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Parametrically Sufficient Optimality Conditions for
Multiobjective Fractional Subset Programming Relating

to Generalized (η,ρ,θ)-Invexity of Higher Order

Ram U. Verma

Abstract Inspired by the recent investigations, a general framework for a class
of (η,ρ,θ) -invex n -set functions of higher order r ≥ 1 is introduced, and
then some optimality conditions for multiobjective fractional programming on
the generalized (η,ρ,θ) -invexity are established. The obtained results are gen-
eral in nature and unify various results on fractional subset programming in the
literature.

1. Introduction

Based on new developments on parametric duality models and global
parametric models for fractional programming to the context of the generalized
invex functions, we present using the generalized (η,ρ,θ) -invexity of higher order
r ≥ 1 of differentiable functions, the following multiobjective fractional subset
programming problem:

(P) Minimize
S∈X

�
F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)

Gp(S)

�

subject to H j(S)≤ 0, j ∈ m, S ∈ X ,

where X = {S ∈ Λn : H j(S) ≤ 0, j ∈ m}, is the feasible set (assumed to be
nonempty) of (P), Λn is n -fold product of σ -algebra Λ of subsets of a given
set X in the measure space (X ,Λ,µ) , Fi , Gi , i ∈ p ≡ {1, . . . , p} , H j(S) ≤ 0,
j ∈ m ≡ {1, . . . , m} , are real valued functions defined on Λn , and for each
Gi(S)> 0, for each i ∈ p , for all S ∈ Λn .
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Next, we introduce an auxiliary problem (Pλ) to (P) as follows:

(Pλ) Minimize
S∈X

�
F1(S)−λ1G1(S), . . . , Fp(S)−λpGp(S)

�
,

where λi , i ∈ p are parameters.

Similarly, we have an auxiliary problem (Pλ∗) to (P) as follows:

(Pλ∗) Minimize
S∈X

�
F1(S)−λ∗1G1(S), . . . , Fp(S)−λ∗pGp(S)

�
,

where λ∗ =
�

F1(S∗)
G1(S∗)

, . . . ,
Fp(S∗)

Gp(S∗)

�
.

Mishra et al. [4] investigated several parametric and semi-parametric sufficient
conditions for the multiobjective fractional subset programming problems based
on generalized invexity assumptions. Moreover, these results are also applicable
to other classes of problems with multiple, fractional, and conventional objective
functions.

2. Higher Order (ρ,η,θ) -Invexity

Let (X ,Λ,µ) be a finite atomless measure space with L1(X ,Λ,µ) separable.
Let Λn be the n -fold product of a σ -algebra Λ for subsets in the measure space
(X ,Λ,µ) . The function d (referred to as a pseudometric on Λn ) on Λn × Λn is
defined by

d(R, S) =
� n∑

i=1

[µ2(Ri∆Si)]
�1

2

,

where R = (R1, . . . , Rn), S = (S1, . . . , Sn) ∈ Λn, and ∆ denotes the symmetric
difference of sets. Thus, (Λn, d) is a pseudometric space. Let η : Λn×Λn→ Ln

∞ be
a vector valued function.

We introduce the following definitions based on Mishra et al. [4], Lai and Huang
[3] and references therein.

Definition 2.1. An n -set function F : Λn → R is said to be differentiable at
S∗ ∈ Λn if there exists DF(S∗) ∈ L1(X ,Λ,µ) , called the derivative of F at S∗

such that for each S ∈ Λn ,

F(S) = F(S∗) +



DF(S∗),η(S, S∗)
�
+ VF (S, S∗),

where VF (S, S∗) is o(d(S, S∗)) , that is,

lim
d(S,S∗)→0

VF (S, S∗)/d(S, S∗) = 0.

Definition 2.2. An n -set function G : Λn → R is said to have a partial derivative
at S∗ = (S∗1, . . . , S∗n) ∈ Λn with respect to its i th argument if the function

F(Si) = G(S∗1, . . . , S∗i−1, S∗i , S∗i+1, . . . , S∗n)
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has the derivative DF(S∗i ) , i ∈ n ; in that case, the i th partial derivative of G at S∗

is defined to be DiG(S∗) = DF(S∗i ) ∈ L1 , i ∈ n , which behave as continuous linear
operators on L∞ .

Definition 2.3. An n -set function G : Λn → R is said to be differentiable at S∗ if
all the derivatives DiG(S∗) , i ∈ n exist and

G(S) = G(S∗) +
n∑

i=1

〈DGi(S
∗),η(Si , S∗i )〉+WG(S, S∗),

where WG(S, S∗) is o(d(S, S∗)) for all S ∈ Λn .

Let θ : Λn ×Λn→ R+ be a positive-valued function such that

θ(S, S∗) = 0 only if S = S∗, or S
w∗→ S∗ ∈ Λn⇒ θ(S, S∗)⇒ 0,

where w∗ denotes the weak∗ -topology in Ln
∞(≈ Λn) = (Ln

1)
∗ and S = (S1, . . . , Sn),

S∗ = (S∗1, . . . , S∗n) ∈ Λn .
For our purpose, we define θ as a pseudometric on Λn in the form

θ(S, S∗) =
� n∑

i=1

µ2(Si∆S∗i )
�1

2

,

S = (S1, . . . , Sn), S∗ = (S∗1, . . . , S∗n) ∈ Λn .

Definition 2.4. A differentiable n -set function F : Λn→ R is said to be (ρ,η,θ) -
invex at S∗ if there exists a vector valued function η : Λn × Λn → Ln

∞ such that
for each S ∈ Λn , for a positive-valued function θ : Λn × Λn → R+ , for a positive
integer r≥ 1, and ρ ∈ R+ , we have

Fi(S)− Fi(S
∗)½ 〈F ′i (S∗),η(S, S∗)〉+ρ‖θ (S, S∗)‖r .

Definition 2.5. The differentiable n -set function F : Λn→R is said to be (ρ,η,θ) -
pseudo-invex at S∗ if there exists a vector valued function η :Λn ×Λn→ Ln

∞ such
that for each S ∈ Λn , and for ρ ∈ R+, we have

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r ≥ 0⇒
p∑

i=1

Fi(S)≥
p∑

i=1

Fi(S
∗),

equivalently,
p∑

i=1

Fi(S)<
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r < 0.

Definition 2.6. The differentiable n -set function F :Λn→R is said to be strictly
(ρ,η,θ ) -pseudo-invex at S∗ if there exists a vector valued function η : Λn×Λn→
Ln
∞ such that for each S ∈ Λn , and ρ ∈ R+ , we have

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r ½ 0⇒
p∑

i=1

Fi(S)>
p∑

i=1

Fi(S
∗),
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equivalently,
p∑

i=1

Fi(S)≤
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r < 0.

Definition 2.7. The differentiable n -set function F : Λn → R is said to be
prestrictly (ρ,η,θ ) -pseudo-invex at S∗ if there exists a vector valued function
η : Λn ×Λn→ Ln

∞ such that for each S ∈ Λn , and ρ ∈ R+, we have
p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r > 0⇒
p∑

i=1

Fi(S)½
p∑

i=1

Fi(S
∗),

equivalently,
p∑

i=1

Fi(S)<
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r ≤ 0.

Definition 2.8. The differentiable n -set function F :Λn→R is said to be (ρ,η,θ) -
quasi-invex at S∗ if there exists a vector valued function η : Λn × Λn → Ln

∞ such
that for each S ∈ Λn , and ρ ∈ R+, we have

p∑

i=1

Fi(S)µ
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r µ 0.

Definition 2.9. The differentiable n -set function F : Λn → R is said to be strictly
(ρ,η,θ ) -quasi-invex at S∗ if there exists a vector valued function η : Λn×Λn→ Ln

∞
such that for each S ∈ Λn , and ρ ∈ R+ , we have

p∑

i=1

Fi(S)µ
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r < 0,

equivalently,
p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρθ (S, S∗)≥ 0⇒
p∑

i=1

Fi(S)>
p∑

i=1

Fi(S
∗).

Definition 2.10. The differentiable n -set function F : Λn → R is said to be
prestrictly (ρ,η,θ) -quasi-invex at S∗ if there exists a vector valued function
η : Λn ×Λn→ Ln

∞ such that for each S ∈ Λn , and ρ ∈ R+ , we have
p∑

i=1

Fi(S)<
p∑

i=1

Fi(S
∗)⇒

p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρ‖θ(S, S∗)‖r µ 0,

equivalently,
p∑

i=1

〈F ′i (S∗),η(S, S∗)〉+ρθ (S, S∗)> 0⇒
p∑

i=1

Fi(S)≥
p∑

i=1

Fi(S
∗).

This subsection deals with some parametric sufficient efficiency conditions for
problem (P) under the generalized frameworks for generalized invexity. First, we
introduce the necessary efficiency conditions regarding the solvability for (P) and
(Pλ) as follows:
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Definition 2.11. An S∗ ∈ X is an efficient solution to (P) if there does not exist
an S ∈ X such that

Fi(S)
Gi(S)

≤ Fi(S∗)
Gi(S∗)

, ∀ i = 1, . . . , p.

Next, we introduce the efficient solvability for (Pλ∗) as follows:

Definition 2.12. An S∗ ∈ X is an efficient solution to (Pλ∗) if there exist no S ∈ X
such that

Fi(S)−λ∗i Gi(S)≤ Fi(S
∗)−λ∗i Gi(S

∗), ∀ i = 1, . . . , p,

where λ∗ =
�

F1(S∗)
G1(S∗)

, . . . ,
Fp(S∗)

Gp(S∗)

�
.

3. Parametric Optimality Conditions

This section deals with some results on sufficient optimality conditions for the
generalized invexity of higher order (r ≥ 1) , where r is an integer. In the following
theorem, we examine some generalized sufficiency criteria relating to (P).

Theorem 3.1. Let S∗ ∈ Λn and let us suppose that Fi , Gi , i ∈ {1, . . . , p}, and H j , j ∈
{1, . . . , m} are differentiable at S∗ ∈ Λn and there are u∗ ∈ U =

�
u ∈ Rp

+ :
p∑

i=1
ui=1

�

and v∗ ∈ Rm
+ such that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖r ≥ 0

∀ S ∈ X , (3.1)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.2)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.3)

We further suppose that any one of the following sets of assumptions holds:

(a) (i) Fi is (ρ̄,η,θ) -invex and −Gi is (ρ̂,η,θ) -invex at S∗ of higher order
(r ≥ 1) ∀ i ∈ {1, . . . , p} .

(ii) v∗j H j(S∗) is (ρ∗,η,θ) -quasi-invex at S∗ of higher order (r ≥ 1)
∀ j ∈ {1, . . . , m} .

(iii)
p∑

i=1
u∗i [ρ̄+λ

∗
i ρ̂] +

m∑
j=1

v∗j ρ
∗ ≥ 0 .

(b) (i) Fi is (ρ̄,η,θ) -invex and −Gi is (ρ̂,η,θ) -invex at S∗ of higher order
(r ≥ 1) ∀ i ∈ {1, . . . , p} .

(ii)
m∑

j=1
v∗j H j(S∗) is (ρ,η,θ) -quasi-invex at S∗ of higher order (r ≥ 1)

∀ j ∈ {1, . . . , m} .
(iii)

p∑
i=1

u∗i [ρ̄+λ
∗
i ρ̂] +ρ

∗ ≥ 0 .

Then S∗ is an efficient solution to (P).
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Proof. (a) If (ii) holds, and if S ∈ X is an arbitrary point, then it follows (using
the (ρ̄,η,θ) -invexity of Fi and (ρ̂,η,θ) -invexity of −Gi at S∗ ) that

p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]

=
p∑

i=1

u∗i {[Fi(S)− Fi(S
∗)]−λ∗i [Gi(S)− Gi(S

∗)]}

≥
p∑

i=1

u∗i {〈[F ′i (S∗)−λ∗i G′i(S
∗)],η(S, S∗)〉+[ρ̄+λ∗i ρ̂]‖θ(S, S∗)‖r} (3.4)

Since v∗ ≥ 0, S ∈ X and (3.3) holds, we have
m∑

j=1

v∗t Ht(S)≤
m∑

j=1

v∗j H j(S
∗),

so in light of the (ρ,η,θ) -quasi-invexity, we arrive at
� m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
≤−ρ∗‖θ(S, S∗)‖r . (3.5)

It follows from (3.5) that
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]

=
p∑

i=1

u∗i {[Fi(S)− Fi(S
∗)]−λ∗i [Gi(S)− Gi(S

∗)]}

≥
p∑

i=1

u∗i {〈[F ′i (S∗)−λ∗i G′i(S
∗)],η(S, S∗)〉+[ρ̄+λ∗i ρ̂]‖θ(S, S∗)‖r}

=−
� m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+

p∑

i=1

u∗i [ρ̄+λ
∗
i ρ̂]‖θ (S, S∗)‖r

≥
� m∑

j=1

v∗j ρ
∗ +

p∑

i=1

u∗i [ρ̄+λ
∗
i ρ̂]
�
‖θ(S, S∗)‖r

≥ 0 (by (iii)).

It follows that

(F1(S)−λ∗1G1(S), . . . , Fp(S)−λ∗1Gp(S)) 6≤ (0, . . . , 0).

Thus, we conclude that

φ(S) =
�

F1(S)
G1(S)

, . . . ,
Fp(S)

Gp(S)

�
6≤ λ∗

At this stage, as we observe that λ∗ = φ(S∗) and S ∈ X is arbitrary, it implies that
S∗ is an efficient solution to (P). Similar proof holds for (b). ¤
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At this stage, we introduce the following notations for the next theorem as
follows:

Ai(· ;λ, u) = ui[Fi(S)−λGi(S)], i ∈ p,

B j(· , v) = v jH j(S), j ∈ m.

Theorem 3.2. Let S∗∈Λn and let us suppose that Fi , Gi , i∈{1, . . . , p} , and H j , j∈
{1, . . . , m} are differentiable at S∗∈Λn and there are u∗ ∈ U =

�
u∈Rp

+ :
p∑

i=1
ui=1

�

and v∗ ∈ Rm
+ such that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ (S, S∗)‖r ≥ 0

∀ S ∈ X , (3.6)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.7)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.8)

We further suppose that any one of the following sets of assumptions holds:

(a) (i) Ai(· ;λ∗, u∗) (∀ i = 1, . . . , p) are (ρ,η,θ ) -pseudo-invex of higher order at
S∗ ;

(ii) B j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -quasi-invex of higher order at S∗ .
(b) (i) Ai(· ;λ∗, u∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ) -prestrictly-pseudo-invex of

higher order at S∗

(ii) B j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ ) -strictly-quasi-invex of higher order
at S∗ .

(c) (i) Ai(· ;λ∗, u∗, v∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ ) -prestrictly-quasi-invex of
higher order at S∗

(ii) B j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-pseudo-invex of higher
order at S∗ .

Then S∗ is an efficient solution to (P).

Proof. Let S ∈ X . Then it follows from (3.6) that it follows that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗)
�
+
� m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�

+ρ‖θ(S, S∗)‖r ≥ 0 ∀ S ∈Q. (3.9)

Since v∗ ≥ 0, S ∈ X and (3.7) holds, we have
m∑

j=1

v∗j H ′j(S)≤
m∑

j=1

v∗j H ′j(S
∗),

and this implies applying (ii) that
� m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖r ≤ 0. (3.10)
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Next, applying (3.9) and (3.10), we find
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗)
�
+ρ‖θ(S, S∗)‖r ≥ 0.

Now, by using (i), we have
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]≥
p∑

i=1

u∗i [Fi(S
∗)−λ∗i Gi(S

∗)].

On applying (3.7), this results in
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]≥ 0.

Since u∗i > 0 for each i ∈ p , the above inequality implies
�

F1(S)−λ∗1G1(S), . . . , Fp −λ∗pGp(S)
�
6≤ (0, . . . , 0),

which in turn, implies

φ(S) =
�

F1(S)
G1(S)

,
F2(S)
G2(S)

, . . . ,
Fp(S)

Gp(S)

�
6≤ λ∗.

Since λ∗ = φ(S∗) and S ∈ X is arbitrary, we conclude that S∗ is an efficient
solution to (P).
To prove (b), we have

m∑

j=1

v∗j H ′j(S)≤
m∑

j=1

v∗j H ′j(S
∗).

Now applying (ii), we have
� m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖r < 0. (3.11)

Next, applying (3.9), we find
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗)
�
+ρ‖θ(S, S∗)‖r > 0.

Now, by using (i), we have
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]≥
p∑

i=1

u∗i [Fi(S
∗)−λ∗i Gi(S

∗)].

On applying (3.7), this results in
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]≥ 0.

This implies in light of (a) that S∗ is an efficient solution to (P).
Similar proof holds for (c). ¤
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We need to introduce the following notations as we proceed to establishing
results on the generalized pseudo-invexity. Let {J0, J1, . . . , Jq} be a partition of the
partition of the index set {1, . . . , m} . Then Jr ⊂ {1, . . . , m} for r ∈ {0, 1, . . . , q} ,
Jr ∩ Js = ; for each r, s ∈ {0, 1, . . . , q} with r 6= s and ∪q

r=0Jr = {1, . . . , m} . Next,
we define the following real-valued functions (for fixed λ , u , v on X as follows:

Γi(.;λ, u, v) = ui[Fi(S)−λiGi(S) +
∑

j∈J0

v jH j(S)] for i ∈ {1, . . . , p},

∆t(S, v) =
∑

j∈Jt

v jH j(S) for t ∈ {1, . . . , q}.

Theorem 3.3. Suppose that S∈X and that Fi , Gi , i∈{1, . . . , p}, H j , j∈{1, . . . , m}
are differentiable at S∗∈X and there are u∗∈U and v∗∈Rm

+ such that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖r ≥ 0

∀ S ∈ X , (3.12)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.13)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.14)

We further suppose that any one of the following sets of assumptions holds:

(a) (i) Γi(· ;λ∗, u∗, v∗) (∀ i = 1, . . . , p) are (ρ,η,θ) -pseudo-invex of higher order
at S∗ ;

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -quasi-invex of higher order at S∗ .
(b) (i) Γi(· ;λ∗, u∗, v∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ ) -prestrictly-pseudo-invex of

higher order at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-quasi-invex of higher order
at S∗ .

(i) Γi(· ;λ∗, u∗, v∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ) -prestrictly-quasi-invex of
higher order at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-pseudo-invex of higher
order at S∗ .

Then S∗ is an efficient solution to (P).

Proof. (a) If (i) holds, and if S ∈ X , then it follows from (3.9) that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗
�
+ρ‖η(S, S∗)‖r

+
�∑

j∈J0

v∗j H ′j(S
∗),η(S, S∗)

�
+
� q∑

t=1

∑

j∈Jt

v∗j H ′j(S
∗),η(S, S∗)

�
≥ 0

∀ S ∈ Λn. (3.15)
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Since v∗ ≥ 0, S ∈ X and (3.11) holds, we have
∑

t∈Jt

v∗t Ht(S)≤
∑

t∈Jt

v∗t Ht(S
∗),

so we have
q∑

t=1

∆t(S, v∗)≤
q∑

t=1

∆t(S
∗, v∗).

Then in light of the (ρ,η,θ) -quasi-invexity, we arrive at
� q∑

t=1

∑

j∈Jt

v∗j H ′j(S
∗),η(S, S∗)

�
≤−ρ‖θ(S, S∗)‖r . (3.16)

It follows from (3.12) and (3.13) that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗)
�
+ρ‖θ(S, S∗)‖r

+
�∑

j∈J0

v∗j H ′j(S
∗),η(S, S∗)

�
≥ ρ‖θ(S, S∗)‖r .

Since
p∑

i=1
ui = 1, it follows that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)],η(S, S∗)
�
+
�

u∗i

�∑

j∈J0

v∗j H ′j(S
∗)
�

,η(S, S∗)
�

≥ 0

≥−ρ‖θ(S, S∗)‖r .

This, in turn, implies
p∑

i=1

Γi(S,λ∗, u∗, v∗)≥
p∑

i=1

Γi(S
∗,λ∗, u∗, v∗) = 0. (3.17)

It follows from (3.17) that
p∑

i=1

u∗i [Fi(S)−λ∗i Gi(S)]≥ 0. (3.18)

Since u∗i > 0 for each i ∈ {1, . . . , p}, we have from (3.7) that

(F1(S)−λ∗1G1(S), . . . , Fp(S)−λ∗1Gp(S)) 6≤ (0, . . . , 0).

Thus, we conclude that

φ(S) =
�

F1(S)
G1(S)

, . . . ,
Fp(S)

Gp(S)

�
6≤ λ∗

At this stage, as we observe that λ∗ = φ(S∗) and S ∈ Ξ is arbitrary, it implies that
S∗ is an efficient solution to (P). Similar proofs hold for (b) and (c). ¤
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Before we examine some more sufficient optimality conditions using a variant
form of the partition scheme applied for Theorem 3.3, we need introduce some
additional notations. Suppose that {I0, I1, . . . , Iq} be a partition of the index set
{1, . . . , p} such that K = {0, 1, . . . , k} ⊂ Q = {0, 1, . . . , q} for k < q , and the
function Θt = (.,λ∗, u∗, v∗) : Λn → R is defined by Jr = {1, . . . , m} . The real-
valued functions are defined as follows:

Θt(· ;λ∗, u∗, v∗) =
∑

i∈It

u∗i [Fi(S)−λiGi(S)] +
∑

j

∈ Jt v
∗
j H j(S)], t ∈ K .

Theorem 3.4. Suppose that S ∈ Λn and that Fi , Gi , i ∈ {1, . . . , p}, H j , j ∈
{1, . . . , m} are differentiable at S∗ ∈ Λn and there are u∗ ∈ U and v∗ ∈ Rm

+ such
that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ (S, S∗)‖2 ≥ 0

∀ S ∈ Λn, (3.19)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.20)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.21)

We further suppose that any one of the following sets of assumptions holds:

(a) (i) Θt(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , p} are (ρ,η,θ) -pseudo-invex at S∗ ,
(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -quasi-invex at S∗ .

(b) (i) Θt(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , k} are (ρ,η,θ) -prestrictly-pseudo-invex
at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-quasi-invex at S∗ .
(c) (i) Θi(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , k} are (ρ,η,θ) -prestrictly-quasi-invex

at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-pseudo-invex at S∗ .

Then S∗ is an efficient solution to (P).

Proof. (a) We apply the method of contradiction. Suppose that S∗ is not an
efficient solution to (P). Then there exists an S† ∈ Λn such that

�
F1(S†)
G1(S†)

,
F2(S†)
G2(S†)

, . . . ,
Fp(S†)

Gp(S†)

�
≤
�

F1(∗S)
G1(S∗)

,
F2(S∗)
G2(S∗)

, . . . ,
Fp(S∗)

Gp(S∗)

�
.

This, in turn, using (3.17) implies Fi(S†)− λ∗i Gi(S†) ≤ 0 ∀ i ∈ {0, 1, . . . , p}, while
strict inequality holds for at least one index l ∈ {0, 1, . . . , p} . Since u∗ > 0, it
further implies

∑

i∈It

u∗i [Fi(S
†)−λ∗i Gi(S

†])≤ 0 for t ∈ K . (3.22)
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Since v∗ ≥ 0, S, S∗ ∈ Λn and, (3.16),(3.17) and (3.19) hold, we have

Θt(S
†,λ∗, u∗, v∗) =

∑

i∈It

u∗i [Fi(S
†)−λ∗i Gi(S

†)] +
∑

j∈J0

v∗j H j(S
†)

≤
∑

i∈It

u∗i [Fi(S
†)−λ∗i Gi(S

†)]≤ 0

=
∑

i∈It

u∗i [Fi(S
∗)−λ∗i Gi(S

∗)] +
∑

j∈J0

v∗j H j(S
∗)

= Θt(S
∗,λ∗, u∗, v∗)

and

Θt(S
†,λ∗, u∗, v∗)<Θt(S

∗,λ∗, u∗, v∗).

Now we have using (i) that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
∑

t∈K

∑

j∈Jt

v∗j H ′j(S
∗),η(S†, S∗)

�
+ρ‖θ(S†, S∗)‖r < 0.

(3.23)

We observe, for each t ∈ M \ K and S ∈ Λn, we have∑

t∈M\K
∆t(S, v∗)≤ 0=

∑

t∈M\K
∆t(S

∗, v∗),

and hence, we find� ∑

t∈M\K

∑

j∈Jt

v∗j H ′j(S
∗),η(S†, S∗)

�
+ρ‖θ(S†, S∗)‖r ≤ 0. (3.24)

Next, it follows from (3.19), (3.20) and (3.21) that
� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S†, S∗)

�
+ρ‖θ (S†, S∗)‖r < 0,

(3.25)

that is a contradiction to (3.19). Hence, S∗ is an efficient solution to (P). Similar
proofs hold for (b) and (c). ¤

Theorems 3.3 and 3.2 reduce to the case of the results on the generalized
(η,ρ,θ ) -invexity, that is, r = 2.

Theorem 3.5. Suppose that S ∈ Λn and that Fi , Gi , i ∈ {1, . . . , p} , H j , j ∈
{1, . . . , m} are differentiable at S∗ ∈ X and there are u∗ ∈ U and v∗ ∈ Rm

+ such
that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖2 ≥ 0

∀ S ∈ Λn, (3.26)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.27)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.28)
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We further suppose that any one of the following sets of assumptions holds:

(a) (i) Γi(· ;λ∗, u∗, v∗) (∀ i = 1, . . . , p) are (ρ,η,θ ) -pseudo-invex at S∗ ;
(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -quasi-invex at S∗ .

(b) (i) Γi(· ;λ∗, u∗, v∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ) -prestrictly-pseudo-invex at
S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strict-quasi-invex at S∗ .
(c) (i) Γi(· ;λ∗, u∗, v∗) (∀ i ∈ {1, . . . , p} are (ρ,η,θ) -prestrictly-quasi-invex at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-pseudo-invex at S∗ .

Then S∗ is an efficient solution to (P).

Theorem 3.6. Suppose that S ∈ Λn and that Fi , Gi , i ∈ {1, . . . , p}, H j , j ∈
{1, . . . , m} are differentiable at S∗ ∈ Λn and there are u∗ ∈ U and v∗ ∈ Rm

+ such
that

� p∑

i=1

u∗i [F
′
i (S
∗)−λ∗i G′i(S

∗)] +
m∑

j=1

v∗j H ′j(S
∗),η(S, S∗)

�
+ρ‖θ(S, S∗)‖2 ≥ 0

∀ S ∈ Λn, (3.29)

Fi(S
∗)−λ∗i Gi(S

∗) = 0 for i ∈ {1, . . . , p}, (3.30)

v∗j H j(S
∗) = 0 for j ∈ {1, . . . , m}. (3.31)

We further suppose that any one of the following sets of assumptions holds:

(a) (i) Θt(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , p} are (ρ,η,θ) -pseudo-invex at S∗ ,
(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -quasi-invex at S∗ .

(b) (i) Θt(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , k} are (ρ,η,θ) -prestrictly-pseudo-invex
at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-quasi-invex at S∗ .
(c) (i) Θi(· ;λ∗, u∗, v∗) (∀ t ∈ {1, . . . , k} are (ρ,η,θ) -prestrictly-quasi-invex

at S∗

(ii) ∆ j(· ; v∗) (∀ j ∈ {1, . . . , m} are (ρ,η,θ) -strictly-pseudo-invex at S∗ .

Then S∗ is an efficient solution to (P).
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