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1. Introduction
The double Laplace transform [8] of a function f (x, t) defined in the positive quadrant of the
xt-plane is defined by the equation

LxL t{ f (x, t)}= f̄ (p, s)=
∫ ∞

0
e−px

∫ ∞

0
e−st f (x, t)dtdx (1.1)

whenever that integral exist. Here p, s are complex numbers.

The double Laplace transform is useful in solving wave, Laplace, heat and non-homogeneous
partial differential equation which occur in many branches of physics, in applied mathematics
as well as in engineering. It can be used as a very effective tool in simplifying the calculations in
many fields of engineering and mathematics. It also provides a powerful method for analyzing
linear systems. It is heavily used in solving differential and integral equations. Estrin and
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Higgins [6] in 1951, has given the systematic account of the general theory of an operational
calculus using double Laplace transform and illustrated it’s application through solution of two
problems, one in electrostatics, the other in heat conduction. Coon and Bernstein [3] has done
systematic study of double Laplace transform in 1953 and developed its properties including
conditions for transforming derivatives, integrals and convolution. Buschman [2] in 1983 used
double Laplace transform to solve a problem on heat transfer between a plate and a fluid flowing
across the plate. In 1989, Debnath and Dahiya [4] established a set of new theorems concerning
multidimensional Laplace transform of some functions and used the technique developed to
solve an electrostatic potential problem.

Recently in 2013, Aghili and Zeinali [1] implemented multidimensional Laplace transforms
method for solving certain non-homogeneous forth order partial differential equations. In 2014,
Eltayeb, Kilicman and Mesloub [5] applied double Laplace transform method to evaluate the
exact value of double infinite series.

Despite this, systematic account of the convergence of double Laplace transform is not
accessible and understandable to many. Therefore, we revisit the double Laplace transform
developed in the middle half of 20th century and present convergence, absolute convergence and
uniform convergence of double Laplace transform. In the last section, we use double Laplace
transform to solve Volterra Integro-Partial Differential Equation [7].

2. Convergence Theorem of Double Laplace Integral

In this section, we prove the convergence theorem of double Laplace integral.

Theorem 2.1. Let ϕ(x, t) be a function of two variables continuous in the positive quadrant of
the xt-plane. If the integral∫ ∞

0

∫ ∞

0
e−px−stϕ(x, t)dxdt (2.1)

converges at p = p0 , s = s0 then integral (2.1) converges for p > p0 , s > s0 .

For the proof we will use the following lemmas:

Lemma 2.2. If the integral∫ ∞

0
e−stϕ(x, t)dt (2.2)

converges at s = s0 then the integral (2.2) converges for s > s0 .

Proof. Set

α(x, t)=
∫ t

0
e−s0vϕ(x,v)dv, 0< t <∞ . (2.3)

Clearly α(x,0)= 0 and lim
t→∞α(x, t) exists because integral

∫ ∞
0 e−stϕ(x, t)dt converges at s = s0 .

By the Fundamental theorem of Calculus

αt(x, t)= e−s0tϕ(x, t)
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Choose ε1 and R1 so that 0< ε1 < R1 .∫ R1

ε1

e−stϕ(x, t)dt =
∫ R1

ε1

e−stes0tαt(x, t)dt

=
∫ R1

ε1

e−(s−s0)tαt(x, t)dt .

By using integration by parts

= [e−(s−s0)tα(x, t)]R1
ε1

−
∫ R1

ε1

e−(s−s0)t[−(s− s0)]α(x, t)dt

∫ R1

ε1

e−stϕ(x, t)dt = e−(s−s0)R1α(x,R1)− e−(s−s0)ε1α(x,ε1)+ (s− s0)
∫ R1

ε1

e−(s−s0)tα(x, t)dt .

Now let ε1 → 0. Both terms on the right which depend on ε1 approach a limit and∫ R1

0
e−stϕ(x, t)dt = e−(s−s0)R1α(x,R1)+ (s− s0)

∫ R1

0
e−(s−s0)tα(x, t)dt .

Now let R1 →∞. If s > s0 , the first term on the right approaches zero.∫ ∞

0
e−stϕ(x, t)dt = (s− s0)

∫ ∞

0
e−(s−s0)vα(x, t)dt for s > s0 . (2.4)

The theorem is proved if the integral on the right converges.

By using the Limit test for convergence (see [10]).

For we have,

lim
t→∞ t2e−(s−s0)tα(x, t)= lim

t→∞
t2

e(s−s0)t

[
lim
t→∞α(x, t)

]
= 0∗ [

lim
t→∞α(x, t)

]= 0= finite

Therefore, integral on the right of (2.4) converges for s > s0 .

Hence the integral
∫ ∞

0 e−stϕ(x, t)dt converges for s > s0 .

Lemma 2.3. If (a) integral

h(x, s)=
∫ ∞

0
e−stϕ(x, t)dt (2.5)

converges for s ≥ s0 and (b) integral∫ ∞

0
e−pxh(x, s)dx (2.6)

converges at p = p0 then the integral (2.6) converges for p > p0 .
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Proof. Let

β(x, s)=
∫ x

0
e−p0uh(u, s)du, 0< x <∞ . (2.7)

Therefore β(0, s) = 0 and lim
x→∞β(x, s) exists because integral

∫ ∞
0 e−pxh(x, s)dx converges at

p = p0 .

By Fundamental theorem of Calculus

From (2.7), βx(x, s)= e−p0xh(x, s).

Choose ε2 and R2 so that 0< ε2 < R2 .∫ R2

ε2

e−pxh(x, s)dx

=
∫ R2

ε2

e−pxep0xβx(x, s)dx

=
∫ R2

ε2

e−(p−p0)xβx(x, s)dx

= [e−(p−p0)xβ(x, s)]R2
ε2

−
∫ R2

ε2

e−(p−p0)x[−(p− p0)]β(x, s)dx

= e−(p−p0)R2β(R2, s)− e−(p−p0)ε2β(ε2, s)+ (p− p0)
∫ R2

ε2

e−(p−p0)xβ(x, s)dx .

Now let ε2 → 0. Both terms on the right which depend on ε2 approach a limit and∫ R2

0
e−pxh(x, s)dx = e−(p−p0)R2β(R2, s)+ (p− p0)

∫ R2

0
e−(p−p0)xβ(x, s)dx . (2.8)

Now let R2 →∞. If p > p0 , the first term on the right approaches zero.∫ R2

0
e−pxh(x, s)dx = (p− p0)

∫ R2

0
e−(p−p0)xβ(x, s)dx, for p > p0 . (2.9)

The theorem is proved if the integral on the right converges.

By using the Limit test for convergence (see [10]).

For we have,

lim
x→∞x2e−(p−p0)xβ(x, s)= lim

x→∞
x2

e(p−p0)x

[
lim
x→∞β(x, s)

]
= 0∗ [

lim
x→∞β(x, s)

]= 0= finite .

Therefore, integral on the right of (2.9) converges for p > p0 .

Hence, the integral
∫ ∞

0 e−pxh(x, s)dx converges for p > p0 .

The proof of the Theorem 2.1 is as follows.∫ ∞

0

∫ ∞

0
e−px−stϕ(x, t)dxdt =

∫ ∞

0
e−px

{∫ ∞

0
e−stϕ(x, t)dt

}
dx

=
∫ ∞

0
e−pxh(x, s)dx (2.10)
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where h(x, s)= ∫ ∞
0 e−stϕ(x, t)dt.

By Lemma 2.2, integral
∫ ∞

0 e−stϕ(x, t)dt converges for s > s0 .

Also by Lemma 2.3, integral
∫ ∞

0 e−pxh(x, s)dx converges for p > p0 .

Therefore, the integral in RHS of (2.10) converges for p > p0 , s > s0 .

Hence the integral∫ ∞

0

∫ ∞

0
e−px−stϕ(x, t)dxdt

converges for p > p0 , s > s0 .

This completes the proof of the Theorem 2.1.

Corollary 2.4. If the integral (2.1) diverges at p = p0 , s = s0 then the integral (2.1) diverges at
p > p0 , s > s0 .

Corollary 2.5. The region of the convergence of the integral (2.1) is the positive quadrant of the
xt-plane.

Now we prove absolute convergence of integral (2.1).

Theorem 2.6. If the integral (2.1) converges absolutely at p = p0 , s = s0 then integral (2.1)
converges absolutely for p ≥ p0 , s ≥ s0 .

Proof. We know that

e−px−st|ϕ(x, t)| ≤ e−p0x, p0 ≤ p <∞, s0 ≤ s <∞ .

Therefore ∫ ∞

0

∫ ∞

0
e−px−st|ϕ(x, t)|dtdx ≤

∫ ∞

0

∫ ∞

0
e−p0x−s0t|ϕ(x, t)|dtdx .

From given hypothesis,∫ ∞

0

∫ ∞

0
e−p0x−s0t|ϕ(x, t)|dtdx converges.

Hence,
∫ ∞

0
∫ ∞

0 e−px−st|ϕ(x, t)|dtdx converges for p ≥ p0 , s ≥ s0 .

Therefore, integral (2.1) converges absolutely for p ≥ p0 , s ≥ s0 .

3. Uniform Convergence

In this section we prove the uniform convergence of double Laplace transform.

Theorem 3.1. If f (x, t) is continuous on [0,∞)× [0,∞) and

H(x, t)=
∫ x

0

∫ t

0
e−p0u−s0v f (u,v)dvdu (3.1)

is bounded on [0,∞)× [0,∞), then the double Laplace transform of f converges uniformly on
[p,∞)× [s,∞) if p > p0 , s > s0 .
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For the proof we will use the following lemmas:

Lemma 3.2. If g(x, t)= ∫ t
0 e−s0v f (x,v)dv is bounded on [0,∞) then the Laplace transform of f

with respect to s converges uniformly on [s,∞) if s > s0 .

Proof. If 0≤ r ≤ r1 ,∫ r1

r
e−st f (x, t)dt =

∫ r1

r
e−(s−s0)te−s0t f (x, t)dt

=
∫ r1

r
e−(s−s0)t gt(x, t)dt .

Using integration by parts

= e−(s−s0)r1 g(x, r1)− e−(s−s0)r g(x, r)+ (s− s0)
∫ r1

r
e−(s−s0)t g(x, t)dt .

Therefore, if |g(x, t)| ≤ M then∣∣∣∣∫ r1

r
e−st f (x, t)dt

∣∣∣∣≤ M
{

e−(s−s0)r1 + e−(s−s0)r + (s− s0)
∫ r1

r
e−(s−s0)tdt

}
= M

{
e−(s−s0)r1 + e−(s−s0)r − e−(s−s0)r1 + e−(s−s0)r}

= 2Me−(s−s0)r, for s > s0.

By Cauchy criterion for uniform convergence (see [9]).∫ ∞
0 e−st f (x, t)dt converges uniformly on [s,∞) if s > s0 .

Hence, Laplace transform of f with respect to s converges uniformly on [s,∞) if s > s0 .

Lemma 3.3. If (a) integral g(x, s)= ∫ ∞
0 e−st f (x, t)dt converges uniformly on [s,∞) if s > s0 ,

(b) α(x, s)= ∫ x
0 e−p0u g(u, s)du is bounded on [0,∞) then the Laplace transform of f with respect

to s converges uniformly on [p,∞) if p > p0 .

Proof. Proof is similar to Lemma 3.2.

The proof of the Theorem 3.1 is as follows:

H(x, t)=
∫ x

0

∫ t

0
e−p0u−s0v f (u,v)dvdu

=
∫ x

0
e−p0u

{∫ t

0
e−s0v f (u,v)dv

}
du

=
∫ x

0
e−p0u g(u, t)du

Where g(u, t)= ∫ t
0 e−s0v f (u,v)dv is bounded on [0,∞).

By Lemma 3.2, Laplace transform of f with respect to s converges uniformly on [s,∞) if s > s0 .

Also by Lemma 3.3, Laplace transform of g with respect to p converges uniformly on [p,∞) if
p > p0 .

Hence double Laplace transform of f converges uniformly on [p,∞)×[s,∞) if p > p0 , s > s0 .

Journal of Informatics and Mathematical Sciences, Vol. 6, No. 1, pp. 45–54, 2014



On Some Convergence Theorems of Double Laplace Transform: R.R. Dhunde and G.L. Waghmare 51

We now prove the differentiability of double Laplace transform

Theorem 3.4. If f (x, t) is continuous on [0,∞)× [0,∞) and

H(x, t)=
∫ x

0

∫ t

0
e−p0u−s0v f (u,v)dvdu

is bounded on [0,∞)× [0,∞), then the double Laplace transform of f is infinitely differentiable
with respect to p and s on [p,∞)× [s,∞) if p > p0 , s > s0 , with

∂m+n

∂pm∂sn f̄ (p, s)= (−1)m+n
∫ ∞

0

∫ ∞

0
e−px−stxmtn f (x, t)dtdx . (3.2)

For the proof we will use the following lemmas:

Lemma 3.5. If g(x, t)= ∫ t
0 e−s0v f (x,v)dv is bounded on [0,∞) then the Laplace transform of f

is infinitely differentiable with respect to s on [s,∞) if s > s0 , with

∂n

∂sn f̄ (x, s)= (−1)n
∫ ∞

0
e−sttn f (x, t)dt . (3.3)

Proof. First we prove that the integrals

In(x, s)= (−1)n
∫ ∞

0
e−sttn f (x, t)dt, n = 0,1,2,3, . . .

all converge uniformly on [s,∞) if s > s0 .

If 0< r < r1 , then∫ r1

r
e−sttn f (x, t)dt =

∫ r1

r
e−(s−s0)ttn gx(x, t)dt

= e−(s−s0)r1 rn
1 g(x, r1)− e−(s−s0)rrn g(x, r)

−
∫ r1

r

{
d
dt

[e−(s−s0)ttn]
}

g(x, t)dt .

Therefore, if |g(x, t)| ≤ M <∞ on [0,∞) then∣∣∣∣∫ r1

r
e−sttn f (x, t)dt

∣∣∣∣≤ M
{

e−(s−s0)rrn + e−(s−s0)rrn +
∫ ∞

r

{
d
dt

[e−(s−s0)ttn]
}

dt
}

.

Therefore, since e−(s−s0)rrn decreases monotonically on (0,∞) if s > s0 .∣∣∣∣∫ r1

r
e−sttn f (x, t)dt

∣∣∣∣≤ 3Me−(s−s0)rrn, 0< r < r1.

By Cauchy criterion for uniform convergence (see [9]).

In(x, s) converges uniformly on [s,∞) if s > s0 .

Now, using [9, pp. 18-19] and induction proof, we have (3.3).

That is Laplace transform of f is infinitely differentiable with respect to s on [s,∞) if s > s0 .
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Lemma 3.6. If (a) the integral ϕ(x, s)= ∫ ∞
0 e−sttn f (x, t)dt converges uniformly on [s,∞) if s > s0 .

(b) h(x, s)= ∫ x
0 e−p0uϕ(x, s)dx is bounded on [0,∞) then the Laplace transform of ϕ is infinitely

differentiable with respect to p on [p,∞) if p > p0 , with

∂m

∂pmϕ(x, s)= (−1)m
∫ ∞

0
e−sttmϕ(x, s)dx . (3.4)

Proof. Proof is similar to Lemma 3.5.

The proof of the Theorem 3.4 is as follows:

H(x, t)=
∫ x

0

∫ t

0
e−p0u−s0v f (u,v)dvdu

=
∫ x

0
e−p0u

{∫ t

0
e−s0v f (u,v)dv

}
du

=
∫ x

0
e−p0u g(u, t)du

where g(u, t)= ∫ t
0 e−s0v f (u,v)dv is bounded on [0,∞).

By Lemma 3.5, Laplace transform of f is infinitely differentiable with respect to s on [s,∞) if
s > s0 .

Also by Lemma 3.6, Laplace transform of g is infinitely differentiable with respect to p on
[p,∞) if p > p0 .

Hence double Laplace transform of f is infinitely differentiable with respect to p and s on
[p,∞)× [s,∞) if p > p0 , s > s0 .

4. Double Laplace Transform of Double Integral

We now find the double Laplace transform of double integral.

Theorem 4.1. If LxL t{ f (x, t)}= f̄ (p, s) and

g(x, t)=
∫ x

0

∫ t

0
f (u,v)dvdu (4.1)

then

LxL t

{∫ x

0

∫ t

0
f (u,v)dvdu

}
= f̄ (p, s)

ps
. (4.2)

Proof. Denote h(x, t)= ∫ t
0 f (x,v)dv.

By fundamental theorem of calculus

ht(x, t)= f (x, t) (4.3)

and

h(x,0)= 0 . (4.4)
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Taking double Laplace transform of equation (4.3), we get

sh̄(p, s)− h̄(p,0)= f̄ (p, s) (4.5)

and single Laplace transform of equation (4.4)

h̄(p,0)= 0 .

Then equation (4.5) becomes,

h̄(p, s)= f̄ (p, s)
s

. (4.6)

From (4.1), g(x, t)= ∫ x
0 h(u, t)du

gx(x, t)= h(x, t) and g(0, t)= 0,

pḡ(p, s)− ḡ(0, s)= h̄(p, s) .

Now by using (4.6) and (4.1), we obtain

LxL t

{∫ x

0

∫ t

0
f (u,v)dvdu

}
= f̄ (p, s)

ps
.

5. Application of Double Laplace Transform in
Volterra Integro-Partial Differential Equation

We use the double Laplace transform to solve the problem which is already solved in [7] using
Differential transform method.

Example 5.1. Consider the following Volterra Integro Partial Differential Equation:
∂u(x, y)
∂x

+ ∂u(x, y)
∂y

=−1+ ex + ey + ex+y +
∫ x

0

∫ y

0
u(r, t)drdt (5.1)

Subject to the initial conditions:

u(x,0)= ex and u(0, y)= ey. (5.2)

Applying double Laplace transform of equation (5.1), we get

pū(p, s)− ū(0, s)+ sū(p, s)− ū(p,0)

=− 1
ps

+ 1
(p−1)s

+ 1
p(s−1)

+ 1
(p−1)(s−1)

+ ū(p, s)
ps

(5.3)

and single Laplace transforms of equation (5.2)

ū(p,0)= 1
(p−1)

and ū(0, s)= 1
s−1

. (5.4)

Substituting (5.4) in (5.3) and simplifying, we obtain

ū(p, s)= 1
(p−1)(s−1)

. (5.5)

By using double inverse Laplace transform, we obtain solution of (5.1) as follows:

u(x, t)= ex+t . (5.6)
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6. Conclusion
In this paper, we presented convergence, absolute convergence and uniform convergence of
double Laplace transform. Besides these, we obtained double Laplace transform of double
integral and use it to solve Volterra integro-partial differential equation.
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