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Abstract. In this paper, we study the approximate analytical solutions of homogeneous and non-
homogeneous linear PDEs with boundary conditions by using the Laplace Differential Transform
method (LDTM). For this purpose, we consider three illustrations with one Dirichlet and two Neumann
boundary conditions and obtain the corresponding approximate analytical solutions. This method is
capable of greatly reducing the size of computational domain and a few numbers of iterations are
required to reach the closed form solutions as series expansions of some known functions.
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1. Introduction

Many important phenomena and dynamic processes in scientific and engineering applications
are governed by partial differential equations. The study of partial differential equations
plays an important role in solid state physics, mathematics, fluid dynamics and chemistry etc.
There are two types of these equations, the homogeneous equations and the non-homogeneous
equations. For the treatment of these types of equations, various methods have been developed
and the DTM is one of them. The DTM is the semi-analytical numerical method for solving
partial differential equations. In 1986, J. K. Zhou was the first one to use the DTM in engineering
applications with linear and nonlinear initial value problems in electric circuit analysis. Hassan
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(2002) has given the different applications of differential transformation in differential equations.
Ayaz (2004) has investigated applications of DTM to solve differential-algebraic equations.
Bildik and Konuralp (2006) have used the Variational iteration method, DTM and Adomian
decomposition method for solving different types of non-linear PDEs. Arikoglu and Ozkol (2007)
have performed DTM to solve the fractional differential equations. Erturk (2007) has solved
linear sixth-order boundary value problems by using DTM. Hassan and Erturk (2009) have
given the higher order boundary value problems and discussed the higher order series solution
for linear and non-linear differential equations.

Keskin and Oturanc (2010) performed RDTM for solving gas dynamics equation and showed
to effectiveness and accuracy of the proposed method. Khan et al. (2010) have studied Laplace
decomposition method to obtain the approximate solution of non-linear coupled PDEs and found
that the Laplace decomposition method and Adomian decomposition method both can be used
alternatively for the solution of higher order initial value problems. Gupta (2011) has introduced
the Reduced differential transform method (RDTM) and homotopy perturbation method to find
the approximate analytical solutions of fractional Benney-Lin equation. Madani et al. (2011)
have developed a new method Laplace homotopy perturbation method which is combination
of Laplace transform method and the Homotopy perturbation method being applied to solve
one-dimensional non-homogeneous PDEs with variable coefficients. Alquran et al. (2012) have
proposed the coupling of the Laplace transform method and the differential transform method
for solving linear non-homogeneous partial differential equations with variable co-efficient.
Mishra and Nagar (2012) have applied a combination of LTM with Homotopy perturbation
method which is called He-Laplace method for solving linear and non-linear PDEs and found
that the technique is capable to reduce the volume of computational work as compared to
Adomian polynomials.

In this paper, we apply Laplace-Differential Transform Method for solving linear partial
differential equations with boundary conditions on some examples and the results obtained by it
are compared with exact solution. We make comparison between the LDTM and exact solutions
and find that the proposed method shows its reasonability, reliability, validity and potential
for the solution of homogeneous, non-homogeneous linear PDEs in sciences and engineering
applications.

2. Differential Transformation Method

The one variable differential transform [6] of a function u(x, t), is defined as:

Uk(t)= 1
k!

[
∂ku(x, t)
∂xk

]
x=x0

; k ≥ 0 (2.1)

where u(x, t) is the original function and Uk(t) is the transformed function. The inverse
differential transform of Uk(t) is defined as:

u(x, t)=
∞∑

k=0
Uk(t)(x− x0)k, (2.2)

Journal of Informatics and Mathematical Sciences, Vol. 7, No. 2, pp. 99–108, 2015



Approximate Analytical Solution of Liner Boundary Value . . . : K. Kumari, G. Shanker and P. K. Gupta 101

where x0 is the initial point for the given initial condition. Then the function u(x, t) can be
written as

u(x, t)=
∞∑

k=0
Uk(t)xk. (2.3)

3. Algorithm of LDTM

To illustrate the basic idea of Laplace differential transform method [1], we consider the general
form of inhomogeneous PDEs with variable or constant coefficients

L [u(x, t)]+R[u(x, t)]= f (x, t); x ∈ IR, t ∈ IR+, (3.1)

subject to the initial conditions

u(x,0)= g1(x), ut(x,0)= g2(x), (3.2)

and the Dirichlet boundary conditions

u(0, t)= h1(t), u(1, t)= h2(t), (3.3)

or the Neumann boundary conditions

u(0, t)= h1(t), ux(1, t)= h3(t), (3.4)

where L [·] is linear operator with respect to ‘t’, R[·] is remaining operator and f is a known
analytical function.

First, we take the Laplace transform on both sides of equation (3.1), with respect to ‘t’, and
we get

L [L [u(x, t)]]+L [R [u(x, t)]]= L [ f (x, t)] . (3.5)

By using initial conditions from equation (3.2), we get

ū(x, s)+L [R [u(x, t)]]= [
f̄ (x, s)

]
, (3.6)

where ū(x, s) and f̄ (x, s) are the Laplace transform on u(x, t) and f (x, t) respectively.

Afterwards, we apply differential transform method on the equation (3.6) with respect to ‘x’,
and we get

Ūk(s)+L [R [Uk(t)]]= [
F̄k(s)

]
, (3.7)

where Ūk(s) and F̄k(s) are the differential transform of ū(x, s) and f̄ (x, s) respectively.

In the next step, we apply inverse Laplace transform on both sides of the equation (3.7) with
respect to ‘s’, and then we get

L−1 [
Ūk(s)

]+L−1L [R [Uk(t)]]= L−1 [
F̄k(s)

]
,
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or

Uk(t)+ [R [Uk(t)]]= [Fk(t)] . (3.8)

Now, apply the differential transform method on the given Dirihlet and Neumann boundary
conditions (3.3) and (3.4), we get

U0(t)= h1(t). (3.9)

Let us assume

U1(t)= aq(t). (3.10)

By the definition of DTM, we take

u(1, t)=
∞∑

i=0
Ui(t), ux(1, t)=

∞∑
i=0

iUi(t). (3.11)

By equation (3.11), we calculate the value of a. Now by the equation (3.9) and the equation
(3.10)in (3.8), the closed form series solution can be written as

u(x, t)=
∞∑

k=0
U(k, t)xk . (3.12)

4. Illustrative Examples

To illustrate the applicability of LDTM, we have applied it to linear or non-linear PDEs which
are homogeneous as well as non-homogeneous.

Example 4.1. The homogeneous linear PDE is:

∂2u
∂t2 − ∂

2u
∂x2 +u = 0, (4.1)

subject to the initial conditions

u(x,0)= e−x + x, ut(x,0)= 0, (4.2)

and the Dirichlet boundary conditions

u(0, t)= 1, u(1, t)= 1
e
+cos(t) . (4.3)

The exact solution can be expressed as:

u(x,0)= e−x + xcos(t).

In this technique, first we apply the Laplace transformation on equation (4.1) with respect to ‘t’,
therefore, we get

s2L [u(x, t)]− su(x,0)−ut(x,0)= L
[
∂2u
∂x2 −u

]
.
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(a) (b)

Figure 1. The behavior of the (a) Exact solution, (b) LDTM solution, with respect to ‘x’ and ‘t’, for
Example 4.1.

By using initial conditions from equation (4.2), we get

L [u(x, t)]= e−x + x
s

+ 1
s2 L

[
∂2u
∂x2 −u

]
.

Now we applying the Inverse Laplace transformation with respect to ‘s’ on both sides:

u(x, t)= e−x + x+L−1
[

1
s2 L

[
∂2u
∂x2 −u

]]
. (4.4)

The next step is applying the Differential transformation method on equations (4.3) and (4.4)
with respect to space variable ‘x’, we get

Uk(t)= (−1)k

k!
+δ(k−1, t)+L−1

[
1
s2 L [(k+2)(k+1)Uk+2(t)−Uk(t)]

]
(4.5)

or

U0(t)= 1 . (4.6)

Let us assume

U1(t)= acos(t) . (4.7)

Substituting (4.6) and (4.7) into (4.5) and by straightforward iterative steps, we obtain

U2(t)= 1
2

, U3(t)= 0, U4(t)= 1
24

, . . . . (4.8)

Now, by equation (3.11) we get

a = 24−37e+24ecos(t)
24ecos(t)

.
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Now putting the value of a in equation (4.7), and we Uk(t), k ≥ 0 get the component of the DTM
can be obtained. When we substitute all values of Uk(t) from equations (4.6), (4.7) and (4.8) into
equation (3.12), then the series solution can be formed as

u(x, t)= 1+ x(24−37e+24ecos(t))
24e

+ x2

2
+ x4

24
+ . . . .

Example 4.2. The homogeneous linear PDE is:

∂u
∂t

+ ∂u
∂x

− ∂
2u
∂x2 = 0, (4.9)

subject to the initial conditions

u(x,0)= ex − x, (4.10)

and the Neumann boundary conditions

u(0, t)= 1+ t, ux(1, t)= e−1. (4.11)

The exact solution can be expressed as:

u(x,0)= ex − x+ t.

In this technique, first we apply the Laplace transformation on equation (4.9) with respect to ‘t’,
therefore, we get

sL [u(x, t)]−u(x,0)= L
[
∂2u
∂x2 − ∂u

∂x

]
.

By using initial conditions from equation (4.10), we get

L [u(x, t)]= ex − x
s

+ 1
s

L
[
∂2u
∂x2 − ∂u

∂x

]
.

Now we applying the Inverse Laplace transformation with respect to ‘s’ on both sides:

u(x, t)= ex − x+L−1
[

1
s

L
[
∂2u
∂x2 − ∂u

∂x

]]
. (4.12)

The next step is applying the Differential transformation method on equations (4.11) and (4.12)
with respect to space variable ‘x’, we get

Uk(t)= 1
k!

−δ(k−1, t)+L−1
[

1
s

L [(k+2)(k+1)Uk+2(t)− (k−1)Uk−1(t)]
]

(4.13)

or

U0(t)= 1+ t. (4.14)
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Let us assume

U1(t)= at4. (4.15)

Substituting (4.14) and (4.15) into (4.13) and by straightforward iterative steps, we obtain

U2(t)= 1+at4

2
, U3(t)= 1+4at3 +at4

3!
, U4(t)= 1+12at2 +12at3 +at4

5!
, . . . . (4.16)

Now, by equation (3.11) we get

a = −65+24e
t2(12+92t+65t2)

.

Now putting the value of a in equation (4.15), and we Uk(t), k ≥ 0 get the component of the
DTM can be obtained. When we substitute all values of Uk(t) from equations (4.14), (4.15) and
(4.16) into equation (3.12), then the series solution can be formed as

u(x, t)= 1+ t+ (−65+24e)t2x
12+92t+65t2 + 1

2

(
1+ (−65+24e)t2

12+92t+65t2

)
x2

+ 1
6

(
1+ 4(−65+24e)t

12+92t+65t2 + (−65+24e)t2

12+92t+65t2

)
x3

+ 1
12

(
2(−65+24e)t
12+92t+65t2 + 1

2

(
1+ 4(−65+24e)t

12+92t+65t2 + (−65+24e)t2

12+92t+65t2

))
x4 + . . . .

(a) (b)

Figure 2. The behavior of the (a) Exact solution, (b) LDTM solution, with respect to ‘x’ and ‘t’, for
Example 4.2.

Example 4.3. The non-homogeneous linear PDE is:

∂u
∂t

+ x
∂u
∂x

+ ∂
2u
∂x2 = 2t+2x2 +2, (4.17)
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subject to the initial conditions

u(x,0)= x2, (4.18)

and the Neumann boundary conditions

u(0, t)= t2, ux(1, t)= 2. (4.19)

The exact solution can be expressed as:

u(x,0)= x2 + t2.

In this technique, first we apply the Laplace transformation on equation (4.17) with respect to
‘t’, therefore, we get

sL [u(x, t)]−u(x,0)= 2
s2 + 2x2 +2

s
−L

[
x
∂u
∂x

+ ∂
2u
∂x2

]
.

By using initial conditions from equation (4.18), we get

L [u(x, t)]= x2

s
+ 2

s3 + 2x2 +2
s2 − 1

s
L

[
x
∂u
∂x

+ ∂
2u
∂x2

]
.

Now we applying the Inverse Laplace transformation with respect to ‘s’ on both sides:

u(x, t)= x2 + t2 + (2x2 +2)t−L−1
[

1
s

L
[

x
∂u
∂x

+ ∂
2u
∂x2

]]
. (4.20)

The next step is applying the Differential transformation method on equations (4.19) and (4.20)
with respect to space variable ‘x’, we get

Uk(t)= (1+2t)δ(k−2, t)+ (t2 +2t)δ(k, t)

−L−1

[
1
s

L

[
k∑

r=0
δ(k− r−1, t)(r+1)Ur+1(t)+ (k+2)(k+1)Uk+2(t)

]]
; (4.21)

or

U0(t)= t2. (4.22)

Let us assume

U1(t)= at. (4.23)

Substituting (4.22) and (4.23) into (4.21) and by straightforward iterative steps, we obtain

U2(t)= 1, U3(t)= −(a+at)
3!

, U4(t)= 0, . . . . (4.24)

Now, by equation (3.11) we get

a = 0.

Now putting the value of a in equation (4.23), and we Uk(t), k ≥ 0 get the component of the
DTM can be obtained. When we substitute all values of Uk(t) from equations (4.22), (4.23) and
(4.24) into equation (3.12), then the series solution can be formed as

u(x, t)= x2 + t2

which is the exact solution.
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(a) (b)

Figure 3. The behavior of the (a) Exact solution, (b) LDTM solution, with respect to ‘x’ and ‘t’, for
Example 4.3.

5. Conclusion

In this paper, the LDTM has been successfully applied to find the exact solution of homogeneous
and non-homogeneous linear PDEs with boundary conditions. The aim of this paper is to
describe that the LDTM gives approximate analytical solution of PDEs and it is more closer to
exact solution. The proposed method requires less computational work compared with the DTM.
The LDTM solution can be calculated easily in short time and the graphs were performed by
using Mathematica 8.
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