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1. Introduction
Ricci soliton is a special solution to the Ricci flow introduced by Hamilton [4] in the year
1982. In [8], Ramesh Sharma initiated the study of Ricci solitons in contact Riemannian
geometry. Later, Mukut Mani Tripathi [9], Nagaraja et al. [6] and others extensively studied
Ricci solitons in contact metric manifolds. Ricci soliton in a Riemannian manifold (M, g) is
a natural generalization of an Einstein metric and is defined as a triple (g,V,λ) with g a
Riemannian metric, V a vector field and λ a real scalar such that

(LV g)(X ,Y )+2S(X ,Y )+2λg(X ,Y )= 0, (1.1)

where S is the Ricci tensor of M and LV denote the Lie derivative operator along the vector
field V. The Ricci soliton is said to be shrinking, steady and expanding accordingly as λ is
negative, zero and positive respectively.

In 1972, Kenmotsu [5] studied a class of contact Riemannian manifolds satisfying some
special conditions and these manifolds are known as Kenmotsu manifolds. The authors in [6]
have studied Ricci solitons in Kenmotsu manifolds under semi-symmetry conditions. In this
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paper, we study the conditions which characterise Ricci solitons in Kenmotsu manifolds.
Section 2 contains a brief review of Kenmotsu manifolds and Ricci solitons. In sections 3 – 6,
we prove the characterizing conditions for Ricci solitons in φ-recurrent, pseudo-projective
φ-recurrent, concircular φ-recurrent and Ricci recurrent Kenmotsu manifolds.

2. Preliminaries
A (2n+1)-dimensional smooth manifold M is said to be an almost contact metric manifold if it
admits an almost contact metric structure (φ,ξ,η, g) consisting of a tensor field φ of type (1,1),
a vector field ξ, a 1-form η and a Riemannian metric g compatible with (φ,ξ,η) satisfying

φ2X =−X +η(X )ξ, φξ= 0, g(X ,ξ)= η(X ), η(ξ)= 1, η◦φ= 0, (2.1)

and

g(φX ,φY )= g(X ,Y )−η(X )η(Y ). (2.2)

An almost contact metric manifold is said to be a Kenmotsu manifold [5] if

(∇Xφ)Y =−g(X ,φY )ξ−η(Y )φX , (2.3)

∇Xξ= X −η(X )ξ, (2.4)

where ∇ denotes the Riemannian connection of g.
In a Kenmotsu manifold the following relations hold [1].

η(R(X ,Y )Z)= g(X , Z)η(Y )− g(Y , Z)η(X ), (2.5)

R(X ,Y )ξ= η(X )Y −η(Y )X , (2.6)

R(X ,ξ)Y = g(X ,Y )ξ−η(Y )X , (2.7)

where R is the Riemannian curvature tensor.

S(X ,ξ)=−2nη(X ), (2.8)

S(φX ,φY )= S(X ,Y )+2nη(X )η(Y ), (2.9)

(∇Xη)Y = g(X ,Y )−η(X )η(Y ). (2.10)

Let (g,V,λ) be a Ricci soliton in a Kenmotsu manifold M .
Taking V = ξ then from (2.4) and (1.1), we have

S(X ,Y )=−(λ+1)g(X ,Y )+η(X )η(Y ). (2.11)

The above equation yields

QX =−(λ+1)X +η(X )ξ, (2.12)

S(X ,ξ)=−λη(X ), (2.13)

r =−λ(2n+1)−2n. (2.14)

Journal of Informatics and Mathematical Sciences, Vol. 8, No. 1, pp. 29–36, 2016



Ricci Solitons in Kenmotsu Manifold: H.G. Nagaraja and Venu K. 31

Also by definition of covariant derivative, we have

(∇W S)(Y ,ξ)=∇W S(Y ,ξ)−S(∇WY ,ξ)−S(Y ,∇Wξ). (2.15)

We will use the following result later.

Lemma 2.1 ([3]). In a φ-recurrent Kenmotsu manifold (M2n+1, g), the characteristic vector field
ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by

A(W)= η(ρ)η(W). (2.16)

Replacing W by ξ in (2.16), it follows that

A(ξ)= η(ρ). (2.17)

3. Ricci-recurrent Kenmotsu Manifold
Definition 3.1. A Kenmotsu manifold is said to be Ricci-recurrent manifold if there exists a
non-zero 1-form A such that

(∇W S)(Y , Z)= A(W)S(Y , Z). (3.1)

Replacing Z by ξ in (3.1) and using (2.8), we have

(∇W S)(Y ,ξ)=−2nA(W)η(Y ). (3.2)

Using (2.8) and (2.4) in (2.15), we obtain

(∇W S)(Y ,ξ)=−[S(Y ,W)+2ng(Y ,W)]. (3.3)

In view of (3.2) and (3.3), we have

S(Y ,W)=−2ng(Y ,W)+2nA(W)η(Y ). (3.4)

Taking Y = ξ in (3.4), we get

S(ξ,W)=−2nη(W)+2nA(W). (3.5)

Applying Lemma 2.1, (3.5) reduces to

S(ξ,W)=−2nη(W)[1−η(ρ)]. (3.6)

Using (2.13) and (2.17) in (3.6), we obtain

λ= 2n[1− A(ξ)]. (3.7)

Theorem 3.1. Ricci soliton in Ricci-recurrent Kenmotsu manifold (M, g) with the 1-form A is

• expanding if A(ξ)< 1,

• steady if A(ξ)= 1,

• shrinking if A(ξ)> 1.
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4. φ-recurrent Kenmotsu Manifolds
Definition 4.1. A Kenmotsu manifold is said to be φ-recurrent manifold [3] if there exists a
non-zero 1-form A such that

φ2((∇W R)(X ,Y )Z)= A(W)R(X ,Y )Z, (4.1)

for arbitrary vector fields X ,Y , Z,W .

Let us consider a φ-recurrent Kenmotsu manifold. By virtue of (2.1) and (4.1), we have

−(∇W R)(X ,Y )Z+η((∇W R)(X ,Y )Z)ξ= A(W)R(X ,Y )Z. (4.2)

Contracting (4.2) with U , we obtain

−g((∇W R)(X ,Y )Z,U)+η((∇W R)(X ,Y )Z)η(U)= A(W)g(R(X ,Y )Z,U). (4.3)

Let e i (i = 1,2, . . . ,2n+1), be an orthonormal basis of the tangent space at any point of the
manifold. Taking X =U = e i in (4.3) and taking summation over i, 1≤ i ≤ 2n+1, we get

−(∇W S)(Y , Z)= A(W)S(Y , Z). (4.4)

Replacing Z by ξ in (4.4) and using (2.8), we have

−(∇W S)(Y ,ξ)=−2nA(W)η(Y ). (4.5)

Using (2.8) and (2.4) in (2.15), we obtain

(∇W S)(Y ,ξ)=−[S(Y ,W)+2ng(Y ,W)]. (4.6)

In view of (4.5) and (4.6), we have

S(Y ,W)=−2ng(Y ,W)−2nA(W)η(Y ). (4.7)

Taking Y = ξ in (4.7), we get

S(ξ,W)=−2nη(W)−2nA(W). (4.8)

Applying Lemma 2.1, (4.8) reduces to

S(ξ,W)=−2nη(W)[1−η(ρ)]. (4.9)

Using (2.13) and (2.17) in (4.9), we obtain

λ= 2n[1− A(ξ)]. (4.10)

Theorem 4.1. Ricci soliton in φ-recurrent Kenmotsu manifold (M, g) with the 1-form A is

• expanding if A(ξ)< 1,

• steady if A(ξ)= 1,

• shrinking if A(ξ)> 1.
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5. Pseudo-projective φ-recurrent Kenmotsu Manifold

In a Kenmotsu manifold M , the pseudo-projective curvature tensor P is given by [7]

P(X ,Y )Z = aR(X ,Y )Z+b[S(Y , Z)X −S(X , Z)Y ]− r
2n+1

( a
2n

+b
)
[g(Y , Z)X − g(X , Z)Y ]

where a and b are constants such that a,b 6= 0.

Definition 5.1. A Kenmotsu manifold is said to be pseudo-projective φ-recurrent manifold if
there exists a non-zero 1-form A such that

φ2((∇W P)(X ,Y )Z)= A(W)P(X ,Y )Z, (5.1)

for arbitrary vector fields X ,Y , Z,W .

Let us consider a pseudo-projective φ-recurrent Kenmotsu manifold. By virtue of (2.1) and
(5.1), we have

−(∇W P)(X ,Y )Z+η((∇W P)(X ,Y )Z)ξ= A(W)P(X ,Y )Z. (5.2)

Contracting (5.2) with U , we obtain

−g((∇W P)(X ,Y )Z,U)+η((∇W P)(X ,Y )Z)η(U)= A(W)g(P(X ,Y )Z,U). (5.3)

Let e i (i = 1,2, . . . ,2n+1), be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X =U = e i in (5.3) and taking summation over i, 1≤ i ≤ 2n+1, we get

(∇W S)(Y , Z)= A(W)
{

S(Y , Z)− r
(2n+1)

g(Y , Z)
}

. (5.4)

Replacing Z by ξ in (5.4) and using (2.1) and (2.8), we have

(∇W S)(Y ,ξ)= A(W)
{

2n+ r
(2n+1)

}
η(Y ). (5.5)

Using (2.8) and (2.4) in (2.15), we obtain

(∇W S)(Y ,ξ)=−[S(Y ,W)+2ng(Y ,W)]. (5.6)

In view of (5.5) and (5.6), we have

S(Y ,W)=−2ng(Y ,W)−
{

2n+ r
(2n+1)

}
A(W)η(Y ). (5.7)

Taking Y = ξ in (5.7), we get

S(ξ,W)=−2nη(W)−
{

2n+ r
(2n+1)

}
A(W). (5.8)

Applying Lemma 2.1, (5.8) reduces to

S(ξ,W)=−2nη(W)−
{

2n+ r
(2n+1)

}
η(ρ)η(W). (5.9)

Using (2.13), (2.14) and (2.17) in (5.9), we obtain

λ= 2n(2n[1+ A(ξ)]+1)
(2n+1)[1+ A(ξ)]

. (5.10)

Theorem 5.1. Ricci soliton in a pseudo-projective φ-recurrent Kenmotsu manifold (M, g) with
1-form A is expanding, provided A(ξ) is non-negative.
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6. Concircular φ-recurrent Kenmotsu Manifold
The Concircular curvature tensor of (M, g) is given by [10]

C(X ,Y )Z = R(X ,Y )Z− r
2n(2n+1)

[g(Y , Z)X − g(X , Z)Y ].

Definition 6.1. A Kenmotsu manifold is said to be concircular φ-recurrent manifold if there
exist a non-zero 1-form A such that

φ2((∇WC)(X ,Y )Z)= A(W)C(X ,Y )Z. (6.1)

for arbitrary vector fields X ,Y , Z,W .

Let us consider a concircular φ-recurrent Kenmotsu manifold. By virtue of (2.1) and (6.1),
we have

−(∇WC)(X ,Y )Z+η((∇WC)(X ,Y )Z)ξ= A(W)C(X ,Y )Z. (6.2)

Contracting (6.2) with U , we obtain

−g((∇WC)(X ,Y )Z,U)+η((∇WC)(X ,Y )Z)η(U)= A(W)g(C(X ,Y )Z,U). (6.3)

Let e i (i = 1,2, . . . ,2n+1), be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X =U = e i in (6.3) and taking summation over i, 1≤ i ≤ 2n+1, we get

(∇W S)(Y , Z)= dr(W)
2n+1

g(Y , Z)− A(W)
{
S(Y , Z)− r

2n+1
g(Y , Z)

}
. (6.4)

Replacing Z by ξ in (6.4) and using (2.1) and (2.8), we have

(∇W S)(Y ,ξ)= dr(W)
2n+1

η(Y )+ A(W)
{
2nη(Y )+ r

2n+1
η(Y )

}
. (6.5)

For a constant r (6.5) reduces to

(∇W S)(Y ,ξ)= A(W)η(Y )
{
2n+ r

2n+1

}
. (6.6)

Using (2.8) and (2.4) in (2.15), we obtain

(∇W S)(Y ,ξ)=−[S(Y ,W)+2ng(Y ,W)]. (6.7)

In view of (6.6) and (6.7), we have

S(Y ,W)=−
{
2n+ r

2n+1

}
A(W)η(Y )−2ng(Y ,W). (6.8)

Taking Y = ξ, a characteristic vector field in (6.8), we get

S(ξ,W)=−2nη(W)−
{

2n+ r
(2n+1)

}
A(W). (6.9)

Applying Lemma 2.1, (6.9) reduces to

S(ξ,W)=−2nη(W)−
{

2n+ r
(2n+1)

}
η(ρ)η(W). (6.10)

Using (2.13), (2.14) and (2.17) in (6.10), we obtain

λ= 2n(2n[1+ A(ξ)]+1)
(2n+1)[1+ A(ξ)]

. (6.11)
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Theorem 6.1. Ricci soliton in a Concircular φ-recurrent Kenmotsu manifold M with 1-form A
and constant scalar curvature r is expanding for non-negative A(ξ).

Summary of the results proved can be put in the following table:

S. No. Curvature tensor Condition λ

1 Ricci curvature tensor (∇W S)(Y , Z)= A(W)S(Y , Z) 2n[1− A(ξ)]

2 Riemann curvature tensor φ2((∇W R)(X ,Y )Z)= A(W)R(X ,Y )Z 2n[1− A(ξ)]

3 Pseudo-projective curvature tensor φ2((∇W P)(X ,Y )Z)= A(W)P(X ,Y )Z 2n(2n(1+A(ξ))+1)
(2n+1)(1+A(ξ))

4 Concircular curvature tensor φ2((∇W C)(X ,Y )Z)= A(W)C(X ,Y )Z 2n(2n[1+A(ξ)]+1)
(2n+1)(1+A(ξ))

7. Conclusion
Ricci solitons in Ricci recurrent, φ-recurrent, pseudo-projective φ-recurrent and concircular
φ-recurrent. Kenmotsu manifolds have been classified into expanding, shrinking and steady
based on the nature of one form associated with the curvature conditions. This study may be
extended to η-Ricci solitons in real hypersurfaces of complex space forms.
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