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1. Introduction
For all terms and definitions, not defined specifically in this paper, we refer to [10]. Unless
mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

Many problems in extremal graph theory seek the extreme values of graph parameters on
families of graphs. The classic paper of Nordhaus and Gaddum [6] study the extreme values of
the sum (or product) of a parameter on a graph and its complement, following solving these
problems for the chromatic number on n-vertex graphs. In this paper, we study such problems
for some graphs and their associated graphs.

Definition 1.1 ([5]). A Walk, W = v0e1v1e2v2 . . .vk−1ekvk , in a graph G is a finite sequence
whose terms are alternately vertices and edges such that, for 1 ≤ i ≤ k, the edge e i has ends
vi−1 and vi .
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Definition 1.2 ([5]). If the vertices v0,v1, . . . ,vk of a walk W are distinct then W is called a
Path. A path with n vertices will be denoted by Pn . Pn has length n−1.

Definition 1.3 ([4]). Two vertices that are not adjacent in a graph G are said to be independent.
A set S of vertices is independent if any two vertices of S are independent. The vertex
independence number or simply the independence number, of a graph G , denoted by α(G)
is the maximum cardinality among the independent sets of vertices of G .

Definition 1.4 ([2]). A subset M of the edge set of G , is called a matching in G if no two of
the edges in M are adjacent. In other words, if for any two edges e and f in M , both the end
vertices of e are different from the end vertices of f .

Definition 1.5 ([2]). A perfect matching of a graph G is a matching of G containing n/2 edges,
the largest possible, meaning perfect matchings are only possible on graphs with an even
number of vertices. A perfect matching sometimes called a complete matching or 1-factor.

Definition 1.6 ([2]). The matching number of a graph G , denoted by ν(G), is the size of a
maximal independent edge set. It is also known as edge independence number. The matching
number ν(G) satisfies the inequality ν(G)≤

⌊n
2

⌋
.

Equality occurs only for a perfect matching and graph G has a perfect matching if and only if
|G| = 2 ν(G), where |G| = n is the vertex count of G .

Definition 1.7 ([2]). A maximum independent set in a line graph corresponds to maximum
matching in the original graph.

In this paper, we discussed the sum and product of the independence numbers of certain
class of graphs and their line graphs.

2. New Results
Definition 2.1 ([12]). The line graph L(G) of a simple graph G is the graph whose vertices are
in one-one correspondence with the edges of G , two vertices of L(G) being adjacent if and only
if the corresponding edges of G are adjacent.

Theorem 2.2 ([11]). The independence number of the line graph of a graph G is equal to the
matching number of G .

Proposition 2.3. The sum of the independence number of a complete graph and its line graph
is

⌊n
2

⌋
+1 and their product is

⌊n
2

⌋
.

Proof. The independence number of a complete graph Kn on n vertices is 1, since each vertex
is joined with every other vertex of the graph G . By theorem 2.2, the independence number of
the line graph of Kn is the matching number of Kn =

⌊n
2

⌋
.

Therefore

α(Kn)+α(L(Kn))=
⌊n

2

⌋
+1
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and

α(Kn) ·α(L(Kn))=
⌊n

2

⌋
.

Proposition 2.4. For a bipartite graph Bm,n ,

α(Bm,n)+α(L(Bm,n))= m+n

and

α(Bm,n) ·α(L(Bm,n))= mn .

Proof. Without the loss of generality, let m < n. The independence number of a bipartite
graph, α(Bm,n) = max(m,n) = n and that of its line graph, α(L(Bm,n)) = matching number of
Bm,n = ν(Bm,n)=min(m,n)= m.
Therefore,

α(Bm,n)+α(L(Bm,n))= m+n

and

α(Bm,n) ·α(L(Bm,n))= mn .

Definition 2.5 ([10]). For n ≥ 3, a wheel graph Wn+1 is the graph K1+Cn . A wheel graph Wn+1
has n+1 vertices and 2n edges.

Theorem 2.6. For a wheel graph Wn+1 , n ≥ 3, α(Wn+1)+α(L(Wn+1))= 2
⌊n

2

⌋
and

α(Wn+1) ·α(L(Wn+1))=
(⌊n

2

⌋)2
.

Proof. Let I be the maximal independent set of a wheel graph Wn+1 . By definition a wheel
graph is defined to be the graph K1 +Cn . If K1 ∈ I , no vertex of Cn can be in I . Hence let
K1 ∉ I .

Case 1: If n is even, Cn is an even cycle. Then Cn = v1,v2, . . . ,vn,v1 . Without loss of generality,
choose v1 to I . Since v2 is adjacent to v1 , v2 ∉ I . Now choose v3 to I , since it is not adjacent
to v1 . Now v4 cannot be selected to I , since it is adjacent to v3 . Proceeding in this way,
finite number of times, the vertices of the form vi , i = 1,3,5, . . . ,n−1 belong to I . That is,
α(Cn)= n

2
.

Case 2: If n is odd, Cn is an odd cycle. Then Cn = v1,v2, . . . ,vn,v1 . Without loss of generality,
choose v1 to I . Since v2 is adjacent to v1 , v2 ∉ I . Now choose v3 to I , since it is not adjacent
to v1 . Now v4 cannot be selected to I , since it is adjacent to v3 . Proceeding in this way,
finite number of times, the vertices of the form vi , i = 1,3,5, . . . ,n−2 belong to I . That is,

α(Cn)= n−1
2

.

From the above two cases, it is clear that the independence number of a wheel graph Wn+1 is⌊n
2

⌋
.
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Now, consider the line graph of the wheel graph Wn+1 . By theorem 2.2, the independence
number of L(Wn+1) is equal to the matching number of Wn+1 .

Let M be a maximal matching set of the wheel graph Wn+1 . Then α(L(Wn+1)) = ν(Wn+1).
Let e1, e2, . . . , en be the edges the outer cycle taken in the order of the wheel graph Wn+1 and let
e′1, e′2, . . . , e′n be the edges incident on the vertex of K1 .

Case 1: If n is even, without loss of generality choose e1 to the set M . Now, e2 ∉ M as e2 is
adjacent to e1 . Now take the edge e3 to M . Since e4 is adjacent to e3 , e4 ∉ M . Proceeding
in this manner, a finite number of times, an edge of the form e i , i = 1,3,5, . . . ,n−1 belong
to M . In this case no edge of the form e′j can be a member of M . That is, |M| = n

2
.

Case 2: If n is odd, an edge of the form e i , i = 1,3,5, . . . ,n−2 belong to M . Moreover there is
one edge e′j that is incident on K1 and is not adjacent to any of the edges in M . That is,

|M| = n−1
2

.

From the above two cases, we follow that α(L(Wn+1))=
⌊n

2

⌋
Therefore, α(Wn+1)+α(L(Wn+1))= 2

⌊n
2

⌋
and α(Wn+1) ·α(L(Wn+1))=

(⌊n
2

⌋)2
.

Definition 2.7 ([9]). Helm graphs are graphs obtained from a wheel by attaching one pendant
edge to each vertex of the cycle.

Theorem 2.8. For a helm graph Hn , n ≥ 3, α(Hn)+α(L(Hn))= 2n+1 and
α(Hn) ·α(L(Hn))= n(n+1).

Proof. Let I be a maximal independent set of a helm graph Hn . Then, its elements are the set
of all pendent vertices together with the vertex of K1 . So I consists of n+1 elements. There
fore, α(Hn)= n+1.

Now consider the line graph of the helm graph Hn . By theorem 2.2, the independence
number of L(Hn) is equal to the matching number of Hn . Let M be a maximal matching set
of the helm graph Hn . Then α(L(Hn))= ν(Hn). Let e1, e2, . . . , en be the pendent edges incident
with the outer cycle taken in order of the helm graph Hn . Then if we take these n edges to
M , it will be a maximum matching in Hn . This means the matching number of a helm graph,
ν(Hn)= n =α(L(Hn)).

Therefore, α(Hn)+α(L(Hn))= 2n+1 and α(Hn) ·α(L(Hn))= n(n+1).

Definition 2.9 ([11]). Given a vertex x and a set U of vertices, an x, U -fan is a set of paths
from x to U such that any two of them share only the vertex x. A U -fan is denoted by F1,n .

Theorem 2.10. For a fan graph F1,n ,

α(F1,n)+α(L(F1,n))=
{

n ; if n is even
n+1 ; if n is odd,

and α(F1,n) ·α(L(F1,n))=


n2

4
; if n is even

(n+1)2

4
; if n is odd.
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Proof. Let I be a maximal independent set of a fan graph F1,n . By the definition a fan graph is
defined to be the graph K1 +Pn . If K1 ∈ I , no vertex of Pn can be in I . Hence let K1 ∉ I .

Case 1: If n is even, then Pn is an odd path. Then, Pn = v1,v2, . . . ,vn . Without loss of generality,
choose v1 to I . Since v2 is adjacent to v1 , v2 ∉ I . Now choose v3 to I , since it is not
adjacent to v1 . Now v4 cannot be selected to I , since it is adjacent to v3 . Proceeding in
this way, finite number of times, the vertices of the form vi , i = 1,3,5, . . . ,n−1 belong to I .
That is, α(Pn)= n

2
.

Case 2: if n is odd, then Pn is an even path. Then, Pn = v1,v2, . . . ,vn . Without loss of generality,
choose v1 to I . Since v2 is adjacent to v1 , v2 ∉ I . Now choose v3 to I , since it is not adjacent
to v1 . Now, v4 cannot be selected to I , since it is adjacent to v3 . Proceeding in this way,
finite number of times, the vertices of the form vi , i = 1,3,5, . . . ,n belong to I . That is,

α(Pn)= n+1
2

.

From the above two cases it is clear that the independence number of a fan graph F1,n is either
n
2

or
n+1

2
, depending on n is even or odd.

Now consider the line graph of the fan graph F1,n . By Theorem 2.2, the independence
number of L(F1,n) is equal to the matching number of F1,n .

Let M be a maximal matching set of the fan graph F1,n . Then α(L(F1,n)) = ν(F1,n). Let
e1, e2, . . . , en−1 be the edges the outer path taken in order of the fan graph F1,n and let
e′1, e′2, . . . , e′n be the edges incident with the vertex of K1 .

Case 1: Without loss of generality choose e1 to the set M . Now, since e2 is adjacent to e1 ,
e2 ∉ M . Now take the edge e3 to M . Since e4 is adjacent to e3 , e4 ∉ M . Proceeding in this
manner, a finite number of times, an edge of the form e i, i = 1,3,5, . . . ,n−1 belong to M .
In this case no edge of the form e′j can be a member of M . That is,|M| = n

2
.

Case 2: If n is odd, an edge e i, i = 1,3,5, . . . ,n−2 belongs to M . Moreover there is one edge e′j
that is incident on K1 and is not adjacent to any of the edges in M . That is, |M| = n+1

2
.

From the above two cases, we follow that α(L(F1,n))= ν(F1,n) is either
n
2

or
n+1

2
depending on

n is even or odd.
Therefore For a fan graph F1,n ,

α(F1,n)+α(L(F1,n))=
{

n ; if n is even
n+1 ; if n is odd,

and α(F1,n) ·α(L(F1,n))=


n2

4
; if n is even

(n+1)2

4
; if n is odd.

Definition 2.11 ([1, 13]). An n−sun or a trampoline, denoted by Sn , is a chordal graph on 2n
vertices, where n ≥ 3, whose vertex set can be partitioned into two sets U = {u1,u2,u3, . . . ,un}
and W = {w1,w2,w3, . . . ,wn} such that U is an independent set of G and ui is adjacent to w j if
and only if j = i or j = i+1 (mod n). A complete sun is a sun G where the induced subgraph
〈U〉 is complete.
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Theorem 2.12. For Sn , n ≥ 3, α(Sn)+α(L(Sn))= 2n and α(Sn) ·α(L(Sn))= n2 .

Proof. Let Sn be a sun graph on 2n vertices. Let V = {v1,v2,v3, . . . ,vn} be the vertex set of Kn
and U = {u1,u2,u3, . . . ,un} be the set of vertices attached to the edges of the outer ring of Kn .
Clearly, all the vertices in U are independent and U itself is the maximum independent set in
Sn . Therefore the independence number of Sn , α(Sn)= n. Let E1 = {e1, e2, e3, . . . , en} be the edge
set of the outer rings of Kn . Now, corresponding to each edge of the outer ring of Kn , there exist
two edges connecting its end vertices in Sn . Therefore, let E2 = {e′1, e′2, e′3, . . . , e′n} be the edge set
in Sn such that the pair (e′j, e′k) corresponds to the edge e i of the outer rings of Kn . Clearly,
one edge among each pair (e′j, e′k) contributes to a maximal matching of Sn . That is, ν(Sn)= n.
Therefore, for a sun graph Sn , n ≥ 3, α(Sn)+α(L(Sn))= 2n and α(Sn) ·α(L(Sn))= n2 .

Definition 2.13 ([13]). The n-sunlet graph is the graph on 2n vertices obtained by attaching n
pendant edges to a cycle graph Cn and is denoted by Ln .

Theorem 2.14. For a sunlet graph Ln on 2n vertices, n ≥ 3, α(Ln)+α(L(Ln)) = 2n and
α(Ln) ·α(L(Ln))= n2 .

Proof. Let Ln be a sunlet graph on 2n vertices. Let V = {v1,v2,v3, . . . ,vn} be the vertex set of
the cycle Cn and U = {u1,u2,u3, . . . ,un} be the set of pendent vertices attached to the vertices
of the cycle Cn . Clearly, all the vertices in U are independent and U itself is the maximum
independent set in Ln . Therefore, α(Ln) = n. Let E1 = {e1, e2, e3, . . . , en} be the edge set of Cn .
Now, corresponding to each edge of Cn , there exist two edges connecting its end vertices in Ln .
Therefore, let E2 = {e′1, e′2, e′3, . . . , e′n} be the edge set in Ln such that the pair (e′j, e′k) corresponds
to the edge e i of the cycle Cn . Clearly, the set E2 = {e′1, e′2, e′3, . . . , e′n} contributes to a maximal
matching of Ln . That is, α(L(Ln))= ν(Ln)= n. Therefore, for a sunlet graph Ln on 2n vertices,
n ≥ 3, α(Ln)+α(L(Ln))= 2n and α(Ln) ·α(L(Ln))= n2 .

Definition 2.15 ([10]). The armed crown is a graph G obtained by adjoining a path Pm to
every vertex of a cycle Cn .

Theorem 2.16. For an armed crown graph G with a path Pm and a cycle Cn ,

α(G)+α(L(G))=


⌊n
2

⌋[
m+1

2
+1

]
+

[
m−1

2

][
n+

⌈n
2

⌉]
; if m, n are odd

mn ; otherwise,

and

α(G) ·α(L(G))=


[⌊n

2

⌋[
m+1

2

]
+

⌈n
2

⌉[
m−1

2

]]
·
[⌊n

2

⌋
+n

[
m−1

2

]]
; if m, n are odd

n2m2

4
; otherwise.

Proof. Note that the number of vertices of Pm is m. Let u1,u2, . . . ,un be the vertices of the cycle
Cn . Let u1

i ,u2
i , . . . ,um

i be the vertices of the paths of length m attached with ui , 1≤ i ≤ n with
identification of ui and um

i .

Case 1: (when m is even and n is even) Since u1
1,u2

1, . . .um
1 be the vertices of the first path

attached to the first vertex u1 of the cycle Cn , the maximal independent set consists
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of exactly
m
2

elements. Since there are n number of paths attached to every vertex ui ,

1 ≤ i ≤ n of the cycle Cn , which contributes n
m
2

number of elements to the maximal

independent set I . Therefore, α(G) = nm
2

. Let E1 = {e1, e2, . . . , en} be the edge set of the

cycle Cn and let E2 = {e1
i , e2

i , . . . , em
i } be the edge set of the path Pm . Now for every ui

in Cn , there exists a path with m number of edges. Clearly,
m
2

edges contributes to a
maximal matching of Pm . For each n vertices ui , (1 ≤ i ≤ n) of Cn , there is a path Pm

adjoined to it, so that the maximal matching in G , ν(G)= nm
2

.

Therefore, α(G)+α(L(G))= nm
2

+ nm
2

= nm and α(G) ·α(L(G))= nm
2

· nm
2

= n2m2

4
.

Case 2: (m is odd and n is even) Since m is odd, the maximal independent set of Pm

adjoined with the vertex u1 of Cn is
(m+1)

2
. But the vertex u1 is an element of the

maximal independent set, u2 , the vertex adjacent to u1 of Cn cannot be in I . So the
maximal independent set from the path Pm adjoined with the vertex u2 consists of
(m−1)

2
elements. Proceeding like this, in all the paths of G , the maximal independent set

corresponding to ui , 1≤ i ≤ n of the cycle Cn , is alternately
m+1

2
and

m−1
2

. Since there

are n vertices in Cn , the independence number of G , α(G)= n
2

[
(m−1)

2
+ (m+1)

2

]
= nm

2
.

Let E1 = {e1, e2, . . . , en} be the edge set of the cycle Cn and let E2 = {e1
i , e2

i , . . . , em
i } be the

edge set of the path Pm . Now, for every ui in Cn , there exists a path with m number of
edges. Clearly,

m
2

edges contributes to a maximal matching of Pm . For each n vertices
ui , 1≤ i ≤ n of Cn , there is a path Pm adjoined to it, so that the maximal matching in G ,

ν(G)= n
2
+n[

m−1
2

]= nm
2

.

Therefore, α(G)+α(L(G))= nm
2

+ nm
2

= nm and α(G) ·α(L(G))= nm
2

· nm
2

= n2m2

4
.

Case 3: (m is even and n is odd) Since m is even, and since u1
1,u2

1, . . . ,um
1 be the vertices of

the first path attached to the first vertex u1 of the cycle Cn , the maximal independent
set consists of exactly

m
2

elements. Since there are n number of paths attached to every

vertex ui , i ≤ 1 ≤ n of the cycle Cn , which contributes n
m
2

number of elements to the

maximal independent set I . Therefore α(G)= nm
2

. Let E1 = {e1, e2, . . . , en} be the edge set

of the cycle Cn and let E2 = {e1
i , e2

i , . . . , em
i } be the edge set of the path Pm . Now, for every

ui in Cn , there exists a path with m number of edges. Clearly,
m
2

edges contributes to a
maximal matching of Pm . For all n vertices of the cycle Cn , there adjoined paths Pm , so
that the maximal matching in G is ν(G)= nm

2
.

Therefore α(G)+α(L(G))= nm
2

+ nm
2

= nm and α(G) ·α(L(G))= nm
2

· nm
2

= n2m2

4
.
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Case 4: (m is odd and n is odd) Since m is odd, the maximal independent set I of Pm

adjoined with the vertex u1 of Cn is
(m+1)

2
. But the vertex u1 is an element of the

maximal independent set of Pm , u2 , the vertex adjacent to u1 of Cn cannot be in I . So
the maximal independent set from the path Pm adjoined with the vertex u2 consists of
(m−1)

2
elements. Proceeding like this, in all the paths of G , the maximal independent set

corresponding to ui , 1≤ i ≤ n of the cycle Cn , is alternately
m+1

2
and

m−1
2

. Obviously,

there are
⌊n

2

⌋
number of paths which contributes

m+1
2

and
⌈n

2

⌉
number of paths which

contributes
m−1

2
number of vertices to the maximal independent set, the independence

number of G , α(G)=
⌊n

2

⌋[
m+1

2

]
+

⌈n
2

⌉[
m−1

2

]
. Let E1 = {e1, e2, . . . , en} be the edge set of

the cycle Cn and let E2 = {e1
i , e2

i , . . . , em
i } be the edge set of the path Pm . Now, for every ui in

Cn , there exists a path with m number of edges. Clearly, since m is odd, n
[

m−1
2

]
edges

contributes to a maximal matching of Pm for all paths of G . Also, since n is also odd, which
contributes

⌊n
2

⌋
number of edges to the maximal matching of G , so that the independence

number of L(G) is equal to the matching number of G is ν(G)= n
[

m−1
2

]
+

⌊n
2

⌋
.

Therefore,

α(G)+α(L(G))=
⌊n

2

⌋[
m+1

2

]
+

⌈n
2

⌉[
m−1

2

]
+

⌊n
2

⌋
+n

[
m−1

2

]
=

⌊n
2

⌋[
m+1

2
+1

]
+

[
m−1

2

][
n+

⌈n
2

⌉]
and

α(G) ·α(L(G))=
[⌊n

2

⌋[
m+1

2

]
+

⌈n
2

⌉[
m−1

2

]]
·
[⌊n

2

⌋
+n

[
m−1

2

]]
.

3. Conclusion
The theoretical results obtained in this research may provide a better insight into the problems
involving matching number and independence number by improving the known lower and upper
bounds on sums and products of independence numbers of a graph G and an associated graph
of G . More properties and characteristics of operations on independence number and also other
graph parameters are yet to be investigated. The problems of establishing the inequalities on
sums and products of independence numbers for various graphs and graph classes still remain
unsettled. All these facts highlight a wide scope for further studies in this area.
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