Journal of Informatics and Mathematical Sciences Volume 2, Number 1 (2010), pp. 45-49 © RGN Publications

Elegant Labeled Graphs

A. Elumalai and G. Sethuraman

Abstract. An *elegant labeling f* of a graph *G* with *m* edges is an injective function from the vertices of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge xy is assigned the label $f(x) + f(y) \pmod{m+1}$, the resulting edge labels are distinct and non zero.

- In this paper we prove the following results (i) The graph P_n^2 is elegant, for all $n \ge 1$.
- (ii) The graphs $P_m^2 + \overline{K}_n$, $S_m + S_n$ and $S_m + \overline{K}_m$ are elegant, for all $m, n \ge 1$.
- (iii) Every even cycle C_{2n} :< $a_0, a_1, \ldots, a_{2n-1}, a_0$ > with 2n 3 chords $a_0a_2, a_0a_3, \ldots, a_0a_{2n-2}$ is elegant, for all $n \ge 2$.
- (iv) The graph $C_3 \times P_m$ is elegant, for all $m \ge 1$.

1. Introduction

An *elegant labeling* f of a graph G with m edges is an injective function from the vertices of G to the set $\{0, 1, 2, \dots, m\}$ such that when each edge x y is assigned the label $f(x) + f(y) \pmod{m+1}$, the resulting edge labels are distinct and nonzero.

The *k*th power P_n^k of P_n , is the graph obtained from P_n by adding edges between all vertices *u* and *v* of P_n with $d(u, v) \le k$. Grace [3] has shown that the graph P_n^2 is harmonious. Kang *et al.* [5] have shown that P_n^2 is graceful. In this direction, we prove that the graph P_n^2 is elegant, for all $n \ge 1$.

The join of disjoint graphs G and H, denoted G + H, is the graph obtained from G and H by joining each vertex of G to every vertex of H. Chang et al. [2] have shown that the graph $S_m + K_1$ is harmonious, where S_m is a star graph on m vertices. Graham and Sloane [4] have proved that the graphs $P_n + K_1$ and $P_n + \overline{K}_2$ are graceful and harmonious. Here we prove that the graphs $P_m + \overline{K}_n$, $S_m + S_n$ and $S_m + \overline{K}_n$ are elegant, for all $m, n \ge 1$.

Koh and Punnim [6] have proved that the cycles with 3-consecutive chords are graceful. Here we show that every even cycle C_{2n} : $\langle a_0, a_1, a_2, \dots, a_{2n-1}, a_0 \rangle$ with 2n - 3 chords $a_0a_2, a_0a_3, \ldots, a_0a_{2n-2}$ is elegant, for all $n \ge 2$.

²⁰⁰⁰ Mathematics Subject Classification. 05C78.

Key words and phrases. Graph labeling; Elegant labeling; Elegant graphs; Join graphs; Product graphs.

The product of graphs *G* and *H* denoted $G \times H$ is the graph with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to (u', v') if and only if either u = u' and $vv' \in E(H)$ or v = v' and $uu' \in E(G)$. Consider $C_3 \times P_m$. We denote the graph $C_3 \times P_m$ as shown in Figure 1 with $V(C_3 \times P_m) = \{v_{11}, v_{12}, ..., v_{1m}, v_{21}, v_{22}, ..., v_{2m}, v_{31}, v_{32}, ..., v_{3m}\}$.

Figure 1. The graph $C_3 \times P_m$

Here we prove that the graph $C_3 \times P_m$ is elegant, for all $m \ge 1$.

2. Elegant Labeled Graphs

Theorem 2.1. The graph P_n^2 is elegant, for all $n \ge 1$.

Proof. Let $P_n = (v_1, v_2, ..., v_{n-1})$ and $G = P_n^2$. Clearly |V(G)| = n and |E(G)| = 2n - 3 = M.

Define $f : V(G) \to \{0, 1, 2, ..., M\}$ by

$$f(v_0) = 0$$
, $f(v_i) = 2(n-1) - i$, if $1 \le i \le n-1$.

Clearly *f* is injective, the label of the edge $v_i v_{i+1}$ is M - 2i, $1 \le i \le n - 2$ and the label of the edge $v_i v_{i+2}$ is M - 2i - 1, $0 \le i \le n - 3$. Hence *f* is an elegant labeling of *G*.

Theorem 2.2. The graph $P_m^2 + \overline{K}_n$ is elegant, for all $m, n \ge 1$.

Proof. Let $P_m = (u_1, u_2, \dots, u_m)$ and let $V(\overline{K}_n) = \{v_1, v_2, \dots, v_n\}$ and $G = P_m^2 + \overline{K}_n$. Clearly |V(G)| = m + n and |E(G)| = m(n+2) - 3 = M. Define $f : V(G) \rightarrow \{0, 1, 2, \dots, M\}$ by

 $f(u_1) = 0,$ $f(u_i) = m(n+2) - (i+1), \text{ if } 2 \le i \le m$ Elegant Labeled Graphs

$$f(v_i) = jm$$
, if $1 \le j \le n$.

Clearly *f* is injective, the label of the edge $u_i u_{i+1}$ is M - 2(i-1), $1 \le i \le m-1$, the label of the edge $u_i u_{i+2}$ is M - 2i + 1, $1 \le i \le m-2$, the label of the edge $u_1 v_j$ is jm, $1 \le j \le n$ and the label of the edge $u_i v_j$ is $[m(n+j+2)-(i+1)] \pmod{M+1}$, $2 \le i \le m$ and $1 \le j \le n$.

Hence f is an elegant labeling of G.

Theorem 2.3. The graph $S_m + S_n$ is elegant, for all $m, n \ge 1$.

Proof. Let S_m and S_n be two stars with $V(S_m) = \{u_1, u_2, \dots, u_m\}$ and $V(S_n) = \{v_1, v_2, \dots, v_n\}$ such that deg $u_1 = m$, deg $u_i = 1$, for $2 \le i \le m$ and deg $v_1 = n$, deg $v_i = 1$, for $2 \le i \le n$. Consider $G = S_m + S_n$. Clearly |V(G)| = m + n and |E(G)| = m(n+1) + n - 2 = M.

Define $f : V(G) \to \{0, 1, 2, ..., M\}$ by

$$f(u_1) = 0,$$

$$f(u_i) = M - (i - 2), \text{ if } 2 \le i \le m,$$

$$f(v_1) = n(m + 1) - 1,$$

$$f(v_i) = (j - 1)(m + 1), \text{ if } 2 \le j \le n.$$

Clearly *f* is injective, the label of the edge u_1u_i is M - (i - 2), $2 \le i \le m$, the label of the edge u_1v_1 is n(m + 1) - 1, the label of the edge u_1v_j is (j - 1)(m + 1), $2 \le j \le n$, the label of the edge u_iv_1 is $[2n(m + 1) + m - (i + 1)] \pmod{M + 1}$, $2 \le i \le m$, the label of the edge u_iv_j is $[(m + 1)(n + j) - (i + 1)] \pmod{M + 1}$, $2 \le i \le m$ and $2 \le j \le n$ and the label of the edge v_1v_j is $[m(n + j - 1) + n + j - 2] \pmod{M + 1}$, $2 \le j \le n$. Hence *f* is an elegant labeling of *G*.

Theorem 2.4. The graph $S_m + \overline{K}_n$ is elegant, for all $m, n \ge 1$.

Proof. Let S_m be a star with $V(S_m) = \{u_1, u_2, \dots, u_m\}$ such that $\deg u_1 = m$, $\deg u_i = 1$, for $2 \le i \le m$ and let $V(\overline{K}_n) = \{v_1, v_2, \dots, v_n\}$. Consider $G = S_m + \overline{K}_n$. Clearly |V(G)| = m + n and |E(G)| = m(n+1) - 1 = M. Define $f : V(G) \rightarrow \{0, 1, 2, \dots, M\}$ by

 $f(u_1) = 0,$ $f(u_i) = M - (i - 2), \text{ if } 2 \le i \le m$ $f(v_i) = jm, \text{ if } 1 \le j \le n.$

Clearly *f* is injective, the label of the edge u_1u_i is M - (i-2), $2 \le i \le m$, the label of the edge u_1v_j is jm, $1 \le j \le n$ and the label of the edge u_iv_j is [m(n+j+1)-(i-1)] (mod M + 1), $2 \le i \le m$ and $1 \le j \le n$. Hence *f* is an elegant labeling of *G*. \Box

Theorem 2.5. Every even cycle C_{2n} : $\langle a_0, a_1, \ldots, a_{2n-1}, a_0 r \rangle$ with 2n - 3 chords $a_0a_2, a_0a_3, \ldots, a_0a_{2n-2}$ is elegant, for all $n \ge 2$.

Proof. Let G be an even cycle C_{2n} : $\langle a_0, a_1, \ldots, a_{2n-1}, a_0 \rangle$ with 2n - 3 chords $a_0a_2, a_0a_3, \ldots, a_0a_{2n-2}$, for $n \ge 2$. Clearly |V(G)| = 2n and |E(G)| = 4n - 3 = M.

Define $f : V(G) \to \{0, 1, 2, ..., M\}$ by

$$f(a_0) = 0, f(a_i) = 2i - 1, \text{ if } 1 \le i \le 2n - 1.$$

Clearly f is injective, the label of the edge a_0a_i is 2i - 1, $1 \le i \le 2n - 1$, the label of the edge $a_i a_{i+1}$ are 4i, $1 \le i \le n-1$ and $4i \pmod{M+1}$, $n \le i \le 2n-2$. Hence f is an elegant labeling of G.

Theorem 2.6. The graph $C_3 \times P_m$ is elegant, for all $m \ge 1$.

Proof. Let $C_3 \times P_m = V(v_{11}, v_{12}, v_{13}, \dots, v_{1m}, v_{21}, v_{22}, \dots, v_{2m}, v_{31}, v_{32}, \dots, v_{3m})$ and $G = C_3 \times P_m$. Clearly |V(G)| = 3m and |E(G)| = 3(2m - 1) = M. Define $f : V(G) \to \{0, 1, 2, ..., M\}$ by

$$f(v_{31}) = 0$$

$$f(v_{ki}) = 3(2m - i) + \delta_{ki},$$

where

$$\delta_{ki} = -\frac{1 + (-1)^{i}}{2}, \quad \text{if } k = 1 \text{ and } 1 \le i \le m$$

$$\delta_{ki} = (-1)^{i}, \quad \text{if } k = 2 \text{ and } 1 \le i \le m$$

$$\delta_{ki} = \frac{1 - (-1)^{i}}{2}, \quad \text{if } k = 3 \text{ and } 1 \le i \le m.$$

Clearly *f* is injective, the label of the edge $v_{1i}v_{2i}$ is $[6(2m-i)-\alpha] \pmod{(M+1)}$, $1 \le i \le m$, where $\alpha = 1$ or 0 depends on *i* is odd or even, the label of the edge $v_{21}v_{31}$ is 6m - 4, the label of the edge $v_{2i}v_{3i}$ is $[6(2m - i) + \alpha] \pmod{(M + 1)}$, $2 \le i \le m$, where $\alpha = 0$ or 1 depends on *i* is odd or even, the label of the edge $v_{31}v_{11}$ is 6m - 2, the label of the edge $v_{3i}v_{1i}$ is $[6(2m - i) - \alpha] \pmod{(M + 1)}$, $2 \le i \le m$, where $\alpha = -1$ or 1 depends on *i* is odd or even, the label of the edge $v_{1i}v_{1(i+1)}$ is 6(m-i)-2, $1 \le i \le m-1$, the label of the edge $v_{2i}v_{2(i+1)}$ is 6(m-i)-1, $1 \le i \le m-1$, the label of the edge $v_{3i}v_{3(i+1)}$ is 6(m-i), $1 \le i \le m-1$. Hence f is an elegant labeling of G. \square

References

- [1] R. Balakrishnan, A. Selvam and V. Yegnanarayanan, Some results on elegant graphs, Indian J. Pure Appl. Math. 28 (1997), 905–916.
- [2] G. J. Chang, D. F. Hsu and D. G. Rogers, Additive variations on a graceful theme: some results on harmonious and other related graphs, Congress. Numer. 32 (1981), 181-197.

Elegant Labeled Graphs

- [3] T. Grace, On sequential labelings of graphs, J. Graph Theory 7 (1983), 195–201.
- [4] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math. 1 (1980), 382–404.
- [5] Q. D. Kang, Z. H. Liang, Y. Z. Gao and G. H. Yang, On the labeling of some graphs, J. Combin. Math., Combin. Comput. 22 (1996), 193–210.
- [6] K. M. Koh and N. Punnim, On graceful graphs: cycles with 3-consecutive chords, Bull. Malaysian Math. Soc. 5 (1982), 49–63.

A. Elumalai, Department of Mathematics, SRM Valliammai Engineering College, Kattankulathur 603 203, India. E-mail: s_elu@yahoo.com

G. Sethuraman, Department of Mathematics, Anna University, Chennai 600 025, India.

Received December 04, 2009 Accepted May 27, 2010