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General KKM Theorems for Abstract Convex Spaces

Sehie Park

Abstract. A general KKM type theorem for abstract convex spaces is obtained.
This is applied to G-convex spaces and φA-spaces. Further comments on related
works are given.

1. Introduction

Many problems in nonlinear analysis can be solved by showing the
nonemptyness of the intersection of certain family of subsets of an underlying
set. Each point of the intersection can be a fixed point, a coincidence point, an
equilibrium point, a saddle point, an optimal point, or others of the corresponding
equilibrium problem under consideration. One of the remarkable results on
the nonempty intersection is the celebrated Knaster-Kuratowski-Mazurkiewicz
theorem (simply, the KKM theorem) in 1929 [1], which is concerned with certain
types of multimaps later called the KKM maps.

The KKM theory, first named by the author [2], is the study of applications of
equivalent formulations or generalizations of the KKM theorem. At the beginning,
the theory was mainly devoted by Ky Fan to the study on convex subsets of
topological vector spaces; see [3]. Later, it has been extended to convex spaces by
Lassonde [4], and to C-spaces (or H-spaces) by Horvath [5, 6], and others. In the
last decade, the KKM theory is extended to generalized convex (G-convex) spaces
in a sequence of papers of the author; for details, see [7]-[15] and references
therein.

Since 2006, we have introduced the new concepts of abstract convex spaces
and KKM spaces which are adequate to establish the KKM theory. With such new
concepts, we could generalize and simplify known results in the theory on convex
spaces, H-spaces, G-convex spaces, and others; see [16]-[25]. Moreover, in 2007,
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we found that most of variants of G-convex spaces can be subsumed in the concept
of φA-spaces (X , D; {φA}A∈〈D〉) and made into G-convex spaces; see [25]-[30]. We
also found that most of the so-called generalized KKM maps are simply KKM maps
on G-convex spaces or abstract convex spaces; see [28]. Such contents of the KKM
theory have numerous applications on various fields, especially, on fixed point
theory [14]-[24].

In the present paper, we review some known facts for abstract convex spaces
and obtain a new KKM type theorem. This includes a large number of particular
cases for the classes of G-convex spaces and φA-spaces. Finally, further comments
on the contents of the recent work [31] are given.

2. Abstract convex spaces

For the abstract convex spaces and KKM spaces, the reader may consult with
our previous work [16]-[25].

Definition 2.1. An abstract convex space (E, D;Γ) consists of a topological space E,
a nonempty set D, and a multimap Γ : 〈D〉 → 2E with nonempty values ΓA := Γ(A)
for A∈ 〈D〉, where 〈D〉 is the set of all nonempty finite subsets of D.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined by

coΓD′ :=
⋃
{ΓA | A∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E, D;Γ) relative to D′ if for any
N ∈ 〈D′〉, we have ΓN ⊂ X , that is, coΓD′ ⊂ X .

When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩ D) ⊂ X ; in other
words, X is Γ-convex relative to D′ := X ∩ D. In case E = D, let (E;Γ) := (E, E;Γ).

Definition 2.2. Let (E, D;Γ) be an abstract convex space and Z a topological space.
For a multimap F : E → 2Z with nonempty values, if a multimap G : D → 2Z

satisfies

F(ΓA)⊂ G(A) :=
⋃

y∈A

G(y) for all A∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D → 2E is a KKM
map with respect to the identity map 1E .

A multimap F : E → 2Z is called a KC-map [resp., a KO-map] if, for any
closed-valued [resp., open-valued] KKM map G : D → 2Z with respect to F ,
the family {G(y)}y∈D has the finite intersection property. In this case, we denote
F ∈ KC(E, D, Z) [resp, F ∈ KO(E, D, Z)]. Some authors use KKM instead of KC.

Definition 2.3. The partial KKM principle for an abstract convex space (E, D;Γ)
is the statement 1E ∈ KC(E, D, E); that is, for any closed-valued KKM map
G : D → 2E , the family {G(y)}y∈D has the finite intersection property. The KKM
principle is the statement 1E ∈ KC(E, D, E)∩KO(E, D, E); that is, the same property
also holds for any open-valued KKM map.
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An abstract convex space is called a KKM space if it satisfies the KKM principle.

We have abstract convex subspaces as the following simple observation:

Proposition 2.4 ([19]). For an abstract convex space (E, D;Γ) and a nonempty
subset D′ of D, let X be a Γ-convex subset of E relative to D′ and Γ′ : 〈D′〉 → 2X a
map defined by

Γ′A := ΓA ⊂ X f or A∈ 〈D′〉.
Then (X , D′;Γ′) itself is an abstract convex space called a subspace relative to D′.

We need the following:

Proposition 2.5. Let (E, D;Γ) be an abstract convex space, (X , D′;Γ′) a subspace,
and Z a topological space. If F ∈ KC(E, D, Z), then F |X ∈ KC(X , D′, F(X )).

Proof. Suppose that a closed-valued map G′ : D′→ 2F(X ) satisfies

F |X (Γ′A)⊂ G′(A) for all A∈ 〈D′〉.
Define a map G : D→ 2Z by

G(y) :=

(
G′(y) for y ∈ D′

F(X ) otherwise.

Then
F(ΓA) = F |X (Γ′A)⊂ G′(A) = G(A) for A∈ 〈D′〉; and

F(ΓA)⊂ F(X ) = G(A) for A∈ 〈D〉 \ 〈D′〉.
Since F ∈ KC(E, D, Z) and G has closed values, the family {G(y)}y∈D has the finite
intersection property, and hence so does its subfamily {G′(y)}y∈D′ . Therefore,

F |X ∈ KC(X , D′, F(X )). ¤

Proposition 2.6. Let (E, D;Γ) be an abstract convex space, Z a topological space, and
F : E → 2Z a multimap. Then F ∈ KC(E, D, Z) if and only if for any closed-valued
KKM map G : D→ 2Z , we have F(E)∩

⋂
{G(y) | y ∈ N} 6= ; for each N ∈ 〈D〉.

Proof. For the necessity, since G is a KKM map, for any N ∈ 〈D〉, we have
F(ΓN ) ⊂ F(ΓN ) ∩ G(N) ⊂

⋃
y∈N{F(E) ∩ G(y)}. Since F is a KC-map, the family

{F(E)∩ G(y)}y∈D has the finite intersection property. The sufficiency is clear. ¤

Under an additional requirement, we have the whole intersection property for
the map-values of a KKM map:

Proposition 2.7. Let (E, D;Γ) be an abstract convex space, the identity map 1E ∈
KC(E, D, E) [resp., 1E ∈ KO(E, D, E)], and G : D→ 2E a multimap satisfying

(1) G has closed [resp., open] values;
(2) ΓN ⊂ G(N) for any N ∈ 〈D〉 (that is, G is a KKM map); and
(3)

⋂
z∈M G(z) is compact for some M ∈ 〈D〉.
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Then we have
⋂

y∈D

G(y) 6= ;.

Proof. Since 1E∈KC(E, D, E) [resp., 1E∈KO(E, D, E)], by (1) and (2), {G(y)}y∈D

has the finite intersection property. Now the whole intersection property follows
from the compactness in (3). ¤

Remark 2.8. (a) You may prefer to adopt “compactly" closed [resp., open] values
in (1). This is impractical and superfluous. In fact, replacing the topology of E
by its compactly generated extension, we can eliminate that kind of inadequate
terminology; see [9].

(b) Some authors call G a transfer closed map when
⋂

y∈D G(y) =
⋂

y∈D G(y). In
this case, the conclusion of Proposition 2.7 becomes

⋂
y∈D G(y) 6= ;.

From the partial KKM principle we have the whole intersection property:

Theorem 2.9 ([22]). Let (X , D;Γ) be an abstract convex space satisfying the partial
KKM principle (that is, 1X ∈ KC(X , D, X )), and G : D→ 2X a map such that

(1)
⋂

y∈D G(y) =
⋂

y∈D G(y) [that is, G is transfer closed-valued ];
(2) G is a KKM map; and
(3) there exists a nonempty compact subset K of X such that either

(i) K ⊃
⋂
{G(z) | z ∈ M} for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X relative
to some D′ ⊂ D such that N ⊂ D′ and

K ⊃ LN ∩
⋂
{G(z) | z ∈ D′}.

Then K ∩
⋂
{G(z) | z ∈ D} 6= ;.

This subsumes a very large number of particular forms in the literature and has
a number of equivalent formulations; see [22].

This can be extended to F ∈ KC(X , D, Z) instead of 1X ∈ KC(X , D, X )) as the
following main theorem in this paper shows:

Theorem 2.10. Let (X , D;Γ) be an abstract convex space, Z a topological space,
F ∈ KC(X , D, Z), and G : D→ 2Z a map such that

(1)
⋂

y∈D G(y) =
⋂

y∈D G(y) [that is, G is transfer closed-valued ];
(2) G is a KKM map with respect to F; and
(3) there exists a nonempty compact subset K of Z such that either

(i) K ⊃
⋂
{G(y) | y ∈ M} for some M ∈ 〈D〉; or

(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of X relative to some
D′ ⊂ D such that N ⊂ D′, F(LN ) is compact, and

K ⊃ F(LN )∩
⋂
{G(z) | z ∈ D′}.

Then F(X )∩ K ∩
⋂
{G(y) | y ∈ D} 6= ;.
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Proof. Case (i): Since F(ΓN )⊂ G(N) for each N ∈ 〈D〉 by (2), we have

F(ΓN )⊂ F(X )∩ G(N)⊂ F(X )∩ G(N) =: G′(N),

where G′(y) := F(X ) ∩ G(y) is closed for each y ∈ D. Then, by Proposition 2.6,
{G′(y) | y ∈ D} has the finite intersection property. Since the requirement (i)
implies

F(X )∩ K ⊃ F(X )∩
⋂

y∈M

G(y) =
⋂

y∈M

G′(y),

⋂
y∈M G′(y) is compact. Therefore

⋂
{G′(y) | y ∈ D} 6= ; and hence

F(X )∩ K ∩
⋂

y∈D

G(y) 6= ;.

This is the conclusion in view of (1).

Case (ii): Suppose that

F(X )∩ K ∩
⋂

y∈D

G(y) = F(X )∩ K ∩
⋂

y∈D

G(y) = ;.

Since F(X ) ∩ K is compact, F(X ) ∩ K ⊂
⋃
{Z \ G(y) | y ∈ N} for some N ∈ 〈D〉.

Let LN be the Γ-convex subset of X in (ii). Define G′ : D′ → 2F(LN ) by G′(y) :=
G(y)∩ F(LN ) for y ∈ D′. For each A∈ 〈D′〉, define Γ′A := ΓA∩ LN . Then (LN , D′;Γ′)
is an abstract convex space. Moreover,

(F |LN
)(Γ′A)⊂ F(ΓA)∩ F(LN )⊂ G(A)∩ F(LN ) = G′(A)

for each A ∈ 〈D′〉 by (6.2); and hence G′ : D′ → 2F(LN ) is a KKM map with respect
to F |LN

on the abstract convex space (LN , D′;Γ′) with closed values in F(LN ).
Since F ∈ KC(X , D, Z), by Proposition 2.5, we have F |LN

∈ KC(LN , D′, F(LN )) and

hence, {G′(y) | y ∈ D′} = {G(y) ∩ F(LN ) | y ∈ D′} has the finite intersection
property. Since we assumed that F(LN ) is compact, each G′(y) is compact. Hence⋂
{G′(y) | y ∈ D′} 6= ; and there exists a

z ∈
⋂

y∈D′
G′(y) = F(LN )∩

⋂

y∈D′
G(y)⊂ K

by (ii). Since z ∈ K and z ∈ F(LN ), we have z ∈
⋃
{Z \ G(y) | y ∈ N} by our

assumption. So z /∈ G(y) for some y ∈ N ⊂ D′, and hence z /∈
⋂
{G(y) | y ∈ D′}.

This contradicts z ∈
⋂
{G′(y) | y ∈ D′}. ¤

Remark 2.11. (1) In requirement (ii), F(LN ) is not necessarily compact whenever
we assume

K ⊃ F(LN )∩
⋂

y∈M

G(y) for some M ∈ 〈D′〉.
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(2) Note that Theorem 2.9 subsumes a very large number of particular forms in
the literature and can be reformulated to the equivalent forms of coincidence
theorems, matching theorems, analytic alternatives, minimax inequalities,
geometric and section properties as in [7, 15, 22].

3. G-convex spaces

All results in the preceding section work for G-convex spaces due to the author.
More precisely, in this section, we show that two well-known general KKM type
theorems for G-convex spaces are consequences of Theorem 2.9.

Definition 3.1. A generalized convex space or a G-convex space (X , D;Γ) is an
abstract convex space such that for each A ∈ 〈D〉 with the cardinality |A| = n+ 1,
there exists a continuous function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies
φA(∆J )⊂ Γ(J).

Here, ∆n is the standard n-simplex with the set of vertices V := {ei}ni=0, and
∆J is the face of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and
J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}. For details, see references
of [7]-[15].

Example 3.2. The following are typical examples of G-convex spaces:

(1) The triple (∆n, V ; co) in the original KKM theorem [1], where co : 〈V 〉 → 2∆n
is the convex hull operation.

(2) A triple (X , D;Γ), where X and D are subsets of a t.v.s. E such that co D ⊂ X
and Γ := co. Fan’s celebrated KKM lemma [32] is for (E, D; co), where D is a
nonempty subset of E.

(3) A convex space (X , D;Γ), where X is a subset of a vector space, D ⊂ X such
that co D ⊂ X , and each ΓA is the convex hull of A ∈ 〈D〉 equipped with the
Euclidean topology. This concept generalizes the one due to Lassonde for
X = D; see [4]. However he obtained several KKM type theorems with respect
to (X , D;Γ).

(4) An H-space (X , D;Γ), where X is a topological space, D a nonempty subset of
X , and Γ = {ΓA} a family of contractible (or, more generally, ω-connected)
subsets of X indexed by A ∈ 〈D〉 such that ΓA ⊂ ΓB whenever A⊂ B ∈ 〈D〉. If
D = X , (X ;Γ) is called a C-space by Horvath [5, 6].

The origin of the class KC and Theorem 2.9 is the following [7, Theorem 3]:

Theorem 3.3. Let (X , D;Γ) be a G-convex space, Y a Hausdorff space, and F ∈
Aκc (X , Y ). Let G : D→ 2Y be a map such that

(1) for each x ∈ D, G(x) is closed in Y ;
(2) for any N ∈ 〈D〉, F(ΓN )⊂ G(N); and
(3) there exist a nonempty compact subset K of Y such that either

(i)
⋂
{Gx | x ∈ M} ⊂ K for some M ∈ 〈D〉; or
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(ii) for each N ∈ 〈D〉, a compact G-convex subset LN of X containing N such
that F(LN )∩

⋂
{Gx | x ∈ LN ∩ D} ⊂ K .

Then F(X )∩ K ∩
⋂
{Gx | x ∈ D} 6= ;.

Remark 3.4. (1) Theorem 3.3 was given originally under the assumption that
D ⊂ X , which is redundant in view of condition (ii) of Theorem 2.9. In
Theorem 3.3, the admissible class Aκc is a subclass of KC; and note that F(LN )
is compact since LN is compact and F can be regarded as a composition of
u.s.c. maps having compact values (by the definition of Aκc ).

(2) In [7], we gave ten equivalent formulation of Theorem 3.3 in the form
of coincidence theorems, matching theorems, analytic alternatives, minimax
inequalities, geometric and section properties. Similarly, we can make
equivalent formulations of Theorem 2.9.

Example 3.5. For the references of the following, see [7].

(1) The origin of Theorem 3.3 goes back to Sperner and Knaster, Kuratowski, and
Mazurkiewicz [1] for X = Y = K =∆n an n-simplex, D its set of vertices, and
F = 1X .

(2) For a convex space X , Theorem 3.3 was due to Park [33]. As Park noted in [2],
a particular form [2, Theorem 3] for V instead of Aκc includes earlier works of
Fan, Lassonde [4], Chang, and Park. Moreover, Park showed that [2, Theorem
3] also extends a number of KKM type theorems due to Sehgal, Singh, and
Whitfield, Lassonde [4], Shioji, Liu, Chang and Zhang, and Guillerme.

(3) For an H-space X and F = 1X , Theorem 3.3 generalizes Horvath [5, 6];
Bardaro and Ceppitelli; Ding and Tan; Ding, Kim, and Tan; Park; and Ding.

(4) After 1997 [7], there have appeared too many works on G-convex spaces and
modifications of Theorem 3.3 to trace out all of them.

Park and Lee [10] defined generalized KKM maps on G-convex spaces as
follows:

Definition 3.6. Let (X , D;Γ) be a G-convex space and I a nonempty set. A map
G : I → 2X is called a generalized KKM map provided that for each N ∈ 〈I〉, there
exists a function σ : N → D such that Γσ(M) ⊂ G(M) for each M ∈ 〈N〉.

In [15], H. Kim and the author showed that a generalized KKM map G is a KKM
map on a new G-convex space (X , I ;ΓG) and obtained the following KKM type
theorem for generalized KKM maps with closed values:

Theorem 3.7 ([15]). Let I be a set, (X , D;Γ) a G-convex space, and G : I → 2X a
map. Suppose that

(1)
⋂

z∈I G(z) =
⋂

z∈I G(z) [that is, G is transfer closed-valued ];
(2) G is a generalized KKM map; and
(3) there exists a nonempty compact subset K of X such that either
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(i)
⋂

z∈M F(z)⊂ K for some M ∈ 〈I〉; or
(ii) if X ⊃ D and, for each J ∈ 〈I〉 and each function σ : J → D, there exists a
Γ-convex subset LN of X containing N = σ(J) such that

LN ∩
⋂

z∈J

F(z)⊂ K .

Then K ∩
⋂

z∈I F(z) 6= ;.

Every G-convex space is an abstract convex space satisfying the partial KKM
principle and, since G is a KKM map on the new G-convex space (X , I ;ΓG),
Theorem 3.7 follows from Theorem 2.8.

Remark 3.8. (1) Condition (ii) can be improved as in Theorem 2.8 without
assuming X ⊃ D. If X = K itself is compact, then the conclusion holds without
assuming (i) or (ii).

(2) In (ii), LN does not need to be compact in view of Remark 2.11(1).
(3) This kind of KKM theorems originates from Tian. If (X ;Γ) is an H-space,

Theorem 3.7 improves results of Kim and Chang-Ma. Further, if X = D is a
convex subset of a topological vector space, Theorem 3.7 was due to Chang-
Zhang and Kassay-Kolumbán. For the references, see [15].

4. φA-spaces

Motivated by many imitations of G-convex spaces, we introduced the following
reformulation of the class of G-convex spaces in [25]-[30]:

Definition 4.1. A φA-space

(X , D; {φA}A∈〈D〉)
consists of a topological space X , a nonempty set D, and a family of continuous
functions φA : ∆n → X (that is, singular n-simplices) for A ∈ 〈D〉 with the
cardinality |A|= n+ 1.

Note that, by letting ΓA := φA(∆n), (X , D;Γ) becomes an abstract convex space
which is not necessarily G-convex.

Any G-convex space is a φA-space. The converse also holds in the following
sense:

Proposition 4.2 ([25, 26]). A φA-space (X , D; {φA}A∈〈D〉) can be made into a G-
convex space (X , D;Γ).

Now we have the following diagram for triples (E, D;Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space
=⇒ H-space =⇒ G-convex space⇐⇒ φA-space =⇒ KKM space

=⇒ Space satisfying the partial KKM principle
=⇒ Abstract convex space.
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For a φA-space (X , D; {φA}A∈〈D〉), a topological space Z , and a map F : X → 2Z ,
there are several ways to define a KKM map G : D → 2Z with respect to F as
follows:

4.1. As an abstract convex space

Every φA-space (X , D; {φA}A∈〈D〉) is an abstract convex space by letting ΓA :=
φA(∆n) for each A∈ 〈D〉 with |A|= n+ 1. In this case, we have the following:

(1) A map G : D → 2Z is a KKM map with respect to F : X → 2Z whenever
F(φA(∆n))⊂ G(A) for all A∈ 〈D〉.

(2) For every simplex, convex subsets of t.v.s., or Lassonde type convex spaces, we
assumed D ⊂ X and ΓA := co A= φA(∆n). Therefore, the definition (1) works.

(3) All contents of Section 2 are applicable.

4.2. As a G-convex space

The following definition is given in [28]-[30]:

Definition 4.3. For a φA-space (X , D; {φA}A∈〈D〉), any map G : D→ 2X satisfying

φA(∆J )⊂ G(J) for each A∈ 〈D〉 and J ∈ 〈A〉

is called a KKM map.

Note that if φA(∆J ) = φJ (∆J ) for each A and J (as for the case Lassonde type
convex spaces), then this definition becomes the one in 4.1.

Moreover, recall that

Proposition 4.4 ([28]-[30]). (1) A KKM map G : D → 2X on a G-convex space
(X , D;Γ) is a KKM map on the corresponding φA-space (X , D; {φA}A∈〈D〉).

(2) A KKM map T : D → 2X on a φA-space (X , D; {φA}) is a KKM map on a new
G-convex space (X , D;Γ).

The following is a KKM theorem for φA-spaces given in [28]-[30]:

Theorem 4.5. For a φA-space (X , D; {φA}A∈〈D〉), let G : D→ 2X be a KKM map with
closed [resp., open] values. Then {G(z)}z∈D has the finite intersection property. (More
precisely, for each N ∈ 〈D〉 with |N |= n+ 1, we have φN (∆n)∩

⋂
z∈N G(z) 6= ;.)

Further, if

(3)
⋂

z∈M G(z) is compact for some M ∈ 〈D〉,
then we have

⋂
z∈D G(z) 6= ;.

Remark 4.6. (1) We may assume that, for each z ∈ D and N ∈ 〈D〉, G(a)∩φN (∆n)
is closed [resp., open] in φN (∆n). This is said by some authors that G has
finitely closed [resp., open] values. However, by replacing the topology of X
by its finitely generated extension, we can eliminate “finitely”; see [9].
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(2) For X = ∆n, if D is the set of vertices of ∆n and Γ = co, the convex hull,
Theorem 4.5 reduces to the original KKM theorem and its open version; see
[1, 3].

(3) If D is a nonempty subset of a topological vector space X (not necessarily
Hausdorff), Theorem 3 extends Fan’s KKM lemma; see [3, 32].

The preceding definition of a KKM map on a φA-space (X , D; {φA}A∈〈D〉) can be
extended to a KKM map with respect to a map F : X → 2Z for a topological space
Z as follows:

Definition 4.7. For a φA-space (X , D; {φA}A∈〈D〉) and a topological vector space Z ,
let F : X → 2Z be a map. Then a map G : D→ 2X satisfying

F(φA(∆J ))⊂ G(J) for each A∈ 〈D〉 and J ∈ 〈A〉
is called a KKM map with respect to F.

Here, for the simplex ∆n corresponding to |A| = n + 1, ∆J is its face
corresponding to J ⊂ A, as usual.

Recall that F ∈ KC(X , D, Z) whenever for any closed-valued KKM map G : D→
2Z with respect to F , the family {G(y)}y∈D has the finite intersection property.

Note that, when F 6= 1X , the above concept of a KKM map with respect to
F : X → 2Z for a φA-space (X , D; {φA}A∈〈D〉) is

(1) different from the one for the abstract convex space case [see Subsection
4.1(1)], and

(2) may not a KKM map with respect to F for the new G-convex space corres-
ponding to the φA-space in Proposition 4.4(2).

Therefore we have the following problem:

Problem. Let (X , D; {φA}A∈〈D〉) be a φA-space, Z a topological space, F ∈
KC(X , D, Z), and G : D→ 2Z . Under Definition 4.7, does Theorem 2.9 hold?

There have also appeared a large number of the so-called generalized KKM
maps in the literature. In fact, a number of authors tried to generalize the concept
of KKM maps on particular cases of φA-spaces. All such KKM maps are known to
be the ones for certain G-convex spaces; see [18].

5. GFC-spaces

Recently, in 2008, Khanh et al. [31] introduced generalized finitely continuous
topological spaces (simply, GFC-spaces) and certain generalized KKM mappings.
They noted incorrectly that G-convex spaces are special case of GFC-spaces and
that the G-convex space and the FC-space are incomparable. They missed to give
any proper examples to support their claims. Actually, their GFC-spaces are simply
our φA-spaces (X , D; {φA}A∈〈D〉) and, hence, can be made into G-convex spaces.

In [31], the authors used (X , D;Φ) to denote their spaces.
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Definition 5.1 ([31]). (ii) Let P,Q ⊂ D and S : D → 2X be given. P is called an
S-subset of D (an S-subset of D with respect to Q) if ∀ N = {y0, y1, . . . , yn} ∈ 〈D〉,
∀ {yi0 , yi1 , . . . , yik} ⊂ N ∩ P (N ∩Q, resp.), φN (∆k)⊂ S(P), where ∆k is the face of
∆n corresponding to {yi0 , yi1 , . . . , yik}.

In this definition, they followed the definition of FC-subspace due to Ding,
which was already improved in [25, 26]. Similarly, the above definition can be
improved.

Any space (X , D;Φ) becomes an abstract convex space (X , D;Γ) by putting
ΓA := φA(∆n) for each A∈ 〈D〉 with |A|= n+ 1; see [25].

Definition 5.2 ([31]). (i) Let (X , D;Φ) be a GFC-space and Z be a topological
space. Let G : D → 2Z and F : X → 2Z be set-valued mappings. G is called
a generalized KKM mapping with respect to F (F -KKM mapping in short) if,
for each N = {y0, y1, . . . , yn} ∈ 〈D〉 and each {yi0 , yi1 , . . . , yik} ⊂ N , one has

F(φN (∆k))⊂
⋃k

j=0 G(yi j
), where ∆k is as above.

(ii) We say that a set-valued mapping F : X → 2Z has the generalized KKM
property if for each F -KKM mapping G : D → 2Z , the family {F(y) : y ∈ D
has the finite intersection property. By KKM(X , D, Z) we denote the class of
all the mappings F : X → 2Z which enjoy the generalized KKM property.

The following is their KKM theorem comparable to our Theorem 2.9:

Theorem 5.3 ([31]). Let (X , Y,Φ) be a GFC-space, Z be a topological space,
S : Y → 2X , T : X → 2Z and F : Y → 2Z be multifunctions, where T ∈ KKM(X , Y, Z).
assume that

(i1) for each compact subset D ⊂ X , T (D) is compact;
(i2) there is a compact subset K of Z such that for each N ∈ 〈Y 〉, there is an S-subset

LN of Y , containing N with S(LN ) or S(LN ) being compact and

T (S(LN ))∩
⋂

y∈LN

cclF(y)⊂ K;

(ii) F is T-KKM and transfer compactly closed-valued.
Then

T (S(Y ))∩
⋂

y∈Y

F(y) 6= ;.

From the seminal works of Ky Fan, this kind of whole intersection property can
be reformulated to many equivalent forms like coincidence theorems or geometric
forms. This was done in [31].

Interested readers can compare their results with our previous works [7, 8, 19,
21, 22].
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