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Abstract. The study of Arterial blood flow is a fascinating topic as arterial disease is responsible of
death in many nations. This paper investigated the conduct of blood flow across a tapered artery with
stenosis. This study has been simply explained by the use of a mathematical model that is appropriate.
The graphical representations were created to support the results of the study. For various values of
tapering angle, it is discovered that wall shear stress enhance when a peak is reached, then decreases.
We also found that the velocity of the blood flow reduces with radius and also for distinct values of
tapering angle. It is also evidenced that the blood flow rate reduces as the radius and tapering angle
increase.
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1. Introduction
1.1 Blood

The heart is in charge of pumping blood and supplying oxygen and nutrients across the body
as part of the circulatory system. The fluid that carries away carbon dioxide and other waste
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products while providing oxygen and nutrients to cells is known as blood. A human body
contains about 5 liters of blood (more than a gallon) [19]. The heart [43] drives blood to various
parts of the body as a carrier liquid and blood comes back to the heart to repeat the cycle. At
the same time, Blood is a tissue because it is a group of identical particular cells that serve
specific functions. These cells are floating in a liquid matrix (plasma); which is responsible for
the fluidity of the blood. When blood flow stops, very sensitive cells die within minutes due to
the effects of the hostile environment.

1.2 Blood Components

Plasma, red blood cells (RBC), white blood cells (WBC), and platelets are the four primary
components of a blood sample [37, 44]. The golden-yellow liquid portion of blood is known
as plasma. Proteins, glucose, ions, hormones, and gases make up 10% of plasma’s dissolved
products. It functions as a buffer, maintaining the pH close to 7.4. Plasma accounts for around
54% of blood volume, while cells and fragments account for 46% [39]. Hemoglobin is a special
protein found in red blood cells that assists in the transportation of oxygen from the lungs to the
entire body, as well as the return of Carbon dioxide is transported from the body to the lungs,
where it is exhaled. The diameter of red cells is approximately 7.8 m (1 m = 0.000039 inch). Just
about 1% of our blood is made up of white blood cells, but they have a huge effect. Leukocytes
are the term for white blood cells. They safeguard us from disease and illness [1]. Platelets are
small blood cells that assist in the formation of clots to avoid bleeding [11].

Figure 1. Component of blood cell [source: encyclopedia britannica, inc.]
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1.3 Aortic Aneurysm

The aorta, which is responsible for transporting oxygen-rich blood from the heart to the entire
of the body, is the most significant blood vessel (pipe) inside the body of man. A part of the
aorta wall may be damaged or weakened in some cases. As a result of this, it can bulge or swell
similar to a balloon which is referred to as aortic aneurysm. Stenosis is a word that applies to
any disorder situation in which a blood vessel (an artery), or another tubular organ narrows
strangely.

Figure 2. Normal vessel vs weakened vessel [source: encyclopedia britannica, inc]

Figure 3. Abdominal aortic aneurysm and thoracic aortic aneurysm [source: encyclopedia britannica,
inc]

1.4 Types of Aortic Aneurysms

There are two types of aneurysms. This bulge is most commonly seen in the lower portion of
aorta, which passes across abdomen (tummy); that is known as an aortic aneurysm in the
abdomen (AAA). In some cases, the bulge can take place in the upper portion of the aorta that
runs across our chest; that is known as thoracic aortic aneurysm [12,43,50].
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1.5 Aortic aneurysm complications

When there is a small aortic aneurysm, it normally causes no complications, but when it becomes
too large, it can be fatal. Two types of symptoms may be manifested: (i) Aortic dissection (a tear
in its wall of the aorta), (ii) Aortic rupture (the aorta to burst).

Figure 4. Normal blood flow through normal coronary artery [source: encyclopedia britannica, inc]

Figure 5. Abnormal blood flow through narrowing of coronary artery [source: encyclopedia britannica,
inc]

Figure 6. Normal vs abnormal blood flow to kidney [source: encyclopedia britannica, inc]

1.6

A thoracic aortic aneurysm can manifest itself in a number of ways, chest tightness or discomfort,
back pain, hoarseness, cough, shortness of breath are some of the symptoms that may occur.
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And An abdominal aortic aneurysm can cause a variety of symptoms: serious abdominal pain or
the side of our abdomen, back or groin pain, pulsing sensation around our belly button [19].

1.7 Newtonian Fluid versus Non-Newtonian Fluid

Newtonian fluid is characterized as a fluid that follows the rules of Newton’s law of viscosity
(Example: water, benzene, ethyl alcohol etc). Otherwise it is called Non-Newtonian [15] Fluid
(Example: blood, saliva, toothpaste, paint etc.). The viscosity of a fluid is commonly referred to
as its thickness (Example: honey with high viscosity and water with low viscosity).

2. Literature Review
Tapering is an important factor of the mammalian arterial system. Several studies have been
conducted on blood flow in arteries theoretically, experimentally, clinically and numerically
[7, 12, 29, 33, 37]. The intricate anatomy of arteries (such as stretching, bifurcation, stenosis,
and so on) is also a significant factor that affects local hemodynamics. Localized arterial
narrowing is a symptom of arteriosclerosis (or stenosis). Local hemodynamics can be affected by
stenosis. Simultaneously, changes in local hemodynamics can result in blood vessel re-narrowing
(restenosis). A number of studies have documented their experimental work in rigid stenoses,
such as Ahmed [2], and Siouffi et al. [16,47]. The pulsatile flow in flexible stenoses was calculated
by Stergiopulos et al. [30]. Pulsatile flow through axially symmetric smooth rigid stenoses: a
numerical analysis. There have been reports of experiments using blood as an incompressible
Newtonian fluid [10,31,54]. Moreover, Tu and Deville [52] as well as Ishikawa and coworkers
[18,21] have considered the non-Newtonian properties of blood. The effect of stenosis morphology
has been highlighted by Stroud et al. [48]. Andersson et al. [5] described stenosis as abnormal
stenosis on the surface. The effects of the wall’s elastic property were studied by Moayeri and
Zendehbudi [38]. Chakravarty and Sannigrahi [14] devised a nonlinear mathematical model
to examine blood flow features in an artery with multi-stenoses when subjected to whole-body
acceleration. Valencia and Villanueva [53] developed a computational model to simulate non-
Newtonian blood flow and mass transfer that is not always compatible stenotic arteries, both
symmetric and non-symmetric. Bakirtas and Demiray examined the impact of stenosis on
solitary waves in arterie [6]. The exponential taper in arteries was studied by Myers and Capper
[40]. The effect of precise solution impedance and waveforms of blood flow velocity has been
investigated. Sankar explored the pulsatile flow of blood via a catheterized artery [45] assuming
a two-fluid model for blood. As a pioneering contribution to the study of the viscoelastic nature of
blood shear thinning. Thurston [51] created a one-dimensional flow model based on an expanded
Maxwell model. For blood moving into tiny vessels; some researchers [4,13,34–36] examined
this. There is a layer of erythrocyte-free plasma (Newtonian) neighboring to the vessel wall, as
well as a central layer of erythrocyte suspension (non-Newtonian) [17,22–26].

Cardiovascular infections (such as coronary heart [32] disease, stroke, aneurysm, and
stenosis) are regarded as the cause of the largest number of deaths in the world [28]. Cerebral
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aneurysm is a form of coronary heart disease. The most common cause of internal bleeding is
the rupture of cerebral aneurysms; which is a life-threatening condition that results in mortality
and morbidity [20,27].

3. Formulation of the Problem
A circular part of a rigid tube is used to mathematically model the tapered vessel segment with
an axially symmetric stenosis.

Let (r,θ, z) be the coordinates, with the z-axis running parallel to the artery’s axis and r and
θ running parallel to the radial and circumferential directions, correspondingly.

The mathematical model of the artery’s geometry (Figures 7 and 8) is as follows:

ψ(z)=
{

R0 −m(z+d)− hcosφ
2

(
1+cos πz

z0

)
; |z| ≤ z0

R0 −m(z+d); |z| > z0
(3.1)

where ψ(z) is the radius of the constricted region’s tapered arterial section. In the non-stenotic
area, R0 is the constant radius of the straight artery, φ denotes the tapering angle. For tapered
arteries, h cos φ is the stenosis height. The half-length of the stenosis is z0, and the slope of
the tapered vessel is m (= tanφ). If the blood flow in the stenotic and tapered arterial segment
is pulsating, axis symmetric, two-dimensional, and completely formed, the Navier-Stokes
equations and the equation of continuity governing the blood flow are written in cylindrical
coordinates as

δu
δt

+u
δu
δz

+v
δu
δr

=−1
ρ

δp
δz

+ µ

ρ

(
δ2u
δr2 + 1

r
δu
δr

+ δ2u
δz2

)
, (3.2)

δv
δt

+u
δv
δz

+v
δv
δr

=−1
ρ

δp
δr

+ µ

ρ

(
δ2v
δr2 + 1

r
δv
δr

+ δ2v
δz2 − v

r2

)
, (3.3)

δu
δz

+ 1
r
δ(rv)
δr

= 0 . (3.4)

Figure 7. Geometry of the artery in longitudinal
section

Figure 8. Geometry of the axially stenosed
tapered artery for different tapered angle

Here, u and v stand for the axial and radial velocity components, correspondingly. p stands
for pressure, ρ is is the blood’s density, and µ symbolize the blood viscosity.
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We introduce the following dimensionless variables:

r∗ = r
R0

, z∗ = z
R0

, u∗ = u
u0

, v∗ = v
u0

, t∗ = t
T

, (3.5)

where u0 the average velocity is in a period over the inlet section, T is the pulsating period of
the blood flow. We use the stream function vorticity structure of the equations to make solving
the governing equations more convenient. In two-dimensional incompressible flow; this form
has several advantages over the primitive variable form. Since, it automatically solves the
continuity equation. As a result, we begin by introducing the dimensionless stream function ψ∗

and dimensionless vorticity Ω∗

u∗ = 1
r∗
δψ∗

δr∗
, v∗ =− 1

r∗
δψ∗

δz∗
, Ω∗ = δv∗

δz∗
− δu∗

δr∗
. (3.6)

The stream function and vorticity equations are obtained by removing p from equations (3.2)
and (3.3) and substituting equations (3.5) and (3.6).

δ2ψ

δz2 + δ2ψ

δr2 − 1
r
δψ

δr
=−rΩ . (3.7)

Such that
δΩ

δt
+ 1

r
δψ

δr
δΩ

δz
− 1

r
δψ

δz
δΩ

δr
= 1

Re

[
δ2Ω

δr2 + 1
r
δΩ

δr
+ δ2Ω

δz2 − Ω
r2

]
− Ω

r2
δψ

δz
. (3.8)

The following are the steady incompressible tangent hyperbolic fluid equations:
δū
δr̄

+ ū
r̄
+ δw̄
δz̄

= 0 . (3.9)

In both the r̄ and z̄ directions, the velocity components

ρ

(
ū
δ

δr̄
+ w̄

δ

δz̄

)
ū =−δ p̄

δz̄
+ 1

r̄
δ

δr̄
(r̄τ̄r̄r̄)+ δ

δz̄
(τ̄r̄ z̄)− τ̄0̄0̄

r̄
, (3.10)

ρ

(
ū
δ

δr̄
+ w̄

δ

δz̄

)
w̄ =−δ p̄

δz̄
+ 1

r̄
δ

δr̄
(r̄τ̄r̄ z̄)+ δ

δz̄
(τ̄z̄ z̄) . (3.11)

Blood in the vessel is treated as incomplete and turbulent flow. In both the r and z directions,
velocity components must be described. For non-Newtonian fluids, the shape of the dimensionless
Navier-Stokes equation [3,9,41].

ψeσε2
(
∂u
∂t

+ε
(
σu

∂u
∂r

+v
∂u
∂z

))
=−∂p

∂r
+ε2

(
1
r
∂

∂r
(
rSrr)+ ∂

∂z
(
Srz)) , (3.12)

ψe
[
∂v
∂t

]
+ψe

(
σεu

∂v
∂r

+εv
∂v
∂z

)
=−∂p

∂z
+G(t)+

(
1
r
∂

∂r
(
rSrz)+ε2 ∂

∂z
(
Szz)) , (3.13)

ψepr

(
∂T
∂t

+ε
(
σu)

∂T
∂r

+v
∂T
∂z

))
= Br

(
σε2Srr ∂u

∂r
+Srz ∂v

∂r
+σε2Szr ∂u

∂z
+ε2Szz ∂v

∂z

)
+

(
∂2T
∂r2 + 1

r
∂T
∂r

+ε2∂
2T
∂z2

)
. (3.14)

The components of S i j extra stress are given:

Srz = (M+ (1−M)S)
(
∂v
∂r

+σ∂u
∂z

)
,

Srr = (M+ (1−M)S)
(
εσ

∂u
∂r

)
,
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Szz = (M+ (1−M)S)
(
ε
∂v
∂z

)
,

S =
1+

{
We2

∣∣∣∣[2
(
σε

((
∂u
∂r

)2
+

(u
r

)2
)
+ε

(
∂v
∂z

)2)
+

(
σ
∂u
∂z

+ ∂v
∂r

)2]∣∣∣∣}
n−1

2

−1

. (3.15)

The parameters should be used in non-dimensional form in order to maintain modeling:

u = u∗l0

σ∗U0
, y= v∗

U0
, r = r∗

a
, z = z∗

l0
, t = t∗U0

a
, R = R∗

a
,

p = p∗a2

l0µ0U0
, l0 =

l∗0
R0

,Srr = l0

U0µ0
S∗rr, Szz = l0

U0µ0
S∗zz,

Srz = a
U0µ0

S∗rz, We = GU0

a
, Re = ρU0a

µ0
, M = µ8

µ0
,

βI =
β∗

I

l0
, Pr = Cpµ0

k
, Br =

µ0U2
0

k(Tl)
, T∗ = T

T1
, (3.16)

where U0 is the average velocity of unstable flow with a dimensionless number. Also, Re, We,
Pr, ∂p

∂z are the symbols for Reynolds number, Weissenberg number, Prandtl number and the
pulsatile pressure gradient for the human body. Therefore,

−∂p
∂z

= D1(1+ ecos(α2t+φ) . (3.17)

The periodic oscillations of the body for t > 0 can be characterized by

G(t)= D2 cos(α2t+φ) , (3.18)

where φ describes the difference in phases

α1 =
aωp

U0
, D1 = A0a2

µ0U0
, D2 = ρAg

a2

µ0U0
, G(t)= ρa2G∗(t∗)

U0µ0
, e = A1

A0
, α2 = aω0

U0
. (3.19)

4. Methodology

No one may consider the time-dependent geometry of stenosis by tapered artery because of
the preceding discussion through literature review. As a consequence, the time-dependent
geometry of stenosis in tapered arteries has been taken into account. The casson fluid model is
used to treat our blood. Graphs are used to calculate velocity, wall shear stress, and flow rate.
The COMSOL(4.1) Multi-physics; a simulation software has been used in this study. MATLAB is
used to measure the numerical values, which are then compared to theoretical and experimental
data. In terms of boundary conditions, we embraced an oscillatory physiological velocity profile
on the input boundary z = 0 in order to simulate heart beats (1s periodic function).

u = 0, v = F(t)
(
1−

( r
R

)2
)
.

Here,

f (t)= a0

2
+

7∑
k=1

(ak cos(2πkt)+bk sin(2πkt)). (4.1)
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Fourier decomposition of spatial average velocity:

Vm = 1
T

∫ T

0
v̄(t)exp(− jmωt)dt .

The spatial average velocity is then

v̄(t)= v0 +
∞∑

m=1
|Vm| cos(mωt−φm) . (4.2)

5. The Problem’s Resolution
5.1 Perturbation Solution

Any issue concerning the interaction of fluid mechanics and vessel wall mechanics, Instead of
having its unique form as an input, ψ(z, t) may normally be extracted as part of the solution.
Since ψ(z, t) is clearly established in this case, our focus will be solely on the haemodynamic
factors. Non-dimensional field equations can be used to propagate blood flow [23] in elastic
arteries [42]

2
∂u
∂t

+2ω
[

f ′+ ∂u
∂z

]
+ [λθ+ f (z)+u]

∂ω

∂z
= 0,

∂u
∂t

+ω∂ω
∂z

+ ∂p
∂z

−v
[
∂2ω

∂z2 − 8ω
(λθ+ f (z)+u)2

]
= 0,

p = m
λz(λθ+ f (z)+u)

∂2u
∂t2 + 1

λz(λθ+ f (z)+u)
∂π

∂λ2
− 1

(λθ+ f (z)+u)
∂

∂z

(
f ′+ ∂u

∂z

Λ

)
∂π

∂λ1

+ 4v( f ′+∂(u)/∂(z)ω
λθ+ f (z)+u

, (5.1)

where u indicates the radial motion, ω specifies the axial velocity on average, ppresents the fluid
pressure on average, ν means the fluid’s viscosity and f (z) is a function that defines the variance
of a radius in the axial direction. (In this situation, Dilatation (aneurismal [49]) geometry is
defined by f . The in-compressible state (mass conservation) of the fluid is expressed by the first
equation of (5.1), which is a conservative fluid momentum equation. By using Newton’s second
law, the third equation of (5.1) is obtained. Where the density of the material’s strain energy
feature is π. m is the relative mass of the wall. In both circumferential and axial directions, the
initial stretch ratios were determined that are λθ , λz , successively. In both circumferential and

axial directions, the current stretch ratios are λ1, λ2 and Λ= [
1+ f ′+ ∂u

∂z
] 1

2 .

In comparison with equation (5.1) research, the reductive impatience approach is used
to study the dispersive wave propagation in a fluid-solid structure system. The reductive
perturbation method was developed for long-wave approximation. The following expanded
coordinates are added

ξ= ε1/2 (z− ct) , τ= ε3/2z , (5.2)

where ε is a small parameter that calculates the dispersion weakness and c is the phase velocity
in the long-wave limit. Then z = ε−3/2τ and f

(
ε−

3
2τ

)= x(ξ,τ). Considering the effect of dilatation,
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it is presumed that f to be of the order of 5/2 i.e.

x (ξ,τ)= εh(τ) . (5.3)

Furthermore, considering the effect of viscosity, It is presumed that the order of viscosity will be
O(3/2), i.e.

v = ε3/2v̄ . (5.4)

Establishing the subsequent perturbation development of the variables u, ω and p in term of ε

u = εu1 +ε2u2 + . . .

ω= εω1 +ε2ω2 + . . .

p = p0 +εp1 +ε2 p2 + . . . . (5.5)

Substituting equations (5.2)-(5.5) into equation (5.1), the following differential sets are obtained:

O (ε) Equation

−2c
∂u1

∂ξ
+λθ ∂ω1

∂ξ
= 0 ,

− c
∂ω1

∂ξ
+ ∂p1

∂ξ
= 0,

p1 = γ1(u1 +h (r)) . (5.6)

O(ε2) Equation

−2c
∂u2

∂ξ
+2ω1

∂u1

∂ξ
+λθ ∂ω2

∂ξ
+ [u1 +h]

∂u1

∂ξ
+λθ ∂ω1

∂τ
= 0,

− c
∂ω2

∂ξ
+ω1

∂ω1

∂ξ
+ ∂p2

∂ξ
+ ∂p1

∂τ
+ 8v̄ω1

λ2
θ

= 0,

p2 =
(

mc2

λθλz
−γ0

)
∂2u1

∂ξ2 +γ1u2 +γ2u2
1 +2γ2h (τ)u1 +γ2h2(τ), (5.7)

where

β0 = 1
λθλz

∂Π

∂λθ
,

β1 = 1
λθλz

∂Π

∂λ2
θ

, β2 = 1
2λθλz

λ3Π

∂λ3
θ

,

γ1 =β1 − β0

λθ
, γ2 =β2 − β1

λθ
. (5.8)

In view of the process in infinity, the following equation can be written as the solution of the
equation (5.5)

u1 =U (ξ,τ) , ω1 = 2c
λ0

U , p1 = 2c2

λ0
U +γ1h(τ), γ1 = 2

c2

λθ
. (5.9)

If U (ξ,τ) is an unidentified function, the governing equation is achieved as follows. Here, we
introduced equation (5.8) in equation (5.6), and the nonlinear equation of evolution is achieved
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through some mathematical transformations
∂U
∂τ

=µ1U
∂U
∂ξ

+µ2
∂3U
∂ξ3 +µ3U +µ4 (τ)= 0,

where

µ1 = 5
2λθ

+ γ2

γ1
,

µ2 = m
4λz

− γ0

2γ1
, (5.10)

µ3 = 4v̄v
2

γ1λ
5
θ

, (5.11)

µ4 (τ)= h (τ)
(

1
2λθ

+ γ2

γ1

)
, (5.12)

µ (τ)= 1
2

h′(τ) . (5.13)

5.2 Expression for Wall Shear Stress and Resistance Impedance

The profiles of velocity are estimated so far then the dimensionless relationships for the
volumetric flow rate are calculated, the impedance of wall shear stress [46] and resistance is
measured as follows [19].

Qk
i =

∫ R

O
vrdr

Λk
i =

(|L(∂p
∂z )k

i |)
QK

i

τs =
M+ (1−M)

(
1+

(
We2|∂v

∂r
|2

) n−1
2

)−1
 ∂v
∂r

. (5.14)

A coordinate conversion can be applied to the governing artery as k = r/ψ to describe the
motionless elastic artery, initial and boundary equations.

As a result, the mesh grids can therefore be created on the artery’s applied cross-section
region. The following equations will result in the application of the described coordinate
conversion.

∂v
∂t

= 1
Re

D1 (1+ ecos(α1t))+ 1
kψ2

∂

∂k

k

M+ (1−M)

1+
((

We
R

)2 ∣∣∣∣ ∂v
∂K

∣∣∣∣2)
n−1

2

−1 ∂v
∂K

 ,

(5.15)

∂T
∂t

= Br

ψePrR2

M+ (1−M)

1+
((

We
ψ

)2 ∣∣∣∣ ∂v
∂K

∣∣∣∣2)
n−1

2

−1
(
∂v
∂K

)2
+ 1
ψ2

{
∂2T
∂K2 + 1

K
∂T
∂k

}
.

(5.16)
The dimensionless relationships are like in the case of initial circumstances,

v (r,0)= 2U0
(
1−k2) , T (k,0)= 0 . (5.17)
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and for the boundary conditions:
∂v(k, t)
∂k

= 0,
∂T
∂K

= 0K = 0 ,

v (k, t)= 0, T (k, t)= 1, k = 1 (5.18)

6. Result Analysis

Figure 9. Wall shear stress distributions along the vessel wall at t/T = 0.5

Figure 10. The wall shear stress distributions at the stenosis’s throat
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Figure 11. The volumetric flow rate of pulsatile

Figure 12. At peak systole, pressure along a longitudinal line was linked to stenosed vessels with
severity levels of 30%

Figure 13. At peak systole, pressure along the longitudinal line was compared to stenosed vessels with
severities of 50%
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Figure 14. At peak systole, pressure along a longitudinal line was compared to stenosed vessels with
severities of 70%

Figure 15. Blood flow velocity alongside a longitudinal line at peak systole in vessels with stenosis
severity of 30%

Figure 16. Blood flow speed along a longitudinal line at peak systole in vessels with stenosis severity of
50%
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Figure 17. Blood flow velocity along a longitudinal line at peak systole in stenosed vessels with severities
of 70%

Figure 18. Resistance impedance varies for different Reynolds numbers

Figure 19. Resistance impedance variation for various wissenberg numbers
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Figure 20. Resistance impedance varies depending on the aneurysm’s form

Figure 21. Wall shear stress variation for various reynolds numbers

Figure 22. Wall shear stress variation for different tapered angles
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Figure 23. For different prandtl numbers, the wall shear stress varies

Figure 24. For different weissenberg numbers, the velocity side view varies

Figure 25. For various tapered angles, the velocity side view varies
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Figure 26. Variation of the velocity outline for various aneurysm redial values

Figure 27. For various prandtl numbers, a variation of dimensionless temperature side view is shown

Figure 28. In the inlet for blood flow, the average velocity and pulsatile velocity waveforms are shown
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The cardiac cycle length, T = 0.735 s, is used to scale the dimensional less time t/T .

Figure 29. Velocity group

Figure 30. Velocity group

Figure 31. Mean velocities in space from the common femoral artery (top)
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Figure 32. The carotid arteries’ spatial mean velocities (bottom)

Figure 33. For various values of tapering angle, the effect of artery inclination on shearing stress

Figure 34. For various values of the shape parameter (n) and permeability, the effect of permeability on
the shearing stress was investigated (k)
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7. Discussion
In order to estimate the effect of tapering on the wall shear stress, we give the results for the
allocations of the wall shear stress through models M1 and M4 at t/T = 0.5 (Figure 9). Figure 9
shows that the variation of the shear stress of wall is almost the same except at the throat of
the stenosis. Due to the tapering, the maximal negative value is bigger near the throat of the
stenosis. We also compare the results at other times finding that the situation is the same as
that at t/T = 0.5. Figure 10 illustrates the results for the distribution of the wall shear stress
at the throat of the stenosis; it is well known that at this location the values of the wall shear
stress are the highest. With the value of h increasing, the oscillation amplitude of the wall
shear stress increases.

Wall shear stress is a key factor for the study of blood flow. Correct estimation of wall shear
stress distribution is relevant in the knowledge of the effects of blood flow on endothelial cells.
Numerical studies have been conducted through various types of stenotic and tapered vessels
with laminar flow, rigid walls, and Newtonian fluid. The study found that the height of stenosis
had a significant effect on the wall shear stress in the throat and downstream of the throat.
Owing to the tapering, the oscillation amplitude of the shear stress of the wall is higher than
that of the untapped artery.

We plotted graphs of the stress on the wall glass and considered the effect of different types
of pressure on the light aneurysm curved arteries. Aneurysm, velocity, temperature and various
emerging flow parameters to prevent blood flow obstruction. The emerging flow parameters are
aneurysm shape, Prandtl numbers, Weissenberg number, Reynolds number and shear-thinning
fluid parameter. It is possible to understand the impact of contraction by holding the limit
constant to understand the limit of the flow.

Figure 18 efforts to show that the upgraded Reynolds numbers (1, 6, and 12) can provide
substantial impedance increases in various situations. Similarly, it is likely to feel that the
volumetric flow rate has the opposite effect on blood flow obstruction. The Weissenberg numbers
at various periods (0.1, 0.5, and 1.5, respectively) are shown in Figure 19.

Figure 20 shows the flow obstruction of aneurysms of various shapes at various timings.
According to these results, the expansion of the shape causes the protection of blood flow from
decline, or in short, as the n parameter increases, the reaction force of the blood flow decreases.
As the relevant Reynolds numbers (1, 6, and 12) expand in Figure 21, the pressure divider’s
shear pressure can be increased. The contour’s mathematics focuses on the estimation of the
separation line shear pressure of the tightened and un-tightened veins in Figure 22. At the
point where this point gradually expands, the sheer pressure of the dividing line is relieved.
Also, it is noteworthy that the tendency of the non-tapered blood vessel is situated in the curve
that includes the open and close-ended arteries.

Figure 23 indicates that Wall shear pressure increases as the number of Prandtl aneurysms
(for 0.1, 0.5, and 1) increases. The type of arterial axial velocity with various tapered angles
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of the aneurysm is presented in Figure 13. The axial velocity inside the artery is gradually
adjusted with growing angles. Likewise, the result of an un-tightened catheter is to merge and
bend the twisted blood vessel. These findings are in close agreement with the observation that
an aneurysm greatly affects blood flow and re-circulation.

Figure 26 shows the hub velocity distribution inside the flexible artery compared to three
unique aneurysm values (σ=0.1, σ=0.2, and σ=0.3) at two essential focal points z = 0.7 and z =
2.1. Moreover, the pivoting speed increases as the aneurysm expands.

In simulations, two separate flow waveforms of the inlet velocity are used, as shown in
Figure 16. Three different inlet velocities at time point’s t1, t2, and t3 (as shown in Figure 16)
reflect the minimum inlet velocities in the pulsatile inlet state,they are chosen to study the WSS
distributions because of their average and maximum velocity. In the same inlet conditions, WSS
for non-Newtonian blood models are all higher than those for Newtonian blood models. After all,
at the same inlet velocity of 0.2 m/s (steady and pulsatile (t1)), the WSS distributions for the
same blood model (Newtonian or non-Newtonian) are entirely different. Furthermore, regardless
of blood models, as inlet velocity increases, the WSS distributions increase.The pulsation of
inlet conditions and blood models tend to have a significant effect on WSS distributions.

We used pulsatile flow of a power law fluid, and we modeled and analyzed it in the
cardiovascular system. The form is used to investigate vital flow in stenotic arteries with
varying degrees of stenosis 30%, 50%, and 70%. The minimum and maximum time stage for
a 30% area severity are ∆tmin = 0.005 s, and ∆tmax = 0.01 s, respectively. The time stage
are ∆tmin = 0.001 s and ∆tmax = 0.005 s for 50% and 70% area severity. As the occlusion
approaches, there is a rapid drop in pressure. Greater pressure decreases around the stenosis
as the percentage area severity increases (Figures 12, 13, and 14). In the stenosis region, it
also results in faster speeds (Figures 15, 16, and 17). The findings obviously demonstrate the
relationship between pressure and velocity. It demonstrates that pressure falls rapidly at the
stenosis site, resulting in a jet flow at the stenosis’s throat. If there is a negative pressure
gradient at the stenosis site, the flow accelerates. When there is an adverse pressure slope, the
flow slows. This additional pressure leap aids in propelling the flow through the narrowing
channel. Comparing the outcomes of three stenotic tubes with region severity of 30 percent, 50
percent, and 70 percent. We discovered that stenosis an area with a greater percentage severity
produces higher extra pressure jumps. The plot groups for the blood velocity profile based on the
width of the artery at time t = 0.302 s, t = 0.52 s, t = 0.3 s and t = 0.7 s are shown in Figures 29
and 30.

By the inspection of the Figure 33, it can be noticed that the converging region (φ< 0), in
comparison to the diverging area, the stress will be higher (φ> 0) and non tapered region (φ= 0)
that is, as the tapering angle increases, the wall shear stress increases (φ). Figure 34 depicts
that the variation of wall stress τ, with shape parameter n and permeability. It is evident that
the pressure on the walls is lessening with increases of permeability parameter.
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Blood flows from the left side into this horizontal flow channel and reaches the parabolic
velocity profile resulted in a pressure gradient at the inlet and the outlet. The fluid velocity is
much varied in the aneurysm region. The bifurcation of the vessels [8] creates a velocity profile
skewed towards the inside walls of the vessels [8]. If blood velocity in the aneurismal region is
sufficiently low, small blood clots can site at the outside wall and travel with the bloodstream
with the risk of causing a stroke.

8. Conclusion
From the results, it can be inferred that compared and patented aneurysms, aneurysms that
are completely blocked during development are moderately necked and have a longer standard
travel time. In the area of the aneurysm, the pressure of the dividing line is shallow. As the
size of the aneurysm increases, the sheer pressure of the dispenser decreases. Increase the
flow rate by expanding the size of the aneurysm. A basic understanding of atherosclerosis,
ICAs, improved clinical arrangements as treatment methods, medical consultants, and prudent
strategies gradually adopted can reduce disease-related depression and mortality. The scale of
the stenosis in stenosed vessels has an effect on blood flow, according to our findings. The blood
flow rate changes drastically when the cross-sectional value is changed significantly. It is also
apparent that as the permeability parameter is increased, the wall stress decreases.
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