**Journal of Informatics and Mathematical Sciences** 

Vol. 7, No. 1, pp. 49–67, 2015 ISSN 0975-5748 (online); 0974-875X (print) Published by RGN Publications



# **b-Chromatic Number of Some** Splitting Graphs

**Research Article** 

S. Arockiaraj<sup>1</sup> and V. Premalatha<sup>2</sup>

<sup>1</sup> Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamilnadu, India <sup>2</sup> Research Scholar of Karpagam University, Coimbatore, Tamilnadu, India;

Department of Mathematics, Canara First Grade College, Kodialbail, Mangalore 575 003, Karnataka, India **\*Corresponding author:** psarockiaraj@gmail.com

**Abstract.** A *b*-colouring of a graph *G* is a proper vertex colouring of *G* such that each colour class contains a vertex that has atleast one neighbour in every other colour class and *b*-chromatic number of a graph *G* is the largest integer  $\phi(G)$  for which *G* has a *b*-colouring with  $\phi(G)$  colours. In this paper, we have obtained the *b*-chromatic number of the splitting graphs of path  $P_n$ , cycle  $C_n$ , star  $K_{1,n}$ , fan graph  $F_n$ , triangular snake  $T_n$ , the *H*-graph  $H_n$ , the corona graph  $P_n \circ K_1$  and  $C_n \circ K_1$ .

Keywords. *b*-colouring; *b*-chromatic number

MSC. 05C15; 05C38

Received: January 22, 2015

Accepted: June 19, 2015

Copyright © 2015 S. Arockiaraj and V. Premalatha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# 1. Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and edge set E(G). A proper k-colouring of graph G is a function C defined from V(G) onto a set of colours  $\{1, 2, ..., k\}$  such that any two adjacent vertices have different colours.

Path on *n* vertices is denoted by  $P_n$  and cycle on *n* vertices is denoted by  $C_n$ .

A triangular snake is obtained from a path by identifying each of the path with an edge of the cycle  $C_3$ . The graph  $G \circ K_1$  is obtained from the graph G by attaching a new pendent vertex at each vertex of G.

The splitting graph S(G) was introduced by Sampathkumar and Walikar [7]. For each vertex v of a graph G, take a new vertex v' and join v' to all the vertices of G adjacent to v.

The *b*-chromatic number of a graph was introduced by R. W. Irving and D. F. Manlove when considering minimal proper colouring with respect to a partial order defined on the set of all

partition of vertices of graph. The *b*-chromatic number of a graph *G*, denoted by  $\phi(G)$  is the largest positive integer *t* such that there exists a proper colouring for *G* with *t* colours in which every colour class contains at least one vertex adjacent to some vertex in all the other colour classes. Such a colouring is called a *b*-colouring.

So many authors have studied on *b*-chromatic number. Arockiaraj et al. [1] have studied an odd sum labeling of some splitting graphs. Motivated by these works, we have obtained the *b*-chromatic number of the splitting graphs of path  $P_n$ , cycle  $C_n$ , star  $K_{1,n}$ , fan graph  $F_n$ , triangular snake  $T_n$ , the *H*-graph  $H_n$ , the corona graph  $P_n \circ K_1$  and  $C_n \circ K_1$ .

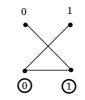
# 2. Main Results

**Proposition 2.1.** The b-chromatic number of the splitting graph  $SP(P_n)$  of path  $P_n$  is

$$\phi(SP(P_n)) = \begin{cases} 5, & n \ge 9\\ 4, & n = 6, 7, 8\\ 3, & n = 5\\ 2, & n = 2, 3, 4 \end{cases}$$

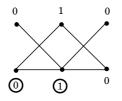
*Proof.* Let  $v_1, v_2, \ldots, v_n$  be the vertices on the path  $P_n$  and let  $v'_i$  be the duplicating vertex of  $v_i$ ,  $1 \le i \le n$ . Assume that  $n \ge 9$ . Colour the vertices  $v_i$ ,  $1 \le i \le n$  by the colours  $4, 0, 1, 2, 0, 3, 2, 4, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, \ldots$  and the vertices  $v'_i$ ,  $1 \le i \le n$  by the colours  $2, 3, 3, 4, 4, 1, 1, 4, 0, 1, 2, 3, 4, \ldots$  respectively. Then the vertices  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_6$  and  $v_8$  are the members of the colour classes 0, 1, 2, 3 and 4 respectively with their neighbours having all the remaining colours. Hence  $\phi(SP(P_n)) = 5$ , when  $n \ge 9$ .

When n = 2,  $SP(P_2)$  is  $P_4$  in which 2 vertices are of degree 2 and 2 vertices are of degree 1. Hence  $\phi(SP(P_2)) \le 2$  and Figure 1 shows that  $\phi(SP(P_2)) = 2$ .



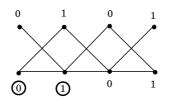
**Figure 1.** A *b*-colouring of  $SP(P_2)$  with 2 colours

When n = 3,  $SP(P_3)$  has only one vertex of degree 4 and 3 vertices of degree 2. Therefore  $\phi(SP(P_3)) \leq 3$ . Based on adjacency either  $v_2$  and  $v'_2$  are of same colour or  $v_1$  and  $v_3$  are of same colour. Hence  $\phi(SP(P_3)) \leq 2$ . Figure 2 shows that  $\phi(SP(P_3)) = 2$ .



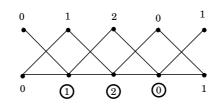
**Figure 2.** A *b*-colouring of  $SP(P_3)$  with 2 colours

When n = 4,  $SP(P_4)$  has only two vertices with the maximum degree 4 and the remaining vertices of degree atmost 2. Hence  $\phi(SP(P_4)) \leq 3$ . As in the case of n = 3, 3 colouring is not possible when n = 4. A *b*-colouring with 2 colours is shown in Figure 3.



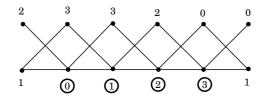
**Figure 3.** A *b*-colouring of  $SP(P_4)$  with 2 colours

In  $SP(P_5)$ , only three vertices are of maximum degree 5 and the remaining vertices are of degree atmost 2. Hence  $\phi(SP(P_5)) \leq 3$ . A *b*-colouring with 3 colours is as shown in Figure 4.



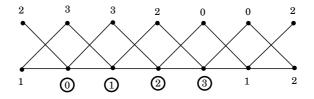
**Figure 4.** A *b*-colouring of  $SP(P_5)$  with 3 colours

In  $SP(P_6)$ , four vertices are of maximum degree 4 and the remaining vertices are of degree atmost 2. Hence  $\phi(SP(P_6)) \leq 4$ . A *b*-colouring with 4 colours is shown in Figure 5.



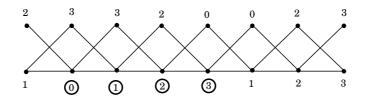
**Figure 5.** A *b*-colouring of  $SP(P_6)$  with 4 colours

In  $SP(P_7)$ , five vertices are of maximum degree 5 and the remaining vertices are of degree atmost 2. Hence  $\phi(SP(P_7)) \leq 5$ . If  $\phi = 5$ , then the vertices  $v_2, v_3, v_4, v_5$  and  $v_6$  are the members of five colour classes. If  $v_2, v_3$  and  $v_4$  are members of different colour classes, then  $v_5$  cannot be the member of the remaining colour classes. Hence  $\phi(SP(P_7)) < 5$  and a *b*-colouring with 4 colours is given in Figure 6.



**Figure 6.** A *b*-colouring of  $SP(P_7)$  with 4 colours

In  $SP(P_8)$ , six vertices are of the maximum degree 4 and all the remaining vertices are of degree atmost 2. Hence  $\phi(SP(P_8)) \leq 5$ . If  $\phi = 5$ , the members of the colour classes with required property are to be in  $v_2, v_3, v_4, v_5, v_6$  and  $v_7$ . By the same argument as in the case of n = 7, 5 colours are not possible. A *b*-colouring with 4 colours for  $SP(P_8)$  is given in Figure 7.



**Figure 7.** A *b*-colouring of  $SP(P_8)$  with 4 colours

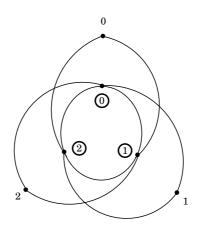
**Proposition 2.2.** For the splitting graph  $SP(C_n)$  of cycle  $C_n$ , the b-chromatic number is

$$\phi(SP(C_n)) = \begin{cases} 5, & when \ n \ge 9\\ 3, & when \ n = 3\\ 2, & when \ n = 4\\ 4, & when \ n = 5, 6\\ 5, & when \ n = 7\\ 4, & when \ n = 8 \end{cases}$$

*Proof.* Let  $v_1, v_2, ..., v_n$  be the vertices on the cycle  $C_n$  and  $v'_1, v'_2, ..., v'_n$  be the corresponding duplicated vertices in  $SP(C_n)$ . Since  $\Delta(SP(C_n)) = 4$ ,  $n \ge 3$ ,  $\phi(SP(C_n)) \le 5$ .

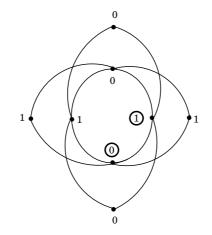
Assume that  $n \ge 9$ . Assign the colours 2,0,1,2,3,1,4,2 to the vertices  $v_1, v_2, \ldots, v_8$  respectively, the colours 0,1,0,1,... to the vertices  $v_9, v_{10}, \ldots, v_n$  the colours 4,4,0,0 to the vertices  $v'_3, v'_4, v'_5, v'_6$  respectively and the colour 3 to all the remaining vertices  $v'_1, v'_2, v'_7, v'_8, \ldots, v'_n$ . Then the vertices  $v_2, v_3, v_4, v_5$  and  $v_6$  are the members of the colour classes of 0,1,2,3 and 4 in which they are adjacent to atleast one member of the remaining colour classes. Thus  $\phi(SP(C_n)) = 5$  when  $n \ge 9$ .

When n = 3, only 3 vertices are of degree 4. Therefore  $\phi(SP(C_3)) \le 3$ . Figure 8 shows that  $\phi(SP(C_3)) = 3$ .



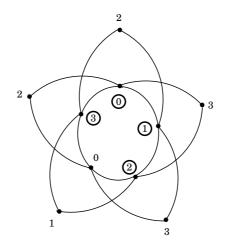
**Figure 8.** A *b*-colouring of  $SP(C_3)$  with 3 colours

When n = 4,  $SP(C_n)$  has only 4 vertices are of degree 4. So  $\phi(SP(C_n)) \le 4$ . If  $\phi = 4$ , then  $v_1$  will be assigned by the colour 0(say) in which their neighbours having colours 1,2 and 3. So  $v_3$  should be having the colour 0. If  $\phi = 3$ , by assigning the colour 0 to  $v_1$ , their neighbours will have the colours 1 and 2. By adjacency,  $v_3$  should be coloured by 0. Similarly  $v_2$  and  $v_4$  are having same colours namely 1. Further if we assign the colour 2 to any one of  $v_i, 1 \le i \le 4$ , no member of the colour class 2 having the neighbours 0 and 1. Therefore  $\phi(SP(C_4)) < 3$ . Figure 9 shows that  $\phi(SP(C_4)) = 2$ .



**Figure 9.** A *b*-colouring of  $SP(C_4)$  with 2 colours

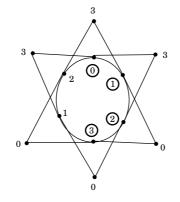
In  $SP(C_5)$ , since only 5 vertices are of degree 4, the colours of these vertices only are having the required property of *b*-colouring. By assigning the colours 0,1,2,3 and 4, for  $v_1, v_2, v_3, v_4$ and  $v_5$  respectively,  $v'_2$  and  $v'_5$  should have the colours 3 and 2 respectively. If it is so, then the neighbours of  $v_3$  and  $v_4$  have repeated colours and hence the colours 2 and 3 can't have all the colours in neighbours. Therefore  $\phi(SP(C_5)) < 5$ . Figure 10 shows that  $\phi(SP(C_5)) = 4$ .



**Figure 10.** A *b*-colouring of  $SP(C_5)$  with 4 colours

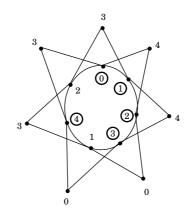
In  $SP(C_6)$ , since 6 vertices are of degree 4, other than a vertex all the remaining vertices such that the colours assigned to these are neighbours to the neighboring colours.

If we assume that 0 and 1 are labels of adjacent vertices, to make these as the members so that they have all the remaining colours as neighbours, then among the remaining vertices at least two vertices are having repeated colours in the neighbours. So  $\phi(SP(C_6) < 5$ . Figure 11 shows that  $\phi(SP(C_6)) = 4$ .



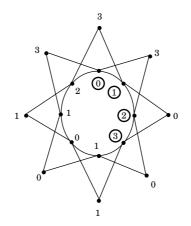
**Figure 11.** A *b*-colouring of  $SP(C_6)$  with 4 colours

Figure 12 shows that  $\phi(SP(C_7)) = 5$ .



**Figure 12.** A *b*-colouring of  $SP(C_7)$  with 5 colours

Repeating the arguments as in the case of n = 4 for n = 8,  $\phi(SP(C_8)) < 5$ . Figure 13 shows that  $\phi(SP(C_8)) = 4$ .



**Figure 13.** A *b*-colouring of  $SP(C_8)$  with 4 colours

Journal of Informatics and Mathematical Sciences, Vol. 7, No. 1, pp. 49-67, 2015

**Proposition 2.3.** For any  $n \ge 2$ ,  $\phi(SP(K_{1,n})) = 2$ .

*Proof.* Let u be the central vertex and  $v_1, v_2, \ldots, v_n$  be the pendant vertices of  $K_{1,n}$ . Let u' and  $y_1, y_2, \ldots, y_n$  be the duplicating vertices of u and  $v_1, v_2, \ldots, v_n$  respectively.

In  $SP(K_{1,n})$ , the vertex u is of degree 2n, the vertex u' is of degree n and the remaining vertices are of degree 2. Hence  $\phi(SP(K_{1,n})) \leq 3$ .

When we assign two distinct colours say 0 and 1 to u and u', and all  $v'_i$ s are to be of same colour and  $y'_i$ s may be assigned by the colours either 1 or 2. In this colouring, no member of colour classes 1 is adjacent to atleast one member of remaining colour classes. If we assign same colour say 0 to u and u', then  $v'_i$ s and  $y'_i$ s may be assigned by either 1 or 2. In this colouring, no member of 0 and 1 is adjacent to atleast one member of remaining colour classes. Hence  $\phi(SP(K_{1,n})) < 3$ . By assigning the colours 0 to u and u' and 1 to all  $v'_i$ s and  $y'_i$ s,  $\phi(SP(K_{1,n})) = 2$ .

**Proposition 2.4.** The b-chromatic number of the splitting graph  $SP(F_n)$  of the Fan graph  $F_n$  is

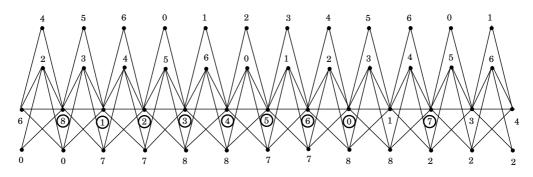
$$\phi(SP(F_n)) = \begin{cases} 6, & \text{for } n \ge 9\\ 5, & \text{for } n = 6, 7, 8\\ 4, & \text{for } n = 5\\ 3, & \text{for } n = 2, 3, 4. \end{cases}$$

*Proof.* The graph  $SP(F_n)$  is same as the graph obtained from  $SP(P_n)$  by adding two new vertices say u and u' and join the vertices u and u' with all the vertices on the path  $P_n$ . Since u and u' cannot be the member of two different b-colour classes, the b-chromatic number of  $SP(F_n)$  is  $\phi(SP(P_n)) + 1$ . Hence the result follows.

**Proposition 2.5.** The b-chromatic number of the splitting graph  $SP(T_n)$  obtained from triangular snake  $T_n$  is

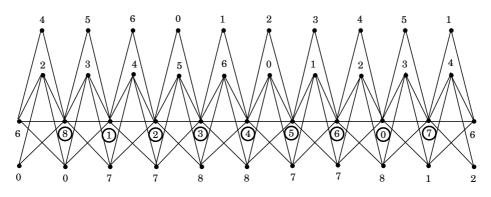
$$\phi(SP(T_n)) = \begin{cases} 9, & \text{for } n \ge 11 \\ 8, & \text{for } n = 10 \\ n-1, & \text{for } 6 \le n \le 9 \\ 5, & \text{for } 3 \le n \le 5 \\ 4, & \text{for } n = 2 \\ 3, & \text{for } n = 1. \end{cases}$$

*Proof.* Let  $v_1, v_2, \ldots, v_{n+1}$  be the vertices on the path of length n and  $u_i, 1 \le i \le n$  be the vertices so that  $u_i v_i$  and  $u_i v_{i+1}$  are edges of the triangular snake  $T_n$  with n triangles. Let  $x_i, y_j$  be the duplicating vertices of  $u_i, v_j$  respectively,  $1 \le i \le n$  and  $1 \le j \le n+1$ . When  $n \ge 2$ , the maximum degree of  $SP(T_n)$  is 8. Hence  $\phi(SP(T_n)) \le 9$  and the *b*-chromatic number will be varied according to the number of vertices with maximum degree and their adjacency. Assume that  $n \ge 11$ . By assigning the colours 2,3,4,5,6,0,1,2,3,4,5 for the first eleven vertices of  $u_i, 4,5,6,0,1,2,3,4,5,6,0$  for the first eleven vertices of  $x_i, 6,8,1,2,3,4,5,6,0,1,7$  for the first eleven vertices of  $v_i, 0,0,7,7,8,8,7,7,8,8,2,2$  for the first twelve vertices of  $y_i$  and giving a proper colouring for the remaining vertices, the vertices  $v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9$  and  $v_{11}$  are the members of the respective colour classes 8, 1, 2, 3, 4, 5, 6, 0 and 7 in which they are having atleast one neighbour in all the remaining colour classes. So  $\phi(SP(T_n)) = 9$  for  $n \ge 11$ . The *b*-colouring is shown in Figure 14 for  $SP(T_{12})$ .



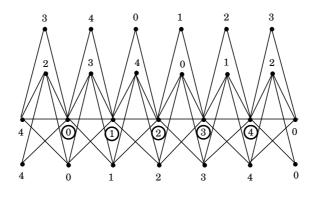
**Figure 14.** A *b*-colouring of  $SP(T_{12})$  with 9 colours

Even through there are 9 vertices having the maximum degree 8 while n = 10, based on the adjacency, it is not possible to fill with 9 colours with the required property. So  $\phi(SP(T_{10})) \le 8$ . The *b*-colouring shown in Figure 15 gives that  $\phi(SP(T_{10})) = 8$ .



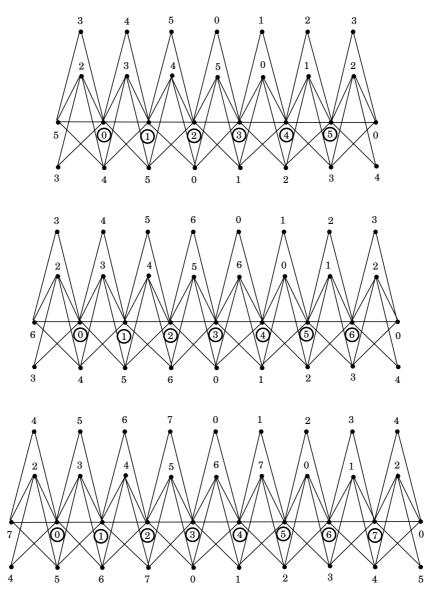
**Figure 15.** A *b*-colouring of  $SP(T_{10})$  with 8 colours

While  $6 \le n \le 9$ , since  $SP(T_n)$  has only n-1 vertices of degree 8 and the remaining vertices are of degree less than or equal to 4,  $\phi(SP(T_n)) \le n-1$  for  $6 \le n \le 9$ . The *b*-colouring shown in Figure 16 gives that  $\phi(SP(T_n)) = n-1$  for  $6 \le n \le 9$ .



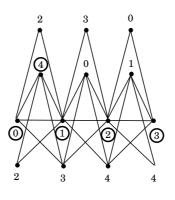
(Figure 16 Contd.)

Journal of Informatics and Mathematical Sciences, Vol. 7, No. 1, pp. 49-67, 2015



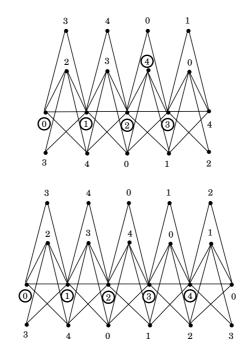
**Figure 16.** A *b*-colouring of  $SP(T_n)$ ,  $6 \le n \le 9$  with n - 1 colours

When  $3 \le n \le 5$ , as only n-2 vertices are of degree 8 and remaining vertices are of degree 4, the *b*-chromatic number will be at most 5. The *b*-colouring shown in Figure 17 gives that  $\phi(SP(T_n)) = 5$  for  $3 \le n \le 5$ .



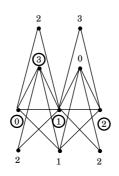
(Figure 17 Contd.)

Journal of Informatics and Mathematical Sciences, Vol. 7, No. 1, pp. 49-67, 2015



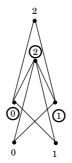
**Figure 17.** A *b*-colouring of  $SP(T_n), 3 \le n \le 5$  with 5 colours

When n = 2, two adjacent edges will have to be received the same colour if we try to give *b*-colouring with 5 colours. The *b*-colouring shown in Figure 18 gives that  $\phi(SP(T_2)) = 4$ .



**Figure 18.** A *b*-colouring of  $SP(T_2)$  with 4 colours

When n = 1, there are 3 vertices with maximum degree 4 and remaining vertices are of degree 2. The *b*-colouring shown in Figure 19 gives that  $\phi(SP(T_1)) = 3$ .

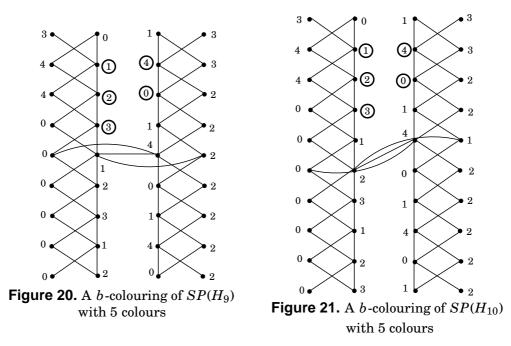


**Figure 19.** A *b*-colouring of  $SP(T_1)$  with 3 colours

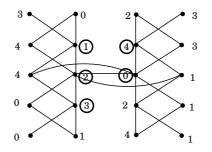
**Proposition 2.6.** The b-chromatic number of the splitting graph of H-graph  $H_n$  is

$$\phi(SP(H_n)) = \begin{cases} 5, & \text{for } n \ge 5\\ 4, & \text{for } n = 4\\ 2, & \text{for } n = 2, 3 \end{cases}$$

*Proof.* Let  $u_i, v_i, 1 \le i \le n$  be the vertices on the paths of length n-1 in H-graph  $H_n$ . Let  $x_i$  and  $y_i$  be the duplicating vertices of  $u_i$  and  $v_i, 1 \le i \le n$  respectively. In  $SP(H_n)$ , two vertices are having the maximum degree 5 and 2n-6 vertices of degree 4. Hence  $\phi(SP(H_n)) \le 5$ . Assume that  $n \ge 7(n \ne 8)$ . Assign the colours 3, 4, 4, 0, 0 for  $x_i, 1 \le i \le 5, 0, 1, 2, 3, 1$  for  $u_i, 1 \le i \le 5, 1, 4, 0, 1$  for  $v_i, 1 \le i \le 4, 3, 3, 2, 2$  for  $y_i, 1 \le i \le 4$  and the proper 5-colouring for the remaining vertices. Then  $u_2, u_3, u_4, v_2$  and  $v_3$  are the members of the colour classes 1, 2, 3, 4 and 0 respectively in which they are having atleast one neighbour of the remaining colour classes. Hence  $\phi(SP(H_n)) = 5$ .

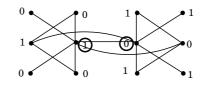


A *b*-colouring with 5 colours for n = 5 is as shown in Figure 22.



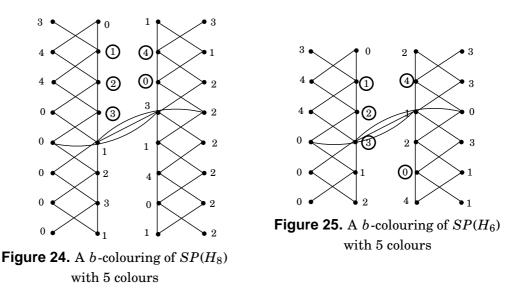
**Figure 22.** A *b*-colouring of  $SP(H_5)$  with 5 colours

When n = 3, only two vertices are of degree 5, two vertices of degree 3 and remaining vertices are of degree less than 3. Based on the adjacency, 4 colours and 3 colours are not possible. A *b*-colouring with 2 colours for n = 3 is given in Figure 23.

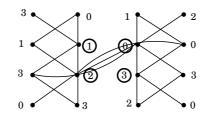


**Figure 23.** A *b*-colouring of  $SP(H_3)$  with 2 colours

A *b*-colouring with 5-colours for n = 6 and 8 are shown in Figure 24 and Figure 25.

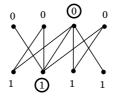


When n = 4, only 4 vertices are having degree at least 4. Hence  $\phi(SP(H_4)) \le 4$ . A *b*-colouring with 4 colours for n = 4 given in Figure 26.



**Figure 26.** A *b*-colouring of  $SP(H_4)$  with 4 colours

When n = 2, *b*-colouring with more than 2 colours is not possible. A *b*-colouring with two colours is given in Figure 27.



**Figure 27.** A *b*-colouring of  $SP(H_2)$  with 2 colours

Journal of Informatics and Mathematical Sciences, Vol. 7, No. 1, pp. 49-67, 2015

**Proposition 2.7.** For splitting graph  $SP(P_n \circ K_1)$  of the graph  $P_n \circ K_1$ , the b-chromatic number is

$$\phi(SP(P_n \circ K_1)) = \begin{cases} 7, & when \ n \ge 9\\ n-2, & when \ n = 7,8\\ 5, & when \ n = 5,6\\ 4, & when \ n = 3,4\\ 2, & when \ n = 1,2 \end{cases}$$

*Proof.* In  $P_n \circ K_1$ , let  $v_1, v_2, \ldots, v_n$  be the vertices on the path of length n-1 and  $u_i$  be the pendant vertex attached at  $v_i, 1 \le i \le n$ . Let  $v'_i$  and  $u'_i$  be the duplicating vertices of  $v_i$  and  $u_i$  respectively,  $1 \le i \le n$ .

In  $SP(P_n \circ K_1), \Delta = 6$  for  $n \ge 3$ . Therefore  $\phi(SP(P_n \circ K_1)) \le 7$ .

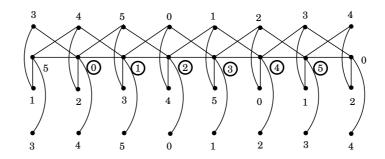
**Case (1).**  $n \ge 9$ . Colour the vertices of  $SP(P_n \circ K_1)$ ) as follows:

> $C(v_i) = i + 5 \pmod{7}$   $C(u_i) = i \pmod{7}$  and  $C(u'_i) = C(v'_i) = i + 2 \pmod{7}.$

Then  $v_2, v_3, v_4, v_5, v_6$  and  $v_7$  are all the members of the colour classes 0, 1, 2, 3, 4, 5 and 6 respectively in which their neighbouring colours are having all the remaining colours. Hence  $\phi(SP(P_n \circ K_1) = 7.$ 

**Case (2).** n = 8.

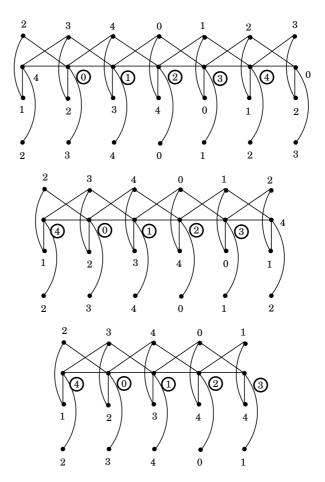
Since 6 vertices are of the maximum degree 6 and two vertices are of the next maximum degree 4,  $\phi(SP(P_8 \circ K_1)) \leq 6$ . Figure 28 shows that  $\phi(SP(P_8 \circ K_1)) = 6$ .



**Figure 28.** A *b*-colouring of  $SP(P_8 \circ K_1)$  with 5 colours

#### **Case (3).** n = 7 (or 6, 5).

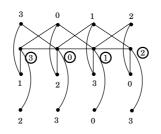
Since five (or four, three) vertices are of the maximum degree 6 and two vertices are of the next maximum degree 4,  $\phi(SP(P_n \circ K_1)) \leq 5$ . The *b*-colouring with 5 colours is given in Figure 29 and hence  $\phi(SP(P_n \circ K_1)) = 5$ .



**Figure 29.** A b-colouring of  $SP(P_n \circ K_1)$  with 5 colours for n = 7,6 and 5

**Case (4).** n = 4.

Since two vertices are of the maximum degree 6, two vertices are of the next maximum degree 4 and the remaining vertices are having degree less then 4,  $\phi(SP(P_4 \circ K_1)) \leq 4$ . Figure 30 shows that  $\phi(SP(P_4 \circ K_1)) = 4$ .

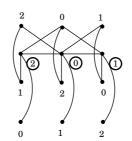


**Figure 30.** A *b*-colouring of  $SP(P_4 \circ K_1)$  with 4 colours

**Case (5).** n = 3.

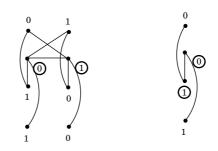
Since one vertex say  $v_2$  is of the maximum degree 6, two vertices (say  $v_1, v_3$ ) are of the next maximum degree 4 and one vertex say  $v'_2$  is of the next maximum degree 3,  $\phi(SP(P_3 \circ K_1)) \leq 4$ .

If  $\phi = 4$ , then the vertices  $v_1, v_2, v_3$  and  $v'_2$  only should be the members of the colour classes with the required property. If it is so, then the adjacent vertices  $v'_2$  and  $u_2$  are to be of same colour. So  $\phi(SP(P_3 \circ K_1)) < 4$ . The *b*-colouring with 3 colours for  $SP(P_3 \circ K_1)$  is given in Figure 31.



**Figure 31.** A *b*-colouring of  $SP(P_3 \circ K_1)$  with 3 colours

**Case (6).** n = 1, 2. By the same argument as in Case (5),  $\phi(SP(P_n \circ K_1)) = 2$ .



**Figure 32.** a *b*-colouring of  $SP(P_n \circ K_1)$  with 2 colours for n = 2 and 1

**Proposition 2.8.** For any  $n \ge 3$ ,

$$\phi(SP(C_n \circ K_1)) = \begin{cases} n, & \text{if } 3 \le n \le 6\\ 7, & \text{if } n \ge 7 \end{cases}$$

*Proof.* Let  $v_1, v_2, ..., v_n$  be the vertices on the cycle  $C_n$  and  $u_i, 1 \le i \le n$  be the pendant vertex attached at  $v_i$  in  $C_n \circ K_1$ . Let  $x_i$  and  $y_i$  be the duplicating vertices of  $u_i$  and  $v_i, 1 \le i \le n$  respectively.

In  $SP(C_n \circ K_1)$ , the maximum degree is 6 and the number of vertices with maximum degree 6 is *n*. So  $\phi(SP(C_n \circ K_1)) \le n$  when  $3 \le n \le 6$  and  $\phi(SP(C_n \circ K_1)) \le 7$  when  $n \ge 7$ .

Assume that  $n \ge 9$ . Assign the colours for the vertices of  $SP(C_n \circ K_1)$  as follows. For  $1 \le i \le n$ ,

> $\leq 3$  $\leq n$

$$C(u_i) = i + 1 \pmod{7}$$

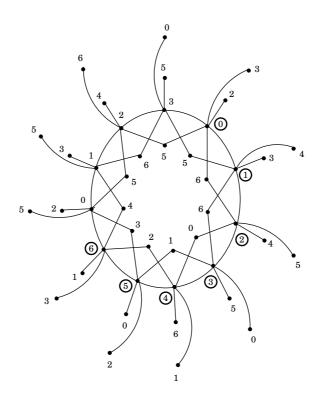
$$C(v_i) = i - 1 \pmod{7}$$

$$C(x_i) = \begin{cases} i+2, & 1 \le i \\ i - 4 \pmod{7}, & 4 \le i \end{cases}$$

and

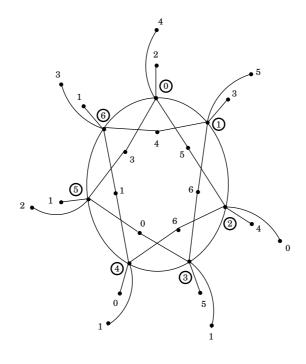
$$C(y_i) = \begin{cases} 5, & \text{for } i = 1\\ 6, & \text{for } i = 2, 3\\ i - 4 \pmod{7}, & \text{for } 4 \le i \le n - 1\\ 5, & \text{for } i = n. \end{cases}$$

Then the colouring is a proper colouring and the vertices  $v_2, v_3, v_4, v_5, v_6, v_7$  and  $v_8$  are the members of the respective colour classes of the colours 1,2,3,4,5,6 and 0 so that they are having all the remaining colours in their neighboring vertices. Thus  $\phi(SP(C_n \circ K_1)) = 7$  for  $n \ge 9$ .

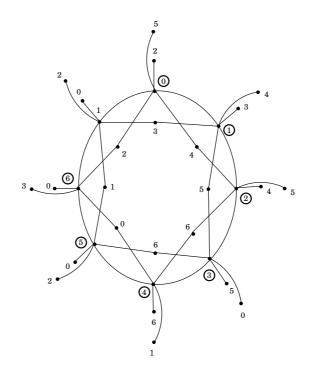


**Figure 33.** A *b*-colouring of  $SP(C_{11} \circ K_1)$  with 7 colours

A *b*-colouring for  $SP(C_n \circ K_1)$  when n = 7 and 8 are given in Figure 34.

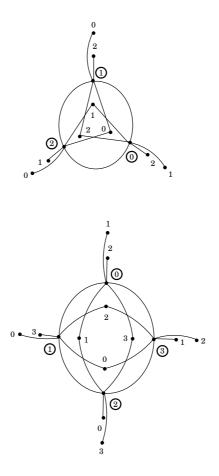


(Figure 34 Contd.)

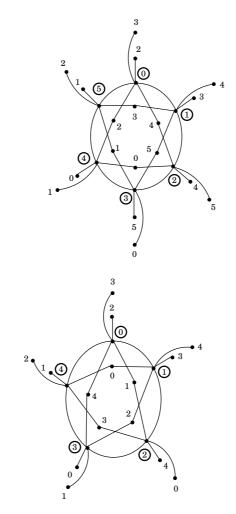


**Figure 34.** A *b*-colouring of  $SP(C_n \circ K_1)$  with 7 colours for n = 7 and 8

Hence  $SP(C_n \circ K_1) = 7$  for  $n \ge 7$ . A *b*-colouring of  $C_n \circ K_1$  with *n* colours when  $3 \le n \le 6$  are given in Figure 35.



Journal of Informatics and Mathematical Sciences, Vol. 7, No. 1, pp. 49-67, 2015



**Figure 35.** A *b*-colouring of  $SP(C_n \circ K_1)$  with *n* colours for  $3 \le n \le 6$ 

for reading manuscript critically.

# **Competing Interests**

The authors declare that they have no competing interests.

# **Authors' Contributions**

All the authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.

# References

- <sup>[1]</sup> S. Arockiaraj, P. Mahalakshmi and P. Namasivayam, Odd sum labeling on splitting graphs, *Util. Math.*, (accepted)
- <sup>[2]</sup> N. Alon and B. Mohar, The chromatic number of graph power, *Combinatorics Probability and Computing* **11** (1993), 1–10.
- <sup>[3]</sup> I.W. Irving and D.F. Manlove, The *b*-chromatic number of a graph, *Discrete Appl. Math.* **91** (1999), 127–141.

- [4] J. Kratochvil, Zs. Tuza and M. Voigt, On the b-chromatic number of graphs, Lecturer Notes in Computer Science, Springer Berlin 2573 (2002), 310–320.
- [5] M. Kouider, b-chromatic number of a graph, subgraphs, degrees, Res. Rep. 1392, LRI, Univ. Orsay, France, 2004.
- [6] R. Javedi and B. Omoomi, On b-coloring of Cartesian product of graphs, Ars Combin. 107 (2012), 521–536.
- [7] E. Sampathkumar and H.B. Walikar, On splitting graph of a graph, J. Karnatak Univ. Sci. 25 (13) (1980), 13–16.
- [8] K. Thilagavathi, D. Vijayalakshmi and N. Roopesh, b-coloring of central graphs, International Journal of Computer Applications 3 (11) (2010), 27–29.
- [9] Vivin. J. Vernold and M. Venkatachalam, The b-chromatic number of corona graphs, Util. Math.
   88 (2012), 299–307.