M;, N;,
P;, Q; for i = 1,2, where d;(k), ¢;, vi denote doi(k), €oi, Yoi- Since two problems have the same
eigenvalues, implies that for any 2 € C,

d1(k)E1 = da(k)E,
and from (3.4), we have that
%[Ml sink(A +n)+ Nysink(A —n) + Py sink(n—A +2d1) + Q1 sink(n+ A — 2d1)]

= %[M2 sink(A +1)+ Nasink(A —n) + Pasink(n— A +2ds) + Qo sink(n+ A — 2d5)]
for all sufficiently large £ > 0. Thus, we get
(()flMl —va2Ms)sink(A + 1)+ (y1N1—7y2N2)sink(A —n)+y1P1sink(n—A + Zle)
—voPosink(n—A + 2ds) + Y1Q1sink(n+A — 2d4) - YoQ2sink(n+A — 2&2)) =0.
In the case 31 = 32 = 3,
((y1M1 - y2M3)sin k(A + 1)+ (y1N1 — y2Ng)sin k(A —1)
+(y1P1—Y2Ps)sink(n — A +2d) + (y1Q1 — y2Q2)sink(n+ A —2d)) = 0.

If d # 4, then n— A +2d #n+A —2d and therefore, sink(n—A +2d) and sink(n +A — 2d)
are linearly independent. Since all trigonometric terms are independent, it implies that each
coefficient equals zero respectively in order that the equality holds, i.e.,

Y1iM1=y2Mo,

Y1N1 =7y2No, 3.5)
yY1P1=72P2, '
Y1Q1="72Q2.
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. . a?+1  az+1 ~ o~ .
Eq. (3.5) implies that Z{: T = ‘;gf T and 1+ a,22_ 1= 1+ a,zz_ I Therefore, a; = as and accordingly
1 2 1 2

Y1="72-
Likewise, if d = ‘%, then by the linear independency of trigonometric functions
y1M1 =y2Mo,
Y1N1=7y2Ng, (3.6)
(y1P1—72P2)+(y1Q1—72Q2) = 0.
From the third of (3.6), we have that

Y1(P1+ Q1) =y2(P2+Q2),

o v\ 1 _ vn(l)
Y1 Z(al—all)(1+ - )—Z(arall)(l— ” )

- vn(1) \/n(l))

n n
By straightforward calculations, we have y;(a; - d';l) =yolag — &'51) and combining this with
the first of (3.6), we have a1 =as and y; = ys.
In the case al # 32,
((Y1M1 —YoMy)sink(A +1n)+(y1N1—y2N2)sink(A —n)+y1P1sink(n—-A + 2d1)
—y9Pgsink(n—A +2d3) +y1Q1sink(n+A —2d;) — y2Qasink(n + A — 2dy)) = 0.
.If A=d;+dy, then

1

1
1@ ~ayh) (1 +

y1M1 =y2Mo,
yY1N1=72N3,
Y1P1="72Q2,
Y1Q1="72P2.

Similar arguments show that a1 = a2 and y; = 9.
Likewise, in case A = 231 or A= 232 or else, we have a1 = a3 and y; = y3 from
{Y1P2 =0, or {Y1P1 =0, {Y1P1 =0,
Y1Q@2 =0, Y1Q1=0, [y1P2=0.
Eq. implies that we should obtain b1 = by = 0 in order to get a contradiction.

Since a1 = ag = 1, using Liouville transformation formula together with (2.14) and the
assumption n'(1) = 0, we have the following characteristic function:

1 [ 1 (1_ vn(l) vn(l)
U]

Enni | 2 n
b

+ 1
R2n(O)n (D]
1 d
r—
kn(1)s JO

—sink(d —t)cosk(A —d)coskn —cosk(d — t)sin k(A — 3)coskn]p(t)z(t)dt

do(k) =

)sink(A+n)+%(1+ )sink(n—A)]

vn(l)
7

vn(l)
n

sinkd cosk(A —d)sinkn —sinkd sink(A — 3)coskn]

vn(l)

sink(d—-t)sink(A—d)sinkn + cosk(d —t)cosk(A —d)sinkn
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b [ vnd ~ - - -
+ - f [ a )sink(d—t)cosk(A—d)sinkn—sink(d—t)sink(A—d)coskn]
k2n(1)1

A
- pBz@t)dt + f[ n(1) cosk(A —t)sinkn —sink(A —t)cosknlp(t)z(t)dt. 3.7
kn(1)4

Simplifying the second term ylelds

b vn(l ~ ~ - ~
T n(1) sinkd cosk(A —d)sinkn —sinkd sink(A — d)coskn]
k2n(On(D]s L 71

1
)cosk(A -n)+ 1 (1 —
vn(1)
n

b [1 (1+ L) )cosk(A+17)

T R2nO)n)]i 14 n
1 vn(l)
1

vn(l)
n

4
Hence, we can rewrite (3.7) as

- [_1(1_ vn(1)
Eln(0)n (V)] n

)cosk(n—A+23)—i(1— )cosk(n+A—2&)].

do(k) = 5

b [1( V(D)
+— |1+
k2[n(0)n(1)]a 14 n
1 vn(l)
——(1+ n

)sink(A +n)+ % (1 4+ Y ’:7(1)

)sink(n —A)]

)cosk(A—n)+i(1—

vn(l)
n

’:7(1)) cosk(A +n)

~ 1
1 )cosk(n—A+2d)—Z(l—

)cosk(n +A- 23)]

. A 1
sinkn f ML) osh(A -~ sinkt-p()dt

E2nO)n()]ido 7
coskn E(k)

2 n(1)4

(3.8)

A
——lf sink(A —t)sinkt- p(t)dt +
k2[n(0)n(1)]s Jo

where

d \/n(1)

d inkt
E(k) = ksinkn f S

1

kn(0)4

sinkt
2(t)— -
kn(0)z

z(t)— dt

cosk(A —t)p(t)

A\/_

cosk(A —t)p(t) dt

+k s1nknf

\/_

+bsinkn f cosk(A —d)sink(d — t)p(H)z(t)d¢

sinkt
En(0)

sinkt
1

kn(0)4

d
—kcosknf sink(A —t)p(t) | 2(¢) - dt
0

2(t)— dt

A
—kcosknf~ sink(A —t)p(t)
d

d
—bcoskn f sink(A —d)sink(d — t)p(t)z(t)dt. (3.9)
0

Note that E(k) is an even function of £ and if % is a real number, then E(k) is also a real valued
function.
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Moreover, by lemma 3.3 we get
o0
f IE(x)|? < 0o, |E(x)| < CeArMImE 05 0,

—00

Thus, by Lemma there exists V € L%(0,A +1) such that
A+n
Ek) = V(t)cosktdt.
0

On the other hand,
. A A
sinkn : f n@) cosk(A—t)sinktp(t)dt—Lnl f sink(A —t)sinktp(t)dt
E2[n(O)n(1)]3 o T k2[n(0)n(1)]3 Jo
/ / A
= ! - [(1+ n(l))cosk(n—A)+(1— n(l))cosk(n+A) f p(t)dt
4k2[n(0)n(1)]4 1 n 0
A : / A
___ Coskn : f cosh(A - 20)p(t)dt — — 1K1 : n{1) f sink(A — 28)p(t)dt.
2k2[n(0)n(1)]1 Jo 2R2[nO)n(D]Z N Jo

Now, applying variable transformation to the last two terms of the above equation, we can
rewrite the integrals as

A A
f sink(A — 20)p(t)dt = f W()sinktdt,
0 0

A A
f cosk(A —-2t)p(t)dt = f U(t)cosktdt,
0 0

where
1 A+t A-t 1 A+t A-t
U(t)'zilp( 2 _p( 2 )] W(t)':_é[p( 2 )_p( 2 )]
Thus,
alo(k):;1 [_1(1_ ‘n(l))sink(A+n)+l(1+ n(l))sink(A—n)]
klnO)n(1)]i L 2 n 2 n
+;1[1(1+ n(l))cosk(A—n)+l(1— n(l))cosk(A+17)
R2[n(0)n(1)]1 L4 U 4 1
_1(1+ n(l))cosk(n—A+2g)_l(l— n(l))cosk(n+A—2a)]
4 n 4 n
Vo ny Ve A
+ L (1+ n(l))cosk(n—A)+(1— n(l))cosk(n+A)f p(t)dt
4k2[n(0)n(1)]4 n n 0
A . ST A
- coskn 1[ U(t)cosktdt — sinkn - n(l)f W(t)sinktdt
2k2[n(0)n(1)]4 Jo 2k2[n(0)n(1)]2 M Jo
1 A+n
+ - V(t)cosktdt. (3.10)
k2n(1)s Jo
Since y1 =Y2 and 31(13)/51 = &2(k)/52, it can be seen that
1
~ 0)4 ~
ar ) ="22 G h.
n1(0)2
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Therefore, with the aid of (3.10), we have

(01-62) [(1+ ”n(l))cosk(A—n)+(1— ”n(l))cosk(Am)
4k2[n1(0)n(1)]4 n n
- 1 - (1+—mm)[glcosk(n—A+2El)—52cosk(n—A+2Ziz)]
4k2[n1(0)n(1)]4 n
_ 1 . (1— ’ ”(1))[Elcosk(mA—2&1)—'62cosk(n+A—za2)]
4k2[n1(0)n(1)]14 n
+ LI [(1+ v’"‘(1))cosk(n—A)+(1— ”n(l))cosk(n+A)
4k2[n1(0)n(1)]4 n n
A
[ 10 patenar
A
____coskn f (U(t) - Us(t)) cos ktdt
2k2[n1(0)n(1)]1 Jo
: / A
sinkn __vndD) f (Wi(t) — Wo(t)) sin ktdt
2k2[n1(O)n()]s 1 Jo
A+ i
P f n(”Z(O)jVz(t)—vl(t))cosktdt. (3.11)
k2?n(1)1 Jo n1(0)1

Multiplying both sides of (3.11) by 2k2[n 1(0)n(1)]% cosk(n—A + 2d1)T~! and integrating with
respect to £ from 1 to T yields

= foA(pl(t) ~paode|0[7) -5 [1 m) [i+0(7))+50(7)

n T
vn() fA
n 0

A
+f
0

A+n 1 1 T 1 _
+2f (ng(O)ZVg(t)—nl(O)ZVl(t))f ?cosk(n—A+2d1)coskt] dk. (3.12)
0 T
We can rewrite the right hand side of (3.12) as

(b1-b2)0

T 1 _
(Wl(t)—Wz(t))f Tsinkncosk(n—A+2d1)sinktdk] dt
T

T 1 _
(Ul(t)—Uz(t))f Tcoskncosk(n—A+2d1)cosktdk] dt
T

A+n

A A
fo (Wi(6) = Wa()frdt + fo (U1() - Us()hpdt +2 fo (n2(01 Va(t) = n1(0)IVi()grdt,

\ivhere lfrl,lhrl, g7 <1, fr,hT,8T tends to zero as T — oo almost everywhere. Thus, we have
b 1=0.

Similarly, multiplying both sides of by 2k2[n1(0)n(1)]7 cosk(n — A + 2d)T~! and
integrating with respect to £ from 7 to T yields b = 0.

This is a contradiction to (2.11)). Hence it can be concluded that di=ds.

Finally, we prove that the refractive index can be uniquely reconstructed from the modified
transmission eigenvalues.
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Let us find the solution to the first differential equation of the modified transmission
eigenvalue problem in the form w(r,0) = b;y;(r)P;(cosf) in case n(r) is twice continuously
differentiable. Then, y;(r) satisfies
" 2, 9 I(1+1)

Y (r)+;yl(r)+(k n(r)— " )yi(r)=0 (3.13)

and can be written in the form ([10,[20]),
r
yi(r) = ji(knr) +f0 G(r,s,k)ji(kns)ds, (3.14)

where j;(knr) is a Bessel function of order L and is the solution to y;'(r) + %y}(r) +E2n2y(r)=0.
Furthermore, recalling the results from [12, 18], a similar argument shows that in case n(r) is
discontinuous, the integral kernel G(r,S, k) also satisfies

%G 204G 0%’G 204G

2 2 2 2 2
0°G  20G 2|98 20 1
6r2+r0r +k°n(r)G| =s 632+363 +kn°G |, (3.15)
k2 r
G(r,r,k)= —f tm(t)dt, (3.16)
2r Jo
G(r,s,k)=0((rs)?), O<s<r<1 (3.17)

and integral equation

Gorapyo LE (VR Vi Vs
== tm(t)dt — —— t
(r,s,k) 2 Vs Jo m(t) \/ﬁﬁ fo T

where m(r) =n% - n(r).

2
n(t7) - ’7—4] G(tr,tir,k)dtdT, (3.18)
T

Furthermore, G is an entire function of &, of exponential type and satisfies

G( k)—lk—z \/ﬁt (t)dt(1 + O(k?)) (3.19)
r,s, N m . .

Substituting (3.19) to (3,14) and again substituting (3.14)) to the characteristic function 3l(k)
and using the asymptotic behavior of spherical Bessel function j;, similar arguments with [3]]

show that the coefficient ¢o;42 of £2*2 in the Taylor expansion is determined as
1
~ il 20+2
= t t)dt. 3.20
C21+2 (21+1F(l+3/2))2fo m(t) (3.20)

On the other hand, from the asymptotic formula (2.16) of the characteristic function d;(k), it can
be seen that d;(k) is an entire function of order ! with respect to k and therefore, by Hadamard’s
factorization theorem it can be rewritten as

- . & k2
di(k)=k% 2599 (1——)-

k2
n=1 nl
Now, we define a constant
1
Yi= I (3.21)
Cor+on(0)2714

and show that it can be uniquely determined by the knowledge of the modified transmission
eigenvalues. O
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Lemma 3.6. The constant y; is uniquely determined by the modified transmission eigenvalues.

Proof. If k is sufficiently large, from the asymptotic formula (2.16) of d;(k), we have that
~ 1 1

d;(k 1 1)2 1)2
~l( ): Y1 : _(6+&_1)(1_n( )2 n(1)2

C21+2  Ekn(1)2 n
1—52( n(1)2 1—52( n(1)2

+—|1- — |1+

4a n 4a n
We follow similar arguments with the proof of Lemma and assume that two transmission

)sin(kA+kn—ln)+i(d’+&_1)(1+ )sin(kA—kn)

)sin(kA +kn—2kd)+ )sin(kA —kn—2kd +17)

eigenvalue problems corresponding to the discontinuous refractive indices n1(r) and no(r)
respectively, have the same transmission eigenvalues. Let us denote the coefficients of
trigonometric functions sin(kA + kn —Ix), sin(kA — kn), sin(kA + kn—2kd) and sin(kA — kn —
2kd +17) by M;, N;, P;, Q; (i =1,2). Then, we have

%[Ml sin(kA + kn —In) + Ny sin(kA — kn) + P1sin(RA + k1 — 2kd) + Q1 sin(kA — kn — 2kd + 1 7)]
- %[M2 sin(kA + kn— L) + Ny sin(kA — k1)
+Pysin(kA + kn — 2kd) + Qo sin(kA — kn — 2kd + [ 7)].
Here, we took into account the fact that n(1), A, @ and d are uniquely determined.
Thus, we have
(ynnM1—yi12M2)sin(kA + kn—In) + (y;1N1 — y12N2) sin(k A — kn)
+(y71P1 —v12P2)sin(kA + kn— 2kd) + (y11Q1 — Y12Q2) sin(kA — kn — 2kd + I 7)]
= (D! (y;1 M1 — y19Mo)sin(kA + kn) + (y;1N1 — y12N2)sin(kA — k)
+(y71P1 - v12P2)sin(kA + by — 2kd) + (- 1) (y11Q1 — y12Q2) sin(kA — kn — 2kd) = 0.
Since sin(kA + kn), sin(kA — kn), sin(kA + kn —2kd) and sin(kA — kn — 2kd) are linearly
independent for sufficiently large n > 0, we have that
(1 (y;1M1—y12M3) =0,
Y11N1—y12N2 =0,
Yi1P1-vi12P2 =0,
(-1 (y11Q1 - v12@2) = 0.
Thus, we can conclude that y;; = y;9. O

Theorem 3.1. Suppose that the refractive index n(r) is a piecewise C? function satisfying (2.5)-
2.7) and n'(1) = 0. If n(0) is known, then n(r) is uniquely determined by the knowledge of all
modified transmission eigenvalues counting multiplicity.

Proof. Assume that two refractive indices n1(r) and no(r) satisfying n1(0) = n9(0) = n(0) have
the same corresponding modified transmission eigenvalues. From (3.20), the following equality
holds:

(- )

n(O)é+%y1iﬂ

1
f 22 ()dt = . i=1,2. (3.22)
0
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Clearly, m;(r) = n2 —n;(r)>0 and by Lemmas and n(1) and
Y= ;11

cor+2n(0)27 %

are uniquely determined by the knowledge of the modified transmission eigenvalues.

Furthermore, as n(0) is already known, the right hand side of is uniquely determined.

Hence, taking into account the proof of Theorem 16 in [18], we can conclude that nq(r) =

no(r). O

3.2 Numerical Examples

Using similar arguments with [17], it can easily be seen that the modified transmission
eigenvalue problem (2.1) is equivalent to the boundary value problem

(A+ k%(x))%m +E2")u=0, u=w-veHD)

and the corresponding variational problem is formulated as finding a function u € H (2)(D) such
that

f Z;mu +E2n?u) AP+ E*n(x)p) =0, V ¢pe HAD). (3.23)
D n“ —n(x)

For the numerical experiment, we use the Galerkin method as in [17] to seek the weak
solution of the modified transmission eigenvalue problem.

Let {¢;}7° be a set of eigenfunctions of the problem
Lopi(x) = p;p;(x), x€D,
pi(x)=0, 2% — o ye aD,}
where L = AA.

Eigenfunctions can be easily computed and form a Hilbert basis in H, (2)(D).

(3.24)

Then, the weak solution of the modified transmission eigenvalue problem, i.e., the solution
u to the variational form (3.23) can be approximated as

N
geN) Z cidi. (3.25)
=1
We substitute uZN ) into (3.23) and use the eigenfunctions ¢;, i =1,...,n, as test functions.

Then, the approximate nonlinear eigenvalue problem is written in the following matrix form

[A(N)_(k(N))2B(N)+(k(N))4c(N)]C =0, (3.26)
where
1 _
N) _ AT
A= fD n2 - ) S PiBbsdx, (3.27)
™ _ n(x) . f n? e
5 U o P |y P At (3.28)
¢ = f e ) 0 (3.29)
p % —n(x)

are N x N matrices and ¢ =(c1,¢9,...,en)T, i,j=1,...,n
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In our numerical experiments we show that the refractive index can be uniquely determined
by the modified transmission eigenvalues without assuming that the contrast does not change
sign.

We consider the case where the refractive index is constant and piecewise constant.

First, let d be a circular domain of radius R with constant refractive index n(x) = n. It is well
known that n is uniquely determined by the knowledge of only the lowest positive transmission
eigenvalue provided that it is known a priori that either n >1or 0 <n <1 [11].

Accordingly, we show through numerical experiment that in a circular domain with
constant refractive index, we can recover the refractive index from the lowest positive modified
transmission eigenvalue without its prior knowledge.

The lowest positive modified transmission eigenvalue can be computed analytically. By
similar arguments with [17]], we see that the lowest positive modified transmission eigenvalue
is the lowest positive solution to
Jm(kNR) Jp(ky/nR)
J, (knR) J, (ky/nR)

where oJ,, are Bessel functions of the first kind. This relation can be derived easily from

det =0, m=0,1,..., (3.30)

separation of variables for Helmholtz equation.

We construct a basis {(,bi}?i , with the eigenfunctions of (3.24) in order to approximate
the lowest positive modified transmission eigenvalue by (3.26). In polar coordinates, the
eigenfunctions for one eigenvalue u are linear combinations of

Ji(ur)cosif, J;(ur)sini@, I;(ur)cosif, I;(ur)sinif.
The eigenvalues p can be computed from the relation:

Ji(kR) J/(kR)) _

det\ nkr) IkR))™

0, 1=0,1,....

2

We construct a basis with 12 eigenfunctions {(pi}}zl and compute the 12 x 12 matrices

AN BM) W) for r =1 in (3.26).

Then, we use the MATLAB function polyeig to solve the eigenvalue problem for
different values of n in the interval (0,20].

We estimate n by minimizing IkE)N ) _ kol, the absolute difference between the lowest positive
solution k¢ to and the approximation ng ) of (3.26).

The results are shown in Table

Table [I]illustrates that the constant refractive index can be reconstructed from the modified
transmission eigenvalues without prior knowledge of the refractive index.

Next, let d be a circular domain of radius R with piecewise constant refractive index

(x) = ni, xEDl,
= na, x€D2.

We use four modified transmission eigenvalues for the numerical experiment of reconstruction.
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Table 1. Reconstructions for constant refractive index

Original n | Parameter n | Eigenvalue kg | Approximation kf)N ) | Estimated n
0.4 3 1.3095 1.3097 0.39
0.7 3 1.3405 1.3407 0.69
5 0.8372 0.8371 3
10 0.3969 0.3969 6
10 10 0.4099 0.4099 10
12 10 0.4186 0.4186 12
20 15 0.2706 0.2706 20

These transmission eigenvalues can be computed analytically from the equation:

In(knR) 0 In(ky3R)  Np(kymzR)
dot| Dl 0 Tnky/mzr)l—r  Npeymailer | _ o 3.31)
0 Inlkymir)  dulkymar)  Nulkymgr) |~ '
0 I (/1 er, (ka0 ey, N (kg rer,

This relation is analogous with (3.30). Analogously to the case of constant refractive index, we
estimate n1, ng and r1 by minimizing the sum of absolute differences between analytically
computed modified transmission eigenvalue and approximated transmission eigenvalues when
varying ni in (0,1), ne in [2,20] and r; in (0, 1), respectively. The results are shown in Table

Table 2. Reconstructions of piecewise constant refractive index

Original n1,ng,r1 | Parameter 7 | Eigenvalues kg, k1, ko, éppfoximations lgo, E 1,| Estimated 71,79,71

k3 k2) k3

13,5,0.5 10 0.4017, 0.5216, 0.6439,|0.4027, 0.5235, 0.6460, 13,4.5,0.5
0.7640 0.7662

10, 8, 0.4 10 0.4043, 0.5257 0.6477,/0.4043, 0.5265 0.6489, 10,7.5, 0.5
0.7673 0.7689

0.5,3,0.5 10 0.3880,0.7111, 0.3881, 0.5183, 0.6425, 04,25,0.6
0.5174,0.6413 0.7135

0.6,5,0.6 10 0.3901,0.5196, 0.6435,/0.3892, 0.5199 0.6444, 0.8,4.8,0.7
0.7156 0.7156

Table [2|illustrates that the piecewise constant refractive index can be reconstructed from
the modified transmission eigenvalues without prior knowledge of the refractive index.

Finally, we assume that d is a spherically stratified domain with k-layers such that
D= UleD ; and {0D i}f':l are concentric circles. The refractive index is given by

ni,
n(x)=

ng,

x€eDq,

xEDk.
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The transmission eigenvalues are the zeros of the determinant of a 2k x 2k matrix, analogous to
(3.31). With similar discussions to [17], we approximate the transmission eigenvalues using a
Newton method.

We can write the N x N matrices AN, BM and C™Y) in the following form:

ko1

AN — Ay, (3.32)
;ﬂz—nz

(N) k 1 (2)

BW) = BV + B, (3.33)
ZTI —nj ZZU —n
k

o) _ g T’ ;. (3.34)
zzzlnz—nz

where A; = [;, ApiAd;dx, BED = Jp, Apig;dx, Bgz) = Jp,$iAd;dx and C; = [ bidpdx for
i,j=1,...n,L=1,.. k.
If we set a; := 1/(n? — n;), then (3:32)-(3:34) can be rewritten as

k
AN =% a4, (3.35)
=1
k 1 k 2 1 2
B(N):—ZB§ )+Zn al(BE)"'BE ))’ (3.36)
=1 =1
k
C™M =% ta; -nHC;. (3.37)
=1

Now the inverse transmission eigenvalue problem has the following form: given a set
of modified transmission eigenvalues S = {,ul-}f:l, find scalars {al}?:1 such that the pencil
PV =24C™ + 22BN + AN has spectrum o(AN), BN CcM)) =S,

We denote the set of unknown coefficients by a = (a1,aq,...,ap).

We solve the nonlinear system f(a) := (fi(a),...,fr(@))T = (0,...,0)7 using the Newton
method where
4 k 4 2 2 k 1) k 2 1) (2) b
fila)=det | u; l_zl(n a;—n)C + 3 _z—ZiBl +Z_Zi17 a;(B;” +B;”) +l_zlalAl )
The numerical algorithm of inverse transmission eigenvalue problem based on the Newton

method is constructed analogously to [[17]].

In this paper, we have tested the algorithm for the simple case of spherically stratified
domain with two layers.

In case of unit disc with n1 =5, ng = 8 and inner radius r1 = 0.6, given as initial estimate for
the indices, the mean value 6.5 was reconstructed as n; =5.000, ny = 8.000 after 7 iterations
with tolerance 10712,

In case of unit disc with ny = 12, n9 = 6 and inner radius 1 = 0.8, given as initial estimate for
the indices, the mean value 9.5 was reconstructed as n1 = 12.000, ny = 6.000 after 9 iterations
with tolerance 10712,
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4. Conclusion

In this paper, we have studied the transmission eigenvalue problem and its inverse problem
which are of great practical importance such as Radar, sonar, geophysical exploration, medical
imaging and non-destructive test. First, we have formulated the modified transmission
eigenvalue problem in case of discontinuous refractive index and estimated the asymptotic
behavior of the characteristic function. Second, we have proved the uniqueness of the inverse
transmission eigenvalue problem of reconstructing the refractive index and its discontinuous
positions from the knowledge of the modified transmission eigenvalues. Our numerical examples
indicated the validity of our theoretical results.
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