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Abstract In this paper, the authors discuss the asymptotic behavior of solutions

of the generalized nonlinear α -difference equation

∆α(ℓ)(p(k)∆α(ℓ)u(k)) + f (k)F(u(k)) = g(k), (0.1)

k ∈ [a,∞), where the functions p , f , F and g are defined in their domain of

definition and α > 1, ℓ is positive real. Further, uF(u) > 0 for u 6= 0, p(k) > 0

for all k ∈ [a,∞) for some a ∈ [0,∞) and for all 0 ≤ j < ℓ , Ra+ j,k →∞ , where

Rt+ j,k =

k−ℓ−t− j

ℓ
∑

r=0

1

p(t+ j+rℓ)
, t ∈ [a,∞) and k ∈ Nℓ(t + j+ ℓ) .

1. Introduction

The basic theory of difference equations is based on the operator ∆ defined as

∆u(k) = u(k+ 1)− u(k) , k ∈ N = {0,1,2,3, . . .} . Eventhough many authors ([1],

[20]-[22]) have suggested the definition of ∆ as

∆u(k) = u(k+ ℓ)− u(k), k ∈ R, ℓ ∈ R−{0}, (1.1)

no significant progress has taken place on this line. But recently, E. Thandapani,

M.M.S. Manuel and G.B.A. Xavier [7] considered the definition of ∆ as given in

(1.1) and developed the theory of difference equations in a different direction. For

convenience, the operator ∆ defined by (1.1) is labelled as ∆ℓ and by defining

its inverse ∆−1
ℓ

, many interesting results and applications in number theory (see

[7], [15]-[19]) were obtained. By extending the study related to the sequences of
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complex numbers and ℓ to be real, some new qualitative properties of the solutions

like rotatory, expanding, shrinking, spiral and weblike were obtained for difference

equation involving ∆ℓ . The results obtained using ∆ℓ can be found in ([7]-[19]).

Jerzy Popenda and B. Szmanda ([4], [5]) defined ∆ as

∆αu(k) = u(k+ 1)−αu(k) (1.2)

and based on this definition they studied the qualitative properties of a particular

difference equation and no one else has handled this operator. In this paper, we

have generalized the definition of ∆α given in (1.2) and defined and denoted it as

∆α(ℓ)u(k) = u(k+ ℓ)−αu(k) (1.3)

where α > 1 and ℓ ∈ [0,∞) and by defining its inverse, several interesting results

on number theory were obtained.

In [6], John R. Graef worked on Asymptotic behaviour of solutions of a second

order nonlinear differential equation and Blazej Szmanda [3] obtained the discrete

analogous of [6]. The case of any real ℓ and α = 1, in (1) were analysed in detail

by M.M.S. Manuel and D.S. Dilip et al. [17]. In this paper the theory is extended

from ∆ℓ to ∆α(ℓ) for all real k ∈ [a,∞) and we discuss asymptotic behavior of

solutions of generalized nonlinear α -difference equation (0.1) is discussed.

Throughout this paper, we make use the following notations.

(a) N = {0,1,2,3, . . . }, N(a) = {a, a+ 1, a+ 2, . . . } ,

(b) Nℓ( j) = { j, j + ℓ, j+ 2ℓ, . . . } .

(c) ⌈x⌉ upper integer part of x .

2. Preliminaries

In this section, we present some preliminaries which will be useful for future

discussion.

Definition 2.1 ([7]). Let u(k) , k ∈ [0,∞) be real or complex valued function and

ℓ ∈ (0,∞) . Then, the inverse of ∆ℓ denoted by ∆−1
ℓ

is defined as follows.

If ∆ℓv(k) = u(k), then v(k) = ∆−1
ℓ u(k) + c j , (2.1)

where c j is a constant for all k ∈ Nℓ( j) , j = k −
� k

ℓ

�

ℓ . In general ∆−n
ℓ

u(k) =

∆−1
ℓ
(∆
−(n−1)

ℓ
u(k)) for n ∈ N(2) .

Definition 2.2. The inverse of the Generalized α -difference operator denoted by

∆−1
α(ℓ)

on u(k) is defined as follows. If ∆α(ℓ)v(k) = u(k) , then

∆−1
α(ℓ)

u(k) = v(k)−α[
k

ℓ
]c j . (2.2)

where c j is a constant for all k ∈ Nℓ( j) , j = k−
� k

ℓ

�

ℓ .
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Lemma 2.3 ([7]). If the real valued function u(k) is defined for all k ∈ [a,∞) , then

∆−1
ℓ

u(k) =

[ k−a

ℓ
]
∑

r=1

u(k− rℓ) + c j , (2.3)

where c j is a constant for all k ∈ Nℓ( j) , j = k− a−
� k−a

ℓ

�

ℓ .

Corollary 2.4. If ∆ℓv(k) = u(k) for k ∈ [k2,∞) and j = k− k2 −
� k−k2

ℓ

�

ℓ , then

v(k)− v(k2 + j) =

[
k−k2− j−ℓ

ℓ
]
∑

r=0

u(k2 + j + rℓ).

Proof. The proof follows by Definition 2.1, Lemma 2.4 and c j = v(k2 + j) . �

Definition 2.5. The solution u(k) of (0.1) is called oscillatory if for any k1 ∈

[a,∞) there exists a k2 ∈ Nℓ(k1) such that u(k2)u(k2 + ℓ) ≤ 0. The difference

equation itself is called oscillatory if all its solutions are oscillatory. If the solution

u(k) is not oscillatory, then it is said to be nonoscillatory (i.e., u(k)u(k+ℓ)> 0 for

all k ∈ [k1,∞)).

3. Main Results

In this section we present conditions for the oscillation and nonoscillation of

equation (0.1).

Lemma 3.1. The relation between ∆ℓ and ∆α(ℓ) is given by

α⌈
k+ℓ

ℓ
⌉∆ℓ

�

u(k)

α⌈
k

ℓ
⌉

�

=∆α(ℓ)u(k).

Theorem 3.2. Consider the generalized difference equation

∆α(ℓ)(p(k)∆α(ℓ)u(k)) + f (k)F(u(k)) = 0 (3.1)

and assume that in addition to the given hypotheses on the functions p , f and F ,

|F(u)| is bounded away from zero if |u| is bounded away from zero, f (k)≥ 0 for all

k ∈ [a,∞) and
∞
∑

r=0

α−⌈
k2+ j+rℓ

ℓ
⌉ f (k1 + j+ rℓ) =∞ , then (3.1) is oscillatory.

Proof. Let u(k) be a nonoscillatory solution of (0.1) and suppose that u(k) > 0

eventually. From the given hypothesis, there exists a positive constant c such that

F(u(k))≥ c for all k ∈ [k2,∞) .

On the other hand, from (0.1), we have

∆ℓ

�

p(k)

α⌈
k

ℓ
⌉
∆α(ℓ)u(k)

�

+α−⌈
k+ℓ

ℓ
⌉c f (k)≤ 0, k ∈ [k1,∞). (3.2)

By Definition 2.1 and Theorem 2.4 we obtain

p(k)α∆ℓu(k)≤−
c

α

k− j−k2−ℓ

ℓ
∑

r=0

α−⌈
k2+ j+rℓ

ℓ
⌉ f (k2+ j+ rℓ)→−∞ as k→∞.



124 M. Maria Susai Manuel, G. Britto Antony Xavier, D.S. Dilip, and G. Dominic Babu

We then have ∆ℓ
u(k)

α
⌈ k
ℓ
⌉
= −1/αp(k) . Again by Definition 2.1 and Theorem 2.4, we

have

u(k)

α⌈
k

ℓ
⌉
≤−

k−ℓ−a− j

ℓ
∑

r=0

1

αp(a+ j+ rℓ)
,

where k ∈ [k2,∞) , where j = k− k2 − [
k−k2

ℓ
]ℓ , which tends to −∞ as k→∞ .

This leads to a contradiction to our assumption that u(k)> 0 eventually. The case

u(k)< 0 eventually can be treated similarly. �

Example 3.3. For the generalized α -difference equation

∆α(ℓ)(k∆α(ℓ)u(k))− 2α2u(k)(2k+ ℓ) = 0 ,

and for p(k) = k , f = (2k+ ℓ)α⌈
k

ℓ
⌉ , F(u(k)) =

−2α2ku(k)

α
⌈ k
ℓ
⌉

, the conditions of

Theorem 3.2 hold and hence all the solutions of the generalized α -difference equation

is oscillatory. Infact u(k) = (−α)⌈
k

ℓ
⌉ is one such solution.

Theorem 3.4. Suppose that the following conditions hold.

(i) f (k)≥ b > 0 for all k ∈ [a,∞) ,

(ii) |F(u)| is bounded away from zero if |u| is bounded away from zero, and

(iii) the function G(k) =

k−ℓ−a− j

ℓ
∑

r=0

α−⌈
a+ j+rℓ

ℓ
⌉g(a+ j+ rℓ) is bounded on [a,∞) .

Then, for every nonoscillatory solution u(k) of (0.1), lim
k→∞

u(k) = 0 .

Proof. In system form, equation (0.1) is equivalent to

∆ℓ
u(k)

α⌈
k

ℓ
⌉
= α−⌈

k+ℓ

ℓ
⌉(v(k) + G(k))/p(k), (3.3)

∆ℓ
v(k)

α⌈
k

ℓ
⌉
= −α−⌈

k+ℓ

ℓ
⌉ f (k)F(u(k)). (3.4)

If u(k) is a nonoscillatory solution of (0.1), then we can assume that u(k) > 0

eventually (the case u(k) < 0 can be similarly treated). First, we shall show that

lim inf
k→∞

u(k) = 0. If not, there exist k1 ≥ a and a positive constant c1 such that

F(u(k))≥ c1 for all k ∈ [k1,∞) . From (3.4) it follows that

v(k+ ℓ)

α⌈
k+ℓ

ℓ
⌉
−

v(k1)

α⌈
k1
ℓ
⌉
=−

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉ f (k1 + j+ rℓ)F(u(k1+ j+ rℓ))

≤−c1

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉ f (k1 + j+ rℓ)

which tends to −∞ as k→∞ .



Asymptotic Behavior of Solutions of Generalized Nonlinear α -difference Equation of Second Order 125

We then have

∆ℓ
u(k)

α⌈
k

ℓ
⌉
= α−⌈

k+ℓ

ℓ
⌉(v(k) + G(k))/p(k)≤ −1/p(k) for all k ∈ [k2,∞),

for some k2 ≥ k1.

This implies that

u(k)

α⌈
k

ℓ
⌉
≤

u(k2)

α⌈
k2
ℓ
⌉
−

k−ℓ−k2− j

ℓ
∑

r=0

1/p(k2 + j+ rℓ)

which tends to −∞ as k→∞ . But, this contradicts the fact that u(k) is eventually

positive. From the above argument, we also have

∞
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉ f (k1 + j + rℓ)F(u(k1+ j+ rℓ))<∞ . (3.5)

If lim sup
k→∞

u(k) = γ > 0, then there exists a sequence {kt} ⊆ [0,∞) , such that

u(kt) → γ as t → ∞ . Hence, there is t(0)(kt(0) ≥ a) such that u(kt) ≥ γ/2 and

F(u(kt))≥ c2 for all t ≥ t(0) , where c2 is a positive constant. But, then we have

kt−kt(0)− j

ℓ
∑

r=0

α−⌈
kt(0)+ j+rℓ

ℓ
⌉ f (kt(0)+ j+ rℓ)F(u(kt(0)+ j+ rℓ))

≥

t−kt(0)− j

ℓ
∑

r=0

α−⌈
kt(0)+ j+rℓ

ℓ
⌉ f (kt(0) + j + rℓ)F(u(kt(0)+ j+ rℓ))

≥ bc1(t − t(0) + ℓ)

which tends to ∞ as t →∞ , so that
∞
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉ f (k1 + j + rℓ)F(u(k1+ j+ rℓ)) =∞

which contradicts (3.5). �

Example 3.5. For the generalized α -difference equation

∆α(ℓ)

�

1

k
∆α(ℓ)u(k)

�

+
(α2 − 1)ku(k+ 2ℓ)

(k+ ℓ)
=
(α2 − 1)

kα⌈
k

ℓ
⌉

,

and for p(k) = 1

k
, F(u(k)) =

ku(k+2ℓ)

(k+ℓ)
, the conditions of Theorem 3.4 hold and

hence all nonoscillatory solutions of the generalized α -difference equation, satisfies

lim
k→∞

u(k) = 0 .

Theorem 3.6. In addition to the condition (ii), let

(iv) f (k)> 0 for all k ∈ [a,∞) , and
∞
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉ f (k1 + j+ rℓ) =∞ , and

(v) lim
k→∞

g(k)/ f (k) = 0 .

Then, for every nonoscillatory solution u(k) of (0.1), lim inf
k→∞
|u(k)|= 0 .
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Proof. Let u(k) be a nonoscillatory solution of (0.1), say, u(k) > 0 for all

k ∈ [k1,∞) , where k1 ≥ a . Then, u(k) is also a nonoscillatory solution of

∆α(ℓ)(p(k)∆α(ℓ)u(k)) + [ f (k)− g(k)/F(u(k))]F(u(k)) = 0, k ∈ [k1,∞).

Suppose that lim inf
k→∞

u(k) > 0, then by the hypotheses, there exists a positive

constant c such that F(u(k)) ≥ c for all k ∈ [k1,∞) . Thus, by (v) there exists

a k2 ≥ k1 such that g(k)/( f (k)F(u(k))) < 1/2 for all k ∈ [k2,∞) . This implies

that

f (k)−
g(k)

F(u(k))
= f (k)

�

1−
g(k)

( f (k)F(u(k)))

�

≥
1

2
f (k), k ∈ [k2,∞).

So from (iv) we get

∞
∑

r=0

α−⌈
k1+ j+rℓ

ℓ
⌉

�

f (k1 + j + rℓ)−
g(k1 + j+ rℓ)

F(u(k1 + j + rℓ))

�

=∞.

But, then by Theorem 3.2, u(k) must be oscillatory. This contradiction completes

the proof. �

Example 3.7. For the generalized α -difference equation

∆α(ℓ)

�

1

k
∆α(ℓ)u(k)

�

+
(1−α2)u(k)

k
=

k(1−α2)

(k+ ℓ)α⌈
k+2ℓ

ℓ
⌉
,

and for p(k) = 1

k
, f = kα⌈

k

ℓ
⌉ , F(u(k)) =

(1−α2)u(k)2

k2 , the conditions of Theorem 3.6

hold and hence all the nonoscillatory solutions of the generalized α -difference

equation satisfies lim
k→∞
|u(k)|= 0 . u(k) = 1

α
⌈ k
ℓ
⌉

is one such solution.

Theorem 3.8. In addition to the condition (iv) let

(vi) F(u) is continuous at u = 0 , and

(vii) lim inf
k→∞

k−t− j
ℓ
∑

r=0

g(t+ j+rℓ)

k−t− j
ℓ
∑

r=0

f (t+ j+rℓ)

≥ c > 0 for every t ∈ [a,∞) .

Then, no solution of (0.1) approaches zero.

Proof. Let u(k) be a solution of (0.1) which approaches zero. Then, by the

hypotheses on the function F there exists a k1 ≥ a such that F(u(k))< c/4 for all

k ∈ [k1,∞) . Hence, from equation (0.1) we have

p(k+ ℓ)α∆ℓ
u(k+ ℓ)

α⌈
k

ℓ
⌉
−αp(k1 + j)∆ℓ

u(k1 + j)

α⌈
k1+ j

ℓ
⌉

≥ −
c

4

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+ℓ+rℓ

ℓ
⌉ f (k1 + j + rℓ) +

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+ℓ+rℓ

ℓ
⌉g(k1+ j+ rℓ),
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which by (vii) yields

αp(k+ ℓ)∆ℓ
u(k+ℓ)

α
⌈ k
ℓ
⌉

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+ℓ+rℓ

ℓ
⌉ f (k1 + j+ rℓ)

−

αp(k1 + j)∆ℓ
u(k1+ j)

α
⌈

k1+ j

ℓ
⌉

k−k1− j

ℓ
∑

r=0

α−⌈
k1+ j+ℓ+rℓ

ℓ
⌉ f (k1 + j+ rℓ)

≥−
c

4
+

k−k1− j

ℓ
∑

r=0

g(k1 + j+ rℓ)

k−k1− j

ℓ
∑

r=0

f (k1 + j+ rℓ)

≥−
c

4
+

c

2
=

c

4
> 0,

for all large k . Now, because of (iv) in the above inequality implies that p(k)∆ℓ
u(k)

α
⌈

k
ℓ
⌉

which tends to ∞ as k→∞ , which in turn leads to the contradictive conclusion

that u(k)→∞ as k→∞ . �

Example 3.9. For the generalized α -difference equation

∆α(ℓ)(k∆α(ℓ)u(k)) +α
2(α− 1)ku(k) = α3(α− 1)(k+ ℓ)α2⌈ k

ℓ
⌉,

and for F(u(k)) = u(k) , f = kα2(α − 1) , g = α3(α − 1)(k + ℓ)α2⌈ k

ℓ
⌉ , all the

conditions of Theorem 3.8 hold and hence all the solutions of the generalized α -

difference equation are unbounded. u(k) = α2⌈ k

ℓ
⌉ is one such solution.

Remark 3.10. If we replace conditions (iv) and (vii) by

(iv) ′ f (k)< 0 for all k ∈ [a,∞) , and
∞
∑

r=0

α−⌈
t+ j+ℓ+rℓ

ℓ
⌉ f (t + j+ rℓ) = −∞ and

(v) ′ limsup
k→∞

k−t− j

ℓ
∑

r=0

g(t + j+ rℓ)/

k−t− j

ℓ
∑

r=0

f (t + j+ rℓ)≤ c < 0 for every t ∈ [a,∞) ,

then the assertion of Theorem 3.8 holds.

Theorem 3.11. Suppose that the following conditions hold.

(viii) F(u) is locally bounded in [0,∞)

(ix)
∞
∑

r=0

α−⌈
t+ j+rℓ

ℓ
⌉| f (t + j+ rℓ)|<∞ ,

∞
∑

r=0

α−⌈
t+ j+rℓ

ℓ
⌉g(t + j + rℓ) =∞ .

Then, every solution of (0.1) is unbounded.

Proof. Let u(k) be a bounded solution of (0.1), i.e. |u(k)| < M , where M is

a positive constant. Then, by (viii) there exist constants L1 and L2 such that
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L1 ≤ F(u(k))≤ L2 . But then, from (0.1) and (ix), we obtain

αp(k+ ℓ)∆ℓ
u(k+ ℓ)

α⌈
k

ℓ
⌉
−αp(a+ j)∆ℓ

u(a+ j)

α⌈
a+ j

ℓ
⌉

≥

k−a− j

ℓ
∑

r=0

α−⌈
a+ j+ℓ+rℓ

ℓ
⌉g(a+ j+ rℓ)− L2

k−a− j

ℓ
∑

r=0

α−⌈
a+ j+ℓ+rℓ

ℓ
⌉ f +(a+ j+ rℓ)

− L1

k−a− j

ℓ
∑

r=0

α−⌈
a+ j+ℓ+rℓ

ℓ
⌉ f −(a+ j+ rℓ)

which tends to ∞ , as k→∞ . However, this leads to the fact that u(k)→∞ . This

contradiction completes the proof. �

Example 3.12. For the generalized α -difference equation

∆α(ℓ)(k∆α(ℓ)u(k)) +α
2(α− 1)ku(k) = α3(α− 1)(k+ ℓ)α2

 

k

ℓ

£

,

and for F(u(k)) = u(k) , f = kα2(α − 1) , g = α3(α − 1)(k + ℓ)α2⌈ k

ℓ
⌉ , all

the conditions of Theorem 3.11 hold and hence all the solutions of generalized α -

difference equation are unbounded. Infact u(k) = α2⌈ k

ℓ
⌉ is one such solution.
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