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Some Special V4-magic Graphs

R. Sweetly and J. Paulraj Joseph

Abstract. For any abelian group A, a graph G = (V, E) is said to be A-magic if
there exists a labeling l : E(G)→ A−{0} such that the induced vertex set labeling
l+ : V (G) → A defined by l+ :=

∑
{l(uv)/uv ∈ E(G)} is a constant map. In this

paper, we consider the Klein-four group V4 = Z2 ⊕ Z2 and investigate graphs that
are V4-magic

1. Introduction

For any abelian group A, written additively, any mapping l : E(G)→A− {0} is
called a labeling. Given a labeling on the edge set of G, one can introduce a vertex
set labeling l+ : V (G)→A as follows: l+(v) = Σ{l(uv)/uv∈E(G)}. A graph G is said
to be A-magic if there is a labeling l : E(G)→A−{0} such that for each vertex v, the
sum of the labels of the edges incident with v are all equal to the same constant;
that is, l+(v) = c for some fixed c ∈ A.

The original concept of A-magic graph is due to Sedlacek [1, 2], who defined it
to be a graph with a real-valued edge labeling such that

(1) distinct edges have distinct nonnegative labels; and
(2) the sum of the labels of the edges incident to a particular vertex is the same

for all vertices.

Observation 1.1. Any regular graph is fully magic.

Observation 1.2. If G is A-magic, then so is G × K2, hence so is G ×Qn.

Observation 1.3. For any n≥ 3, the path of order n is non-magic.

Observation 1.4. C4, the cycle of order four, with a pendant edge is non-magic.
In fact, any even cycle C2n with a pendant edge is non-magic.
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2. Existing results

Theorem 2.1 ([3]). A tree T is V4-magic if and only if all its vertices have odd
degrees.

Theorem 2.2 ([3]). For m, n≥ 2, the complete bipartite graph K(m, n) is V4-magic.

Theorem 2.3 ([3]). For any n > 3, Kn - e, the complete graph with one edge
removed, is V4-magic.

Theorem 2.4 ([3]). (a) Any even cycle with k pendant edges is V4-magic if and
only if k is even.

(b) Any odd cycle with k pendant edges is V4-magic if and only if k is odd.

Theorem 2.5 ([3]). The wheel Wn is V4-magic (n≥ 3).

3. Main results

Definition 3.1. A shell Sn,n−3 of width n is a graph obtained by taking n − 3
concurrent chords in a cycle Cn on n vertices. The vertex at which all the chords
are concurrent is called apex. The two vertices adjacent to the apex have degree 2,
apex has degree n− 1 and all the other vertices have degree 3.

Theorem 3.2. Shell graphs Sn,n−3 are V4-magic.

Proof. Case 1. n is even.
Let n= 2r+2. Then the number of edges is 4r+1. Number of chords are n−3.

Let the vertices and edges be as follows:

V (Sn,n−3) = {a0, b0, a1, b1, . . . , ar , br},
E(Sn,n−3) = {ai bi , ai bi−1/0≤ i ≤ r} ∪ {br v/v 6= a0, ar}.

Label the edges as l(br v) = c, v 6= a0, ar , l(br ar) = l(ar br−1) = a. Then
label all the edges b, a, b, a, . . . , up to b0a0. Then l(a0 br) = b. So l+(br) =
a + b+ c + (n− 2)c, l+(a0) = 2b = 0. l+(ar) = 2a = 0. l+(bi) = a + b+ c = 0,
i = 0, 1, 2, . . . , r − 1. l+(ai) = a+ b+ c = 0, i = 1, 2,. . . , r − 1.

Thus l+(v) = 0 for all vertices.

Case 2. n is odd.
Let n = 2r + 3. Number of chords is n− 3. V (Sn,n−3) = {a0, b0, . . . , ar , br} ∪

{ar+1}, E(Sn,n−3) = {ai bi , ai bi−1/1≤ i ≤ r} ∪ {ar+1v/v 6= a0, br} ∪ {a0 b0, a0ar+1}.
The labeling of edges is as follows:
l(ar+1 br) = l(ar br) = a. Then consecutively we label the edges by b, a, b, a, . . .

up to the edge b0a0. Then l(a0ar+1) = a, l(ar+1v) = c, v 6= a0, br . Then l+(ar) =
2rc + 2a = 0. l+(ai) = a + b + c = 0, for i = 1, 2, . . . , r, l+(bi) = a + b + c = 0,
for i = 0, 1, 2, . . . , r − 1, l+(a0) = 2a = 0, l+(br) = 2a = 0. Then l+(v) = 0 for all
vertices. Hence, shell graphs are V4-Magic. ¤
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Definition 3.3. For positive integers n, k, 1 ≤ k ≤ n − 3, the family C(n, k) is
the family of graphs obtained by taking k concurrent chords in a cycle Cn on n
vertices. In general C(n, k) consists of many graphs. The shell graph Sn,n−3 is the
unique member of C(n, n−3). If we take maximum number of alternate concurrent
chords, then for n = 2s there is unique such graph. It belongs to C(2s, s− 1). For
n = 2s+ 1, we cannot take maximum number of alternate chords without taking
some consecutive ones. Here we are interested in alternate chords symmetrically
placed on two sides of the apex. If n ≡ 1 mod 4, we have to take two consecutive
chords exactly in the middle. This graph is denoted by S4t+1,2t . If n≡ 3 mod 4,we
have to take four consecutive chords in the middle. This graph is denoted by
S4t+3,2t+2.

Theorem 3.4. The graph C(2s, s−1), with alternative concurrent chords is V4-magic.

Proof. Case 1. s = 2t.
Let the graph be denoted by S4t,2t−1. This graph has 4t vertices and

6t − 1 edges. Let the vertex set be {a0, b0, . . . , a2t−1, b2t−1}, with the cycle
C = (a0, b0, . . . , a2t−1, b2t−1). Let a0 be the apex vertex with the chords
a0a1, a0a2, . . . , a0a2t−1. Label the edges as l(a0ai) = c, for i = 1, 2, . . . , 2t − 1.
And label the edges of C as a, a, b, b, . . ., starting with a0 b0, b0a1, a1 b1, b1a2, . . ..
Then l+(a0) = a+ b+ c+(2t−2)c = 0, l+(ai) = a+ b+ c = 0, i = 1, 2, . . . , 2t−1,
l+(bi) = a+ a = 0, i = 0, 2, 4, . . . , 2t −2, l+(bi) = b+ b = 0, i = 1, 3, 5, . . . , 2t −1.
Thus l+(v) = 0 for all v ∈ V .

Case 2. s = 2t + 1.
Let the graph be denoted by S4t+2,2t . This graph has 4t + 2 vertices and

6t + 2 edges. Let the vertex set be {a0, b0, . . . , a2t , b2t}, with the cycle C =
(a0, b0, . . . , a2t , b2t) and the chords are a0a1, a0a2, . . . , a0a2t .

Label the edges as l(a0ai) = c, for i = 1, 2, . . . , 2t. And edges of C as
a, a, b, b, . . ., starting with a0 b0, b0a1, a1 b1, b1a2, . . .. Then l+(a0) = a+a+2tc = 0,
l+(ai) = a+ b+ c = 0, for i = 1, 2, . . . , 2t, l+(bi) = a+ a = 0, for i = 0, 2, 4, . . . , 2t.
l+(bi) = b + b = 0, for i = 1, 3, 5, . . . , 2t − 1. Thus l+(v) = 0 for all the vertices.
Hence the graph is V4-magic. ¤

Theorem 3.5. The graphs S4t+1,2t , S4t+3,2t+2, t ≥ 1 are V4-magic.

Proof. Case 1. n= 4t + 1.
Consider the odd cycle on the vertices a0, b0, . . . , a2t−1, b2t−1, a2t with 2t chords

at ai/i 6= t. Label the edges as follows: l(at ai) = c for i 6= t and l(a0a2t) = a.
From the edge a0a2t , we label as b, b, a, a, b, b, . . ., on both sides up to the
vertex at . Then l+(at) = 2tc + 2b = 0 if t is odd, 2tc + 2a = 0 if t is even.
l+(ai) = a + b + c = 0, i = 0, 1, 2, . . . , t − 1, t + 1, . . . , 2t. l+(bi) = 2b = 0 or
l+(bi) = 2a = 0, i = 0, 1, 2, . . . , 2t − 1. Thus l+(v) = 0 for all the vertices.



144 R. Sweetly and J. Paulraj Joseph

Case 2. n= 4t + 3.
Let V = {a0, b0, a1, b1,. . . , a2t , b2t , 4a2t+1}. The edge set is given by E =

{ai bi , biai+1, 0 ≤ i ≤ 2t} ∪ {a2t+1a0} ∪ {a0ai , a0 bt−1+i , 1 ≤ i ≤ t + 1}. There are
2t+2 chords. Label all the chords as c. l(a0ai) = l(a0 bt−1+i) = c, 1≤ i ≤ t+1, and
l(br ar+1) = a. On both sides of br ar+1 label the edges as b, a, a, b, b, a, a, b, b, . . .,
on both sides up to a0.

Then

l+(a0) =

¨
(2t + 2)c + 2a, if t is odd,

(2t + 2)c + 2b, if t is even.

l+(ai) =

¨
a+ b+ c, if i = 1, 2, . . . , t + 1.

2a or 2b, if i = t + 2, . . . , 2t + 1.

l+(bi) = 2b or 2a, if i = 0, 1, 2, . . . , t − 1.

l+(bi) = a+ b+ c, if i = t, t + 1, . . . , 2t.

Then l+(v) = 0 for all the vertices. ¤

Theorem 3.6. The graph S2s+1,s is V4-magic.

Proof. Let the vertex set be {a0, b0, a1, b1, . . . , as−1, bs−1, as} with cycle C =
{a0, b0, a1, b1, . . . , bs−1, as}. The chords are {a0ai , 1≤ i ≤ s−1} and a0 bs−1. Label
the chords as l(a0ai) = l(a0 bs−1) = c, i = 1, 2, . . . , s−1 and l(as−1 bs−1) = a. Both
sides of as−1 bs−1, we label the edges b, b, a, a, . . ., up to a0. Then l+(a0) = sc + 2b
if s is even, (s− 1)c + a+ b+ c if s is odd. l+(ai) = a+ b+ c, i = 1, 2, . . . , s− 1,
l+(as) = 2b, l+(bs−1) = a+ b+ c. l+(bi) = 2a or 2b, i = 0, 1, 2, . . . , s− 2. Then
l+(v) = 0 for all the vertices. ¤

Definition 3.7. A snake graph is formed by taking n copies of a cycle Cm and
identifying exactly one edge of each copy to a distinct edge of the path Pn+1, which
we will call the backbone of the snake. We will use T (m)n to denote this snake graph.

Theorem 3.8. All snake graphs T (m)n are V4-magic.

Proof. Label all the edges as a or b.
Then l+(v) = 0 for all the vertices; Otherwise label all the edges of first cycle

Cm as a and the edges of second cycle Cm as b. By labeling the edges of cycles as
a and b alternatively, every vertex of degree four have l+(v) = 2a+2b = 0. Other
vertices of degree two has l+(v) = 2a or 2b = 0. ¤

Definition 3.9. Let {(Gi , x i , yi)} be a finite collection of graphs, each with a fixed
edge which is oriented, Then the edge amalgamation Edgeamal {(Gi , x i , yi)} is
formed by taking the union of all the G and identifying their fixed edges, all with
the same orientation.

When we consider the edge amalgamation of cycles, we have a generalization
of the book graph Sn × P2. When {Gi} is a collection of cycles, we call Edgeamal
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{(Gi , x i , yi)} a generalized book. The spine xy of the generalized book is the edge
we obtain from the identification of the edges x i , yi and each cycle Gi containing
this edge is called a page. For each page Gi = xyv1v2 . . . vki x of length ki+2,we say
that v1, v2, . . . , vki is the non spine path of a cycle.

Note that for edge amalgamation of collections of cycles, the choice of edges
and orientations is irrelevant. For this reason, we simply use Edgeamal {Gi} to
denote the edge amalgamation of a collection of cycles.

Theorem 3.10. All generalized books are V4-magic.

Proof. Let G be a generalized book. We consider the following cases.
If the number of pages is odd, then all the vertices of generalized books will be

even. We label all the edges by a. Then l+(v) = 0.
If the number of pages is even, we can label the common edge by a, the other

edges of first page by b, and all other pages by c. Then l+(v) = 0. ¤

Corollary. Let G be a generalized book with Pm as a spine, where m ≥ 2. Then G is
V4 magic.

Theorem 3.11. C (t)n , one point union of t cycles each of length n is V4-magic
whenever t is odd or even.

Proof. If t is odd, label the edges of first cycle by a, second cycle by b, and the
remaining cycles by c. Then l+(v) = 0.

If t is even, label the edges of all cycles by a. Then l+(v) = 0. ¤

Theorem 3.12. Ladders Ln+2 with n steps are V4-magic.

Proof. Let u0, u1, . . . , un+1 and v0, v1, . . . , vn+1 be the vertices of a ladder G such that
E(G) = {uiui+1/i = 0, 1, 2, . . . , n}∪{v j v j+1/ j = 0, 1, 2, . . . , n}∪{ui vi/i = 1, 2, . . . , n}.
Label all the edges by a. Then l+(v) = a. ¤

Theorem 3.13. Ladders P2 × Pn is V4-magic.

Proof. Let u1, u2, . . . , un and v1, v2, v3, . . . , vn be the vertices of a ladder Ln such that
E(G) = {uiui+1/i = 1, 2, . . . , n} ∪ {v j v j+1/ j = 1, 2, . . . , n} ∪ {ui vi/i = 1, 2, . . . , n}.
Case 1. n is odd.
Label the edges as follows:
l(u1v1) = l(uiui+1) = l(vi vi+1) = a, for i = 1, 3, . . . , n− 2, l(unvn) = l(uiui+1) =
l(vi vi+1) = b, for i = 2, 4, . . . , n − 1, l(ui vi) = c, for i = 2, . . . , n − 1.Then
l+(u1) = l+(v1) = 2a = 0, l+(un) = l+(vn) = 2b = 0 and l+(v) = a+ b+ c = 0 for
all other vertices.

Case 2. n is even.
Label the edges as follows:
l(u1v1) = l(unvn) = l(uiui+1) = l(vi vi+1) = a, for i = 1, 3, 5, . . . , n− 1, l(uiui+1) =
l(vi vi+1) = b, for i = 2, 4, . . . , n− 2 and l(ui vi) = c, for i = 2, 3, . . . , n− 1. Then



146 R. Sweetly and J. Paulraj Joseph

l+(u1) = l+(v1) = l+(vn) = l+(un) = 2a = 0 and l+(v) = a + b + c = 0 for
remaining vertices. ¤

Definition 3.14. The graph G with the vertex set {u1, u2, . . . , un, v1, v2, . . . , vn} and
edge set {uiui+1, vi vi+1, viui+1 : 1 ≤ i ≤ n− 1} ∪ {ui vi : 1 ≤ i ≤ n} is called a semi
ladder of length n.

Theorem 3.15. Semi ladders are V4-magic.

Proof. Let G be a semi ladder of length n. Then G has 2n vertices and 4n − 3
edges. Label the edges as follows:
l(u1v1) = l(uiui+1) = a, for i = 1, 2, . . . , n − 1, l(unvn) = l(vi vi+1) = b, for
i = 1, 2, . . . , n − 1, l(ui vi) = c, for i = 2, 3, . . . , n − 1 and l(viui+1) = c, for
i = 1, 2, . . . , n− 1. Then l+(u1) = 2a = 0, l+(vn) = 2b = 0, l+(ui) = 2a+ 2c = 0,
for 2 ≤ i ≤ n− 1, l+(un) = l+(v1) = a + b + c = 0 and l+(vi) = 2b + 2c = 0, for
2≤ i ≤ n− 1. ¤

Definition 3.16. The composition of two graphs G[H] has V (G)×V (H) as vertex
set in which (g1, h1) is adjacent to (g2, h2) whenever g1 g2∈E(G) or g1 = g2 and
h1h2∈E(H).

Theorem 3.17. The composition Pn[K c
2] is V4-magic.

Proof. Let Pn = (v1, v2, . . . , vn). Let x , y be the vertices of K c
2. Denote the vertex

(vi , x) of Pn[K c
2] by ui , and (vi , y) by u′i , 1 ≤ i ≤ n. The size of Pn [K c

2] is given by
q = 4n− 4.

Label the edges as follows:
l(uiui+1) = l(u′iui′+1) = a, for i = 1, 2, . . . , n − 1 and l(uiui′+1) = l(u′iui+1) = a,
for i = 1, 2, . . . , n − 1. Then l+(ui) = l+(u′i) = 4a = 0, for 2 ≤ i ≤ n − 1 and
l+(u1) = l+(un) = l+(u′1) = l+(u′n) = 2a = 0. Hence Pn[K c

2] is V4-magic. ¤

Note. Paths are not V4-magic. But Cartesian product of paths Pm× Pn is V4-magic.

Theorem 3.18. The planar grid Pm × Pn is V4-magic.

Proof. The planar gird Pm × Pn, m, n≥ 2 contains mn vertices and 2mn− (m+ n)
edges. Note that 4 vertices are of degree 2 each, 2(m+n−4) vertices are of degree
3 each and (m− 2)(n− 2) are of degree 4 each. Let V (Pm × Pn) = {ui j , 1 ≤ i ≤
n, 1≤ j ≤ m}. E(Pm × Pn) = {ui jui( j+1) : 1≤ i ≤ n, 1≤ j ≤ m−1}U{ui ju(i+1) j : 1≤
i ≤ n− 1, 1≤ j ≤ m}.
Case 1. Both m and n are even.

Label the edges as follows:
l(u1 ju1 j+1) = l(ui1u(i+1)1) = b, for j = 1, 3, 5, . . . , m − 1, i = 1, 3, 5, . . . , n − 1,
l(u1 ju1( j+1)) = l(ui1u(i+1)1) = c, for j = 2, 4, . . . , m − 2, i = 2, 4, 6, . . . , n − 2,
l(uimu(i+1)m) = l(un jun( j+1)) = b, for i = 1, 3, . . . , n − 1, j = 1, 3, 5, . . . , m − 1,
l(uimu(i+1)m) = l(un jun( j+1)) = c, for i = 2, 4, . . . , n − 2, j = 2, 4, . . . , m − 2 and
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l(e) = a for all remaining edges. Then l+(u11) = l+(u1m) = l+(un1) = l+(unm) =
2b = 0, l+(u1 j) = a+b+c = 0, 2≤ j ≤ m−1, l+(unj) = a+b+c = 0, 2≤ j ≤ m−1,
l+(ui1) = a+ b+ c = 0, 2 ≤ i ≤ n− 1 and l+(uim) = a+ b+ c = 0, 2 ≤ i ≤ n− 1.
For the remaining vertices l+(v) = 2a = 0.

Case 2. Both m and n are odd.

Label the edges as follows:
l(u1 ju1( j+1)) = l(ui1u(i+1)1) = b, for i = 1, 3, 5, . . . , n − 2, j = 1, 3, 5, . . . , m − 2,
l(u1 ju(1 j+1)) = l(ui1u(i+1)1) = c, for i = 2, 4, . . . , n − 1, j = 2, 4, . . . , m − 1,
l(uimu(i+1)m) = l(unjun( j+1)) = c, for i = 1, 3, 5, . . . , n − 2, j = 1, 3, 5, . . . , m − 2,
l(uimu(i+1)m) = l(un jun( j+1)) = b, for i = 2, 4, . . . , n − 1, j = 2, 4, 6, . . . , m − 1
and l(e) = a for all remaining edges. Then l+(u11) = l+(unm) = 2b = 0,
l+(un1) = l+(u1m) = 2c = 0, l+(u1 j) = l+(unj) = a + b + c = 0, 2 ≤ j ≤ m− 1,
l+(ui1) = l+(uim) = a + b + c = 0, 2 ≤ i ≤ n − 1. For the remaining vertices
l+(v) = 2a = 0.

Case 3. m is odd and n is even.

Label the edges as follows:
l(u1 ju1( j+1)) = l(ui1u(i+1)1) = b, for i = 1, 3, . . . , n − 1, j = 1, 3, . . . , m − 2,
l(u1 ju1 j+1) = l(ui1u(i+1)1) = c, for i = 2, 4, 6, . . . , n − 2, j = 2, 4, . . . , m − 1,
l(unjun( j+1)) = l(uimu(i+1)m) = b, for j = 1, 3, 5, . . . , m − 2, i = 2, 4, 6, . . . , n − 2,
l(unjun( j+1)) = l(uimu(i+1)m) = c, for j = 2, 4, . . . , m − 1, i = 1, 3, . . . , n − 1
and l(e) = a for the remaining edges. Then l+(u11) = l+(un1) = 2b = 0,
l+(u1m) = l+(unm) = 2c = 0, l+(unj) = l+(u1 j) = a + b + c = 0, 2 ≤ j ≤ m− 1
and l+(uim) = l+(ui1) = a+ b+ c = 0, for 2≤ i ≤ n−1. For the remaining vertices
l+(v) = 2a = 0.

Case 4. m is even and n is odd.

Label the edges as follows:
l(u1 ju1( j+1)) = l(ui1u(i+1)1) = b, for j = 1, 3, m − 1, i = 1, 3, . . . , n − 2,
l(u1 ju1( j+1)) = l(ui1u(i+1)1) = c, for j = 2, 4, . . . , m − 2, i = 2, 4, . . . , n − 1,
l(unjun( j+1)) = l(uimu(i+1)m) = c, for j = 1, 3, . . . , m − 1, i = 2, 4, . . . , n − 1,
l(unjun( j+1)) = l(uimu(i+1)m) = b, for j = 2, 4, . . . , m − 2, i = 1, 3, 5, . . . , n − 2
and l(e) = a for the remaining edges. Then l+(u11) = l+(u1m) = 2b = 0,
l+(un1) = l+(unm) = 2c = 0, l+(u1 j) = l+(unj) = a + b + c = 0, 2 ≤ j ≤ m− 1
and l+(uim) = l+(ui1) = a + b + c = 0, 2 ≤ i ≤ n− 1. For the remaining vertices
l+(v) = 2a = 0. Hence the planar grid is V4-magic. ¤

Definition 3.19. The sequential join of graphs G1, G2, . . . , Gn is formed from
G1 ∪ G2 ∪ . . . ∪ Gn by adding edges joining each vertex of Gi with each vertex
of Gi+1 for 1< i < n− 1.

Theorem 3.20. The sequential join of m copies of K2, m> 2 is V4-magic.
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Proof. The sequential join of m copies of K2 contains 2m vertices and 5m−4 edges.
V (G) = {u1, u2, . . . , un, v1, v2, . . . , vn}. E(G) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {vi vi+1 :
1≤ i ≤ n− 1} ∪ {ui vi : i = 1, 2, . . . , n} ∪ {viui+1, ui vi+1 : i = 1, 2, . . . , n− 1}
Label the edges as follows:
l(ui vi) = l(ui vi+1) = l(uiui+1) = l(vi vi+1) = l(viui+1) = c.

Then l+(u1) = l+(v1) = l+(un) = l+(vn) = 3c = c, l+(ui) = l+(vi) = 5c = c,
2≤ i ≤ n− 1. ¤

Definition 3.21. A comb is a graph obtained by joining a single edge to each
vertex of a path.

Theorem 3.22. Comb is not V4-magic.

Proof. Let Pn = (u1, u2, . . . , un) and vi be the pendent vertex attached to ui ,
1 ≤ i ≤ n. Suppose comb is V4-magic, then l+(vi) = l+(ui), 1 ≤ i ≤ n. Hence
l(u1v1) = l(u1v1)+ l(u1u2) = 0. This implies l(u1u2) = 0. which is a contradiction.
Hence comb is not V4-magic. ¤
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