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Abstract. In many real-life multiobjective optimization problems and particularly
in combinatorial ones, a common methodology is to determine a Pareto optimal
set. These sets can be extremely large or may contain an infinite number of
solutions. It is then difficult to choose among these solutions, one that corresponds
to the best compromise according to the decision-maker’s preferences. In this
paper, we propose a model to select a restricted set of solutions. These sets
should be structurally different and the most representative of the Pareto-optimal
solutions. Our model is implemented using hierarchical algorithms and variable
neighborhood search metaheuristics.

1. Introduction

Operations research is mainly made up starting from models which postulate
the existence of a single objective function [1]. Although single objective decision
models are sufficient for some decision making processes, there are many
situations where decisions have multiple objectives [2]. In these situations, the
aim is to simultaneously optimize a group of conflicting objectives.

As opposed to single objective optimization problems, in multiobjective
optimization problems, there is no single optimal solution, but rather a set of
alternative solutions. The approaches to find the best feasible solution to be
implemented can be quite challenging for the decision-maker. In this kind of
problems the analyst either determines a single solution or identifies a set of
nondominated solutions, often referred to as Pareto-optimal set.

Determination of a single solution for multiobjective problems is performed
using methods such as the weighted sum method, utility theory, goal programming,
etc [3]. The other general approach is the determination of a set of nondominated
solutions, i.e., a Pareto optimal set. Pareto optimal sets are often preferred to single
solutions because they can be practical when considering real-life problems, since
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the final solution of the decision maker is almost always a trade-off between crucial
parameters.

In many real-life multiobjective optimization problems and particularly in
combinatorial ones, the Pareto-optimal set can contain an infinite number of
solutions or can be extremely large. It is then difficult to choose among these
solutions, one that corresponds to the best compromise according to the decision-
maker’s preferences.

The selection of one solution may be quite a challenging problem since, in the
absence of subjective or judgmental information, none of the corresponding trade-
offs can be said to be better than the others. This is particularly true if we consider
that the size of the Pareto-optimal set increases proportionally to the number of
objectives.

This discussion makes clear that there is a need to achieve a set of promising
solutions with a smaller cardinality. Thus, the motivation for the current work
stems from challenges encountered during the post-Pareto analysis phase. To fully
make the Pareto-optimal set easier to consider for the decision-maker, we propose
to select k representative solutions of the Pareto optimal frontier.

Some methods have been proposed to select a representative solution in Pareto
optimal frontier. Taboada et al. [4] proposed two methods, the first method is a
pseudo-ranking scheme that helps a decision maker to select a solution that reflects
his objectives functions priorities. They generate a set of random ranked weights,
these weight sets are used to repeatedly combine the scaled objectives into a single
objective function. The best solution for each combined objective is recorded from
the set of the Pareto optimal solutions available. This is repeated with the next set
of weights and the best solution for that combination is identified. This process is
repeated many times, and the end results is a “prunned” Pareto optimal set.

In the second approach, they used data mining clustering techniques to group
the data by using the k-means algorithm to find clusters of similar solutions. One
way for the decision maker to pick one solution, among the solutions contained in
a cluster, is to identify what solution is closest to its centroid.

Malakooti et al. [5] proposed the selection in two steps. Firstly, they used
unsupervised learning clustering artificial neural network with variable weights for
clustering of alternatives. In the second step they used feedforward artificial neural
network for the selection of the best alternatives for each cluster of alternatives.
Malakooti et al. [6] developed theories and procedures for clustering discrete
multiple criteria alternatives, and the selection of the best alternative for each
clustered group can be performed using existing methods.

In this work, we propose an approach to select a restricted set of solutions.
These solutions will have to be structurally different and are the most
representative of the whole set of the Pareto-optimal solutions. Our approach is
based on the clustering methods [7]. These methods consist in discovering, from
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a population, clusters or groups of individuals presenting common features. The
number and the definition of clusters are not necessarily given a priori. The set of
solutions will be partitioned in clusters that present some similar features. Then,
the representative solutions of every cluster in this partition will be extracted.

The advantage of these approaches is to decrease the number of criteria (one or
more criteria in the same group are equal or very close) and facilitate the decision
making by the decision-maker, who will be able to understand his problem and
possibly to choose, more easily, the solution, that interests him, among these
representative solutions of the multicriteria problem at hand.

The other advantages of our proposition is that the clustering and the selection
are performed in one phase. For the competing approaches, two phases are
required.

The organization of this paper is as follows: we present in section 2, a
modelization of the problem based on the minimization of the distances to ideal
points. In sections 3, 4 and 5 we describe the steps of the algorithm that we
propose to solve this problem, then we report experimental results in section 6.
We conclude and propose some ways for future research in section 7.

2. Modelization

Let us consider a set of Pareto optimal solutions; our aim is to find a set of k
representative points. We suppose that we have a set of N solutions ai ∈ A, where
A represents a Pareto frontier A= {a1, a2, . . . , aN}. Each solution ai is characterized
by q distinct attributes (a1

i , . . . , aq
i ). Without loss of generality, we assume that all

these attributes have to be minimized.
We say that bi dominates b j , denoted by bi � b j if bt

i ≤ bt
j ∀ t = 1, . . . q and

∃ l ∈ {1, . . . , q} such that bl
i < bl

j .
The ideal point of a subset of points is the virtual point that has a minimal

evaluation for each attribute. Let us consider A′ a subset of A : A′ ⊆ A, A′ =
{a1, . . . , ar}, the ideal point of the subset A′ is:

id(A′) = min
i∈{1,...,r}

at
i , ∀ t ∈ {1, . . . , q}.

Our objective is to find k couples (ai j
, b j) ( j = 1, . . . , k) for which b j is a virtual

point that dominates ai j
, where ai j

is the best solution among all the solutions
dominated by b j , and ai ∈ A, there exists at least one b j that dominates ai .

We are going to find k couples that minimize a sum of Euclidean distances
relative to every couple (ai j

, b j), and the set of points ai j
are the representative

points in Pareto optimal frontier:

min
∑k

j=1
d2(b j , ai j

)

∀ ai ∈ A ∃ b j( j = 1, . . . , k) : b j � ai .

The point bk represents the ideal point of the subset that it dominates. ∀ bk

there exists a subset C such that the ideal point of C is equal to bk, id(C) = bk.
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Proof. Let eC be a set of points which are dominated by bk :
If: C̃ 6= ;.

∀ ai ∈ C̃ : bk � ai

⇒ ∀ t = 1, . . . , q, bt
k =min

ai∈C̃
at

i

⇒ ∀ l ∈ {1, . . . , q}, bl
k ≤min

ai∈C̃
al

i .

Suppose that ∃ ε > 0: such that bl
k = id(C̃)l − ε.

⇒ ∀ ai ∈ C̃ : d(ai , id(C̃))≤ d(ai , bk)

The set of points in eC remain dominated by id(eC). Therefore, for ai ∈ C̃ ⇒
d(aik , bk) > d(aik , id(C̃)), from where the contradiction on the fact that bk is the
best point that minimizes the relative distance to the representative points aik of a
set eC .

3. Proposition

As it was stated in the previous section, a representative point in a set of
solutions, is the point that has the minimal distance to the ideal point of this subset.

From where the decision of partitioning the set of solutions into k clusters
that represent similar features, where k represents the number of representative
solutions of the Pareto front that the decision-maker wants to find, and every set
of k clusters represents a partition.

Figure 1 illustrates an academic example of our problem. Let us consider a
Pareto front composed of 10 non dominated solutions, we have partitioned it
in two clusters, each composed of 5 solutions. As representative points of every
cluster, we find the two points that are represented by the small full circles, which
correspond to the minimal distance to the ideal point of the sets C1 and C2.

We denote by Pi a partition of a set of solutions in k clusters Ck. The evaluation
of a cluster Ck is given by the minimal distance among all the distances between
the points in this cluster and its ideal point. We denote the class evaluation by:

Q(Ck) = min
ai≺id(Ck)

d2(ai , id(Ck)) .

We evaluate a quality of a partition Pi , by the sum of squares of all its
cluster’s evaluation to eliminate the compensation between qualities of clusters,
Q(Pi) =

∑
Ck∈Pi

Q(Ck). The best partition in the set of possible partitions P, is the
partition that minimizes Q(Pi).

4. Hierarchical algorithm

The total number of partitions that can be built, for a given number of criteria
and a given number of actions, is such that, in most cases, a complete enumeration
is impossible. Therefore, heuristics are needed to find a partition or a set of k
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Figure 1. Example of 2 representative points in Pareto frontier

representative points. Some clustering techniques are available in the literature.
Among them, the k-means algorithm [8]. It is an iterative algorithm where
the obtained solution depends on the selection of the initial partition and may
converge to a local minimum of the criterion’s value if the initial partition is not
properly chosen.

A hierarchical clustering proposed by Johnson [9], is a sequence of partitions in
which each one is nested into the next partition in the sequence. The proposed
clustering algorithm dictates how a proximity matrix should be interpreted to
merge two trivial clusters, thus nesting the trivial clustering into a second partition.
The process is repeated to form a sequence of nested clusterings in which the
number of clusters decreases as the sequence progresses until a single cluster
containing all objects is obtained. A branch and bound algorithm is proposed by
Koontz et al. [10] to find the globally optimal clustering. However, it takes much
computation time. Simulated annealing (SA) algorithm for the clustering problem
is proposed by Selim et al. [11]. It is shown that this algorithm can reach slowly the
optimal solution, because the search for optimal results requires the temperature
to be decreased slowly from one iteration to another.

The evolution strategies are used to solve the clustering problem by Babu and
Murty [12]. The clustering is viewed as an optimization problem that optimizes
the clustering objective function. Artificial neural networks have been extensively
used over the past three decades for both classification and clustering by Jain and
Mao [13].

Genetic algorithms (GAs) have been most frequently used in clustering by
Maulik and Bandyopadhyay [14]. GAs represent points in the search space as
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binary strings, and rely on the crossover operator to explore the search space.
Mutation is used in GAs for the sake of completeness, that is, to endeavour that no
large part of the search space is left unexplored.

Among these clustering techniques, we choose to apply a hierarchical scheme
to our problem. The algorithm is presented hereafter:

Step 1: Initialize cluster set P; each individual ai ∈ A constitutes a distinct cluster.
Step 2: If the number of clusters is greater than k, then go to Step 3, else Stop.
Step 3: Calculate the distance of all possible pairs of clusters. The distance

d(CI , CJ ) of two clusters CI and CJ ∈ P is given as the minimal distance
between the nearest individuals to the ideal point of CI ∪ CJ :

d(CI , C j) = min
ai≺id(CI∪CJ )/I 6=J

d(ai , id(CI ∪ CJ )) .

Step 4: Determine two clusters with minimal distance d(CI , CJ ). Merge these
clusters into a larger one. Go to Step 2.

At each step of the algorithm, two clusters are merged such that the distance
between the ideal point and the nearest objects is minimal. Starting with the
partitions where each object is considered to form a cluster on its own, the number
of clusters of the partitions is then iteratively reduced.

Of course, even if the simplicity of an hierarchical approach is appealing, a
number of bottlenecks have been stressed. Among them, once two clusters have
been merged, they can never be split again. Hence, a locally optimal merging may
mislead the algorithm.

5. Variable Neighborhood Search

Contrary to other metaheuristics, the VNS [15] based on local search methods,
does not follow a trajectory but explores increasingly distant neighborhoods of the
current incumbent solution, and jumps from this solution to a new one if and only
if an improvement has been made.

In the following we explain the basic rules of VNS metaheuristic. We then apply
it to our problem.

5.1. Rules

Let us denote by NV (V = 1, . . . , Vmax) a set of neighborhood structures, with
NV (x) the set of solutions in the V th neighborhood of x .

• Initialization: Find an initial solution x; Select the set of neighborhood structures
NV , (V = 1, . . . , Vmax), that will be used in the search; choose a stopping
criterion;

• Repeat the following until the stopping condition is met:
(1) set V → 1;
(2) Until V = Vmax, repeat the following steps:
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Figure 2. Partition representation

(a) generate at random a point x0 from the V th neighborhood of (x ′ ∈
NV (x));

(b) apply some local search method with x ′ as initial solution, denote by
x ′′ the so obtained best solution;

(c) if this best solution is better than the incumbent solution then move
(x ← x ′′) and continue the search with N1(V ← 1); otherwise, set
V ← V + 1.

The stopping condition may be, reaching the maximum number of iterations,
the maximum CPU time, or the maximum number of iterations between two
improvements.

5.2. VNS for k representative points problem

In our problem, we consider an encoding method where a partition is encoded
as a string of length N (where N is the number of points in A). The ith element
of the string denotes the group number assigned to point ai . Thus, each string
represents a possible cluster configuration.

Example. Assume that we have two clusters containing the following solutions:
C1 = {a1, a3, a4}, C2 = {a2, a5, a6}, the encoding of the chromosome will be as
shown in Figure 2.

Given an initial partition P, generate at random a partition P ′ from the V th
neighborhood of P (P ′ ∈ NV (P)) by randomly selecting a solution ai that belongs
to the cluster Cl in the current solution and assigning it to another cluster CJ , J 6= l.

In the next step we apply a local search method with P ′ as initial solution, the
object ai that belongs to the cluster Cl in the current solution is assigned to some
other cluster CJ , J 6= l, we explore all such possible exchanges (for all l and J).
P ′′ is the obtained local optimum. A move is made if the local optimum P ′′ in the
neighborhood is better than the current one. Otherwise, the procedure is stopped.
The pseudo code of the VNS algorithm is given in Figure 3.

These operations may create two problems. The first one is that the generated
partition may have fewer groups than the initial one.

For example, let us consider a partition P = {1, 2, 2, 3, 2, 3}, if we remove
the object a1 from the cluster 1 and we assign it to the cluster 3, the new
partition will be P ′ = {3, 2, 2, 3, 2, 3}. Note that this new partition has only
two groups instead of three. To avoid this problem, we use objective function
Q(P) +δ∗ ∗ (nbcluster(P)− nbcluster(P ′)), where (δ∗≫ 0).
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Algorithm 2. VNS algorithm to find k representative points

Initialization: Find an initial partition P ′

While {Time ≥ Tmax}
i = rand(1, N); J = rand(1, K)/(J 6= l)/ai∈Cl

;

P ′ = insert(P, ai , CJ ); (insert ai in the cluster C j)

P ′′ = local_search(P ′); (apply a local search to the partition P ′)

if {Q(P ′′)<Q(P)}
P ← P ′′ endif

endwhile

Figure 3. Pseudo code of VNS algorithm.

Table 1. Quality of partition of Hierarchical algorithm and Variable
Neighborhood Search for two criteria, two and three representative
points

Test
HA VNS

2 3 2 3
10 0.048 0.0142 0.048 0.0140
20 0.158 0.0726 0.152 0.0720
30 0.131 0.0712 0.122 0.0593
40 0.169 0.0910 0.161 0.0800
50 0.163 0.0870 0.153 0.0860

100 0.205 0.1140 0.203 0.1090

The second problem is the case where we find a cluster that is dominated by
another one. To avoid this problem we use objective function Q(P) + δ∗ (number
of do min ated clusters), where (δ≫ 0).

6. Experimental results and discussion

This section is devoted to the empirical analysis of the model and the algorithm
proposed in the previous sections. We tested both algorithms on artificial data that
we generated according to a uniform distribution U(0, 1). The number of criteria
q, varies from 2 to 3. The number of clusters k, varies from 2 to q+ 1.

We have tested the hierarchical algorithm (HA) and variable neighborhood
search (VNS) on instances of size 10, 20, 30, 40, 50 and 100 objects.

Table 1 and 2 gather the results obtained through the VNS and hierarchical
algorithms. From this experimentation we conclude that the VNS algorithm gives
a better quality of partition than the hierarchical algorithm for almost all problems.

Partitioning an instance with 30 solutions of Pareto frontier to 3 clusters is
shown in Figure 4. With VNS algorithm cluster 1 contains 9 solutions, there are 8
solutions in cluster 2 and 13 in cluster 3.
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Table 2. Quality of partition of Hierarchical algorithm and Variable
Neighborhood Search for three criteria, two, three and four
representative points

Test
HA VNS

2 3 4 2 3 4
10 0.152 0.093 0.054 0.137 0.082 0.052
20 0.207 0.181 0.133 0.184 0.149 0.117
30 0.234 0.212 0.169 0.218 0.174 0.148
40 0.247 0.232 0.189 0.225 0.188 0.162
50 0.268 0.24 0.228 0.255 0.211 0.187
100 0.343 0.318 0.291 0.298 0.249 0.234

Figure 4. Example of 3 representative points of Pareto frontier

Figure 5. Example of 2 representative points of Pareto frontier

With Hierarchical algorithm cluster 1 contains 6 solutions, there are 11 solutions
in cluster 2 and 13 in cluster 3.

One way for the decision maker to pick one solution, among the solutions
contained in a cluster, is to identify what solution is the closest to its ideal point.
In Figure 4 the representative point of each cluster is the point filled with black.
Tables 3 and 4 show the results obtained with the cluster analysis; each solution is
shown with its corresponding evaluation for each criterion.
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Figure 6. Example of 3 representative points of Pareto frontier

Figure 7. Example of 4 representative points of Pareto frontier

Table 3. Representative points with VNS for 30 solutions in Pareto front

# of solutions Criterion 1 Criterion 2 Criterion 3
Cluster 1 9 0.168 0.177 0.654
Cluster 2 8 0.384 0.165 0.449
Cluster 3 13 0.206 0.598 0.196

Table 4. Representative points with HA for 30 solutions in Pareto front

# of solutions Criterion 1 Criterion 2 Criterion 3
Cluster 1 6 0.168 0.177 0.654
Cluster 2 11 0.384 0.165 0.449
Cluster 3 13 0.206 0.598 0.196

With the information from tables 3 and 4 the decision maker now has a small set
of solutions, and it is thus easier to make his/her choice regarding the importance
of the different objectives.

Tables 3 and 4 show that the representative points in the three clusters are the
same with VNS and Hierarchical algorithms. But the composition of clusters 1 and
2 is not the same. With Hierarchical algorithm the 3 points in the square in Figure 4
are assigned to cluster 2, but with VNS they are assigned to cluster 1.
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Table 5. Representative points with K-means for 30 solutions in Pareto front

# of solutions Criterion 1 Criterion 2 Criterion 3
Cluster 1 16 0.259 0.140 0.60
Cluster 2 3 0.495 0.437 0.068
Cluster 3 11 0.064 0.749 0.168

For partition with Hierarchical algorithm these three points in cluster 2 are also
dominated by the ideal point of cluster 1. We conclude that Hierarchical algorithm
created an overlap partition, what is not the case for the VNS algorithm. In Table 5
we illustrate the results of selecting representative points by the proposed method
for Taboada et al. In Figures 5, 6 and 7 we compare the resulted partition for VNS
and k-means method respectively.

In these figures we can see that the cluster compositions are very different when
the number of clusters increases. For many instances, if we consider the ideal point
of a cluster in the k-means algorithm, we can find in some instances, ideal point of
one cluster dominates many points in another cluster.

7. Conclusion

In this paper, we have motivated and formalized the notion of k representative
points of Pareto frontier. In this approach, the solutions in the Pareto optimal set
are clustered so that the Pareto optimal front is partitioned into k clusters. Each
cluster consists of solutions with similar properties, and therefore the decision-
maker only has to investigate one solution per cluster, this solution being the
closest to its ideal point.

The model proposed still needs to be completed. More precisely, careful
attention should be paid to the evaluation of the partitions.

In this work we have considered the sum of squared distances between the ideal
point of clusters and a nearest point to this ideal point. However, other aggregation
operators could be considered and should be tested.
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