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1. Introduction

Let
∑

denote the class of meromorphic functions f (z) normalized by

f (z)= 1
z
+

∞∑
n=1

anzn, (1.1)

which are analytic in the punctured unit disk

U∗ = {z : z ∈C and 0< |z| < 1}=U\{0},
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C being (as usual) the set of complex numbers. We denote by
∑

S∗(β) and
∑

K(β) (β= 0) the
subclasses of

∑
consisting of all meromorphic functions which are, respectively, starlike of order

β and convex of order β in U∗ (see also the recent works [17] and [18]).

For functions f j(z) ( j = 1,2) defined by

f j(z)= 1
z
+

∞∑
n=1

an, j zn ( j = 1,2), (1.2)

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

( f1 ∗ f2)(z)= 1
z
+

∞∑
n=1

an,1an,2zn . (1.3)

Let us consider the function φ̃(α,β; z) defined by

φ̃(α,β; z)= 1
z
+

∞∑
n=0

(α)n+1

(β)n+1
anzn (

β ∈C\Z−
0 ; α ∈C)

, (1.4)

where

Z−
0 = {0,−1,−2, · · · }=Z−∪ {0}.

Here, and in the remainder of this paper, (λ)κ denotes the general Pochhammer symbol defined,
in terms of the Gamma function, by

(λ)κ := Γ(λ+κ)
Γ(λ)

=
λ(λ+1) · · · (λ+n−1) (κ= n ∈N; λ ∈C)

1 (κ= 0; λ ∈C\{0}),
(1.5)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient exists
(see, for details, [19, p. 21 et seq.]), N being the set of positive integers.

It is easy to see that, in the case when ak = 1 (k = 0,1,2, · · · ), the following relationship holds
true between the function φ̃(α,β; z) and the Gaussian hypergeometric function [15]:

φ̃(α,β; z)= 1
z 2F1(1,α;β; z). (1.6)

where

2F1
(
b,α,β; z

)= ∞∑
n=0

(b)n (α)n(
β
)
n

zn

n!

is the well-known Gaussian hypergeometric function. Corresponding to the function φ̃(α,β; z),
using the Hadamard product for f (z) ∈∑

, we define a new linear operator L∗(α,β) on
∑

by

L∗ (
α,β

)
f (z)= φ̃(

α,β; z
)∗ f (z)= 1

z
+

∞∑
n=1

∣∣∣∣∣ (α)n+1(
β
)
n+1

∣∣∣∣∣anzn. (1.7)
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The meromorphic functions related to the generalized and Gaussian hypergeometric
functions were considered recently by Cho and Kim [1], Dziok and Srivastava [2], Liu [7],
Liu and Srivastava [8], see also [17] and [18]).

For a function f ∈ L∗ (
α,β

)
f (z) we define

D0 (
L∗ (

α,β
)

f (z)
)= L∗ (

α,β
)

f (z) ,

and for k = 1,2,3, . . .,

Dk (
L∗ (

α,β
)

f (z)
)= z

(
Dk−1L∗ (

α,β
)

f (z)
)′+ 2

z

= 1
z
+

∞∑
n=1

nk

∣∣∣∣∣ (α)n+1(
β
)
n+1

∣∣∣∣∣anzn. (1.8)

We note that Dk in (1.6) was studied by Ghanim and Darus [3], [4], [5] and [6].

It follows from (1.7) that

z
(
L∗(α,β) f (z)

)′ =αL∗(α+1,β) f (z)− (α+1)L∗(α,β) f (z). (1.9)

Also, from (1.9) we get

z
(
DkL∗(α,β) f (z)

)′ =αDkL∗(α+1,β) f (z)− (α+1) DkL∗(α,β) f (z). (1.10)

Let Ω be the class of all analytic, convex and univalent functions h(z) in the open unit disk
satisfying h(0)= 1 and

ℜ {h(z)}> 0, |z| < 1. (1.11)

For two functions f , g ∈Ω, we say that f is subordinate to g or g is superordinate to f in U and
write f ≺ g, z ∈U, if there exist a Schwarz function ω, analytic in U with ω(0)= 0 and |w(z)| ≤ 1
when z ∈U such that f (z)= g(ω(z)), z ∈U. Furthermore, if the function g is univalent in U, then
we have following equivalence:

f (z)≺ g (z)⇐⇒ f (0)= g (0) and f (U)⊂ g (U) , (z ∈U) .

Let Pn(ρ) be the class of functions p(z) analytic in U∗ satisfying the properties p(0)= 1 and∫ 2π

0

∣∣∣∣ℜ
(
p(z)

)−ρ
1−ρ

∣∣∣∣dθ ≤ nπ, (1.12)

where z = reiθ , n ≥ 2 and 0 ≤ ρ < 1. This class has been introduced in [11]. We note that
Pn (0) = Pn [13] and P2(ρ) = P(ρ) [10], the class of analytic functions with positive real part
greater than ρ and P2(0)= P , the class of functions with positive real part. From (1.12) we can
write p ∈ Pn(ρ) as

p (z)=
(

n
4
+ 1

2

)
p1 (z)+

(
1
2
− n

4

)
p2 (z) , (1.13)

where pi (z) ∈ P(ρ), i = 1,2 and z ∈U∗.

Making use of the operator DkL∗(α,β) f (z), we introduce some new classes of meromorphic
functions in the punctured unit disk U∗.
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Definition 1.1. Let f ∈∑
. Then f ∈∑∗

n(α,β,k,ρ), if and only if

− (1−α) z2
(
DkL∗ (

α,β
)

f (z)
)′−αz2

(
DkL∗ (

α,β
)

f (z)
)′ ∈ Pn(ρ)

where α> 0, n ≥ 2, 0≤ ρ < 1 and z ∈U∗.

Definition 1.2. Let f ∈∑
. Then f ∈∑

n(α,β,k,ρ), if and only if

(1−α) z
(
DkL∗ (

α,β
)

f (z)
)′−αz

(
DkL∗ (

α,β
)

f (z)
)′ ∈ Pn(ρ)

where α> 0, n ≥ 2, 0≤ ρ < 1 and z ∈U∗.

2. Preliminary Results

Lemma 2.1 ([14]). Let p(z) be analytic in U∗ with p(0)= 1, α be a complex number with ℜ(α)≥ 0
(α 6= 0) be such that

ℜ{
p (z)+αzp′ (z)

}>β (0≤β< 1).

Then

ℜ(
p(z)

)>β+ (1−β)(2γ−1),

where γ is given by

γ= γ (α)=
∫ 1

0

(
1+ tℜ(α)

)−1
dt,

which is an increasing function of ℜ(α) and 1
2 ≤ γ< 1. The estimate is sharp in the sense that the

bound cannot be improved.

Lemma 2.2 ([16]). If p(z) is analytic in U∗, p(0) = 1 and ℜ(
p (z)

) > 1
2 , z ∈ U∗, then for any

function F analytic in U∗, the function p∗F takes values in the convex hull of the image of U∗

under F .

Lemma 2.3 ([12]). Let p(z)= 1+b1z+b2z2 +·· · ∈ P(ρ). Then

ℜ(
p (z)

)≥ 2ρ−1+ 2
(
1−ρ)

1+|z| .

3. Main Results

Theorem 3.1. Let f ∈∑∗
n(α,β,k,ρ). Then

−z2
(
DkL∗ (

α,β
)

f (z)
)′ ∈ Pn

(
ρ1

)
where ρ1 is given by

ρ1 = ρ+
(
1−ρ)(

2γ−1
)
, (3.1)

and

γ=
∫ 1

0

(
1+ tℜ(α)

)−1
dt.
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Proof. Let

−z2
(
DkL∗ (

α,β
)

f (z)
)′ = p (z)=

(
n
4
+ 1

2

)
p1 (z)+

(
1
2
− n

4

)
p2 (z) . (3.2)

Then p(z) is analytic in U∗ with p(0)= 1. Using the identity (1.10) in (3.2) and differentiating
the resulting equation with respect to z, we have

− (1−α) z2
(
DkL∗ (

α,β
)

f (z)
)′−αz2

(
DkL∗ (

α,β
)

f (z)
)′ = [

p (z)+αzp′ (z)
]
.

Since f ∈∑∗
n(α,β,k,ρ), then

{
p (z)+αzp′ (z)

} ∈ Pn(ρ) for z ∈U∗. This implies that

ℜ{
pi (z)+αzp′

i (z)
}> ρ, i = 1,2.

Applying Lemma 2.1, we see that ℜ(
pi (z)

)> ρ1, where ρ1 is given by (3.1). Hence, p ∈ Pn
(
ρ1

)
for z ∈U∗ and the proof is thus complete.

Theorem 3.2. Let f ∈∑∗
n(0,β,k,ρ) for z ∈U∗. Then f ∈∑∗

n(α,β,k,ρ) for |z| <ℜ (α), where

ℜ (α)= 1

|α|+
√

1+|α|2
. (3.3)

Proof. Set

−z2
(
DkL∗ (

α,β
)

f (z)
)′ = (

1−ρ)
h (z)+ρ (h(z) ∈ Pn) .

Using the same technique as in Theorem 3.1, we have

− (1−α) z2
(
DkL∗ (

α,β
)

f (z)
)′−αz2

(
DkL∗ (

α,β
)

f (z)
)′−ρ (3.4)

= (
1−ρ){

h (z)+αzh′ (z)
}

= (
1−ρ)[(

n
4
+ 1

2

){
h1 (z)+αzh′

1 (z)
}+(

1
2
− n

4

){
h2 (z)+αzh′

2 (z)
}]

, (3.5)

where we have used (1.12) and h1 (z) ,h2 (z) ∈ P, z ∈ U∗. Using the following well known
estimate [9]:

∣∣zh′
i (z)

∣∣≤ 2r
1− r2ℜ

(
hi (z)

)
(|z| = r < 1, i = 1,2) ,

we find that

ℜ{
hi (z)+αzh′

i (z)
}≥ℜ{

hi (z)+
∣∣αzh′

i (z)
∣∣}≥ℜ(

hi (z)
){

1− 2|α|r
1− r2

}
.

The right hand side of this inequality is positive if r < ℜ (α), where ℜ (α) is given by (3.3).
Consequently it follows from (3.5) that f ∈∑∗

n(α,β,k,ρ) for |z| <ℜ (α). Sharpness of this result
follows by taking hi (z)= 1+z

1−z in (3.5), i = 1,2.
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Theorem 3.3. Let f ∈∑∗
n(0,β,k,ρ) and let

Fδ ( f (z))= δ

zδ+1

∫ z

0
tδ f (t)dt

(
δ> 0, z ∈U∗)

. (3.6)

Then

−z2
(
DkL∗ (

α,β
)
Fδ ( f (z))

)′ ∈ Pn
(
ρ2

)
where ρ2 is given by

ρ2 = ρ+
(
1−ρ)(

2γ1 −1
)

(3.7)

and

γ1 =
∫ 1

0

(
1+ tℜ

( 1
δ

))−1
dt.

Proof. Setting

−z2
(
DkL∗ (

α,β
)
Fδ ( f (z))

)′ = p (z)=
(

n
4
+ 1

2

)
p1 (z)+

(
1
2
− n

4

)
p2 (z) . (3.8)

Then p(z) is analytic in U∗ with p(0)= 1. Using the following operator identity:

z
(
DkL∗ (

α,β
)
Fδ ( f (z))

)′ = δ(
DkL∗ (

α,β
)
Fδ ( f (z))

)
− (δ+1)

(
DkL∗ (

α,β
)
Fδ ( f (z))

)
(3.9)

in (3.8), and differentiating the resulting equation with respect to z, we find that

−z2
(
DkL∗ (

α,β
)
Fδ ( f (z))

)′ = {
p (z)+ 1

δ
zp′ (z)

}
∈ Pn(ρ).

Using Lemma 2.1, we see that −z2 (
DkL∗ (

α,β
)
Fδ ( f (z))

)′ ∈ Pn
(
ρ2

)
for z ∈U∗, where ρ2 is given

by (3.7).

Hence, the proof is complete.

Theorem 3.4. Let φ(z) ∈∑
satisfy the inequality:

ℜ(
zφ (z)

)> 1
2

, z ∈U∗. (3.10)

If f ∈∑
n(α,β,k,ρ). Then φ∗ f ∈∑

n(α,β,k,ρ).

Proof. Let G =φ∗ f . Then

(1−α) z
(
DkL∗ (

α,β
)
G(z)

)
+αz

(
DkL∗ (

α,β
)
G(z)

)
= (1−α) z

(
DkL∗ (

α,β
)(
φ∗ f

)
(z)

)
+αz

(
DkL∗ (

α,β
)(
φ∗ f

)
(z)

)
= zφ (z)∗h (z)

(
h (z) ∈ Pn(ρ)

)
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where

zφ (z)∗h (z)=
(

n
4
+ 1

2

)[(
1−ρ){

zφ (z)∗h1 (z)+ρ}]
+

(
1
2
− n

4

)[(
1−ρ){

zφ (z)∗h2 (z)+ρ}]
(h1 (z) ,h2 (z) ∈ P) .

Since ℜ(
zφ (z)

)> 1
2 and by using Lemma 2.2, we can conclude that G =φ∗ f ∈∑

n(α,β,k,ρ).

Theorem 3.5. Let φ(z) ∈ ∑
satisfy the inequality (3.10) and f ∈ ∑∗

n(0,β,k,ρ). Then φ∗ f ∈∑∗
n(0,β,k,ρ).

Proof. We have

−z2
(
DkL∗ (

α,β
)(
φ∗ f

)
(z)

)′ =−z2
(
DkL∗ (

α,β
)

f (z)
)′∗ zφ (z) , z ∈U∗.

The rest of the proof of Theorem 3.5 follows by using the same techniques as in the one of
Theorem 3.4.

Theorem 3.6. Let f ∈ ∑
n(α,β,k,ρ3) and g ∈ ∑

n(α,β,k,ρ4). Let also F = f ∗ g. Then
F ∈∑

n(α,β,k,ρ5), where

ρ5 = 1−4
(
1−ρ3

)(
1−ρ4

)1− 1
α

∫ 1

0

u
(

1
(1−α)

)
−1

1+u
du

 . (3.11)

This result is sharp.

Proof. Since f ∈∑
n(α,β,k,ρ3) and g ∈∑

n(α,β,k,ρ4), it follows that

S (z)= (1−α) z
(
DkL∗ (

α,β
)

f (z)
)
+αz

(
DkL∗ (

α,β
)

f (z)
)
∈ Pn

(
ρ3

)
and

S∗ (z)= (1−α) z
(
DkL∗ (

α,β
)

g(z)
)
+αz

(
DkL∗ (

α,β
)

g(z)
)
∈ Pn

(
ρ4

)
.

Using identity (1.10) in the above equations, we get

DkL∗ (
α,β

)
f (z)= 1

α
z−1− 1

α

∫ z

0
t

1
α−1S (t)dt (3.12)

and

DkL∗ (
α,β

)
g(z)= 1

α
z−1− 1

α

∫ z

0
t

1
α−1S∗ (t)dt. (3.13)

Combining (3.12) and (3.13), we obtain

DkL∗ (
α,β

)
F(z)= 1

α
z−1− 1

α

∫ z

0
t

1
α−1Q (t)dt, (3.14)
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where

Q(z)=
(

n
4
+ 1

2

)
q1 (z)+

(
1
2
− n

4

)
q2 (z)

= 1
α

z−1− 1
α

∫ z

0
t

1
α−1 (

S (t)∗S∗ (t)
)
dt. (3.15)

Now

S(z)=
(

n
4
+ 1

2

)
s1 (z)+

(
1
2
− n

4

)
s2 (z) , (3.16)

S∗(z)=
(

n
4
+ 1

2

)
s∗1 (z)+

(
1
2
− n

4

)
s∗2 (z) (3.17)

where si ∈ P
(
ρ3

)
and s∗i ∈ P

(
ρ4

)
, i = 1,2. Since

P∗
i (z)= s∗i (z)−ρ4

2
(
1−ρ4

) + 1
2
∈ P

(
1
2

)
, i = 1,2

we obtain
(
si ∗ s∗i

)
(z) ∈ P

(
ρ3

)
using the Herglotz formula. Thus(

si ∗ s∗i
)
(z) ∈ P

(
ρ5

)
with

ρ5 = 1−2
(
1−ρ3

)(
1−ρ4

)
. (3.18)

Using (3.14), (3.15), (3.17), (3.18) and Lemma 2.3, we have

ℜ(
qi(z)

)= 1
α

∫ 1

0
u

1
α−1ℜ{(

si ∗ s∗i
)
(uz)

}
du

≥ 1
α

∫ 1

0
u

1
α−1

(
2ρ5 −1+ 2

(
1−ρ5

)
1+u |z|

)
du

≥ 1
α

∫ 1

0
u

1
α−1

(
2ρ5 −1+ 2

(
1−ρ5

)
1+u

)
du

= 1−4
(
1−ρ3

)(
1−ρ4

)1− 1
α

∫ 1

0

u
(

1
(1−α)

)
−1

1+u
du

 .

From this, we conclude that F ∈∑
n(α,β,k,ρ5) where ρ5 is given by (3.11).

Now, let us consider

S(z)=
(

n
4
+ 1

2

) 1+ (
1−ρ3

)
z

1− z
+

(
1
2
− n

4

) 1− (
1−ρ3

)
z

1+ z

and

S∗(z)=
(

n
4
+ 1

2

) 1+ (
1−ρ4

)
z

1− z
+

(
1
2
− n

4

) 1− (
1−ρ4

)
z

1+ z
.
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Since (1+ (
1−ρ3

)
z

1− z

)
∗

(1+ (
1−ρ4

)
z

1− z

)
= 1−4

(
1−ρ3

)(
1−ρ4

)+ 4
(
1−ρ3

)(
1−ρ4

)
1− z

,

it follows from (3.15) that

qi(z)= 1
α

∫ 1

0
u

1
α−1

{
1−4

(
1−ρ3

)(
1−ρ4

)+ 4
(
1−ρ3

)(
1−ρ4

)
1− z

}
du

→ 1−4
(
1−ρ3

)(
1−ρ4

)1− 1
α

∫ 1

0

u
(

1
(1−α)

)
−1

1+u
du


as z →−1. This completes the proof of the sharpness of the result.

4. Concluding Remarks and Observations

In our present investigation, we have successfully applied a linear operator which is associated
with the gaussian hypergeometric function. By means of this general linear operator, we
have introduced and investigated various interesting properties of some new subclasses of
meromorphically univalent functions in the punctured unit disk U∗.
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