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Abstract. In this paper, a new technique is proposed to solve some classes of nonlinear random partial
differential equations using finite element method. Through this technique we were able to deal with
the random variable in the presence of a nonlinear function. The idea of this technique is based on
assuming that the nodal coefficients are functions of the random variable. Then by discretization of
the random variable and using fitting over the discretized values of the random variable, and utilizing
the shape functions of the finite element method, we get the approximate solution as a function in
both space and random variable. Some numerical examples, in different domains, are presented to
show the effectiveness of this technique.
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1. Introduction
Physical phenomena of interest in science and technology are often simulated by means of
models which correspond to partial differential equations (PDEs). These equations are in general
nonlinear and, as such, their solution is usually a difficult task.

The coefficients of a PDE can be deterministic values or random variables (RVs). Randomness
in the coefficients of PDEs describes the real behavior of quantities of interest than their
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counterpart with deterministic coefficients. It may arise because of errors in the observed or
measured data, variability conditions of the experiment or uncertainties. The model in that
case is a random partial differential equation (RPDE) [4,10,15,18,30].

There are several techniques which have been considered to obtain approximate solutions
of random nonlinear differential equations. These techniques include Adomian decomposition
method [12, 20], homotopy perturbation method [3, 11], variational iteration method [13],
differential transformation method [14], finite difference method [5], Euler Maruyama method
[32], Milstein method [7] and stochastic finite element method [6,21,25–27].

In this paper, a new technique is proposed to solve nonlinear RPDEs using Galerkin finite
element method FEM [1,2,8,9,16,17,22,23,29,31,33]. This technique is based on discretization
of the RV and solving the nonlinear RPDE at discretized values of the RV. Then by using the
process of curve fitting over the values of the RV, we obtain the nodal coefficients. Then by
utilization the shape functions of FEM, we obtain the approximate solution. The remainder
of this paper is structured as follows. Section 2 presents the technique of solution. Section 3
presents some numerical examples. Finally, Section 4 presents the general conclusion of this
work.

2. The Proposed Finite Element Technique
Consider the following nonlinear RPDE

∂2u
∂x2 + ∂2u

∂y2 + g
(
u,
∂u
∂x

,
∂u
∂y

)
= f (β, x, y), β ∈ [βi,β f ], (2.1)

and its boundary conditions are prescribed as functions of β, x and y where β is a second order
RV and g is a nonlinear function.

The weighted residual statement of equation (2.1) is∫
Ω

w(x, y)
[
∂2u
∂x2 + ∂2u

∂y2 + g
(
u,
∂u
∂x

,
∂u
∂y

)
− f (β, x, y)

]
dΩ= 0, (2.2)

where Ω is the problem domain and w is the weight function. By applying the divergence
theorem to the terms which have the second derivative in equation (2.2), we obtain the following
weak form

−
∫
Ω

∂w
∂x

∂u
∂x

dΩ−
∫
Ω

∂w
∂y

∂u
∂y

dΩ+
∫
Ω

w(x, y)g
(
u,
∂u
∂x

,
∂u
∂y

)
dΩ

=
∫
Ω

w(x, y) f (β, x, y)dΩ−
∫
Γ

w(x, y)
∂u
∂x
ηxdΓ−

∫
Γ

w(x, y)
∂u
∂y
ηydΓ, (2.3)

where Γ is the domain boundary and ηx,y are the cartesian components of the unit outward
normal to the boundary. By dividing Ω into N e elements, equation (2.3) can be written as

−
N e∑
e=1

∫
Ωe

∂w
∂x

∂u
∂x

dΩ−
N e∑
e=1

∫
Ωe

∂w
∂y

∂u
∂y

dΩ+
N e∑
e=1

∫
Ωe

w(x, y)g
(
u,
∂u
∂x

,
∂u
∂y

)
dΩ

=
N e∑
e=1

∫
Ωe

w(x, y) f (β, x, y)dΩ−
N e∑
e=1

∫
Γe

w(x, y)
∂u
∂x
ηxdΓ−

N e∑
e=1

∫
Γe

w(x, y)
∂u
∂y
ηydΓ. (2.4)
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In our technique, we propose the approximate solution over an element in the form

u(x, y,β)=
Nh∑
j=1

u j(β)s j(x, y), (2.5)

where u j(β) are the nodal unknown values formulated as functions of β, Nh is the number of
nodes in the finite element mesh and s j(x, y) are prescribed functions of position called shape
functions. Clearly, in general

s j(xi, yi)=
{

1 i = j,
0 i 6= j.

(2.6)

According to Galerkin method, we take w(x)= s j . Equation (2.4) can be written in the form

−
N e∑
e=1

∫
Ωe

∂si

∂x
∂

∂x

(
Nh∑
j=1

u j(β)s j(x, y)

)
dΩ−

N e∑
e=1

∫
Ωe

∂si

∂y
∂

∂y

(
Nh∑
j=1

u j(β)s j(x, y)

)
dΩ

+
N e∑
e=1

∫
Ωe

si g
(
u,
∂u
∂x

,
∂u
∂y

)
dΩ

=
N e∑
e=1

∫
Ωe

si f (β, x, y)dΩ−
N e∑
e=1

∫
Γe

si
∂u
∂x
ηxdΓ−

N e∑
e=1

∫
Γe

si
∂u
∂y
ηydΓ. (2.7)

The nonlinear term in Equation (2.7) is approximated by

g
(
u,
∂u
∂x

,
∂u
∂y

)
= g

(
u,
∂u
∂x

,
∂u
∂y

)
, (2.8)

where u is the initial guess of the approximate solution which is approximated by

u =
Nh∑
j=1

u j(β)s j(x, y), (2.9)

in which u j(β) is the initial guess of the nodal unknown values. Equation (2.7) becomes

−
N e∑
e=1

∫
Ωe

∂si

∂x
∂

∂x

(
Nh∑
j=1

u j(β)s j(x, y)

)
dΩ−

N e∑
e=1

∫
Ωe

∂si

∂y
∂

∂y

(
Nh∑
j=1

u j(β)s j(x, y)

)
dΩ

=−
N e∑
e=1

∫
Ωe

si g
(
u,
∂u
∂x

,
∂u
∂y

)
dΩ+

N e∑
e=1

∫
Ωe

si f (β, x, y)dΩ−
N e∑
e=1

∫
Γe

si
∂u
∂x
ηxdΓ

−
N e∑
e=1

∫
Γe

si
∂u
∂y
ηydΓ. (2.10)

By discretization of the RV, we solve the nonlinear algebraic system resulting from
equation (2.10) at each value of the specified values of the random variable. This system
was solved using iterative method [19, 23] such as fixed point iteration. Then by applying a
process of constructing a curve such as curve fitting over the specified values of RV, we get u j(β).
Finally, by utilizing the shape functions of FEM, we obtain the approximate solution at every
element taking the form of equation (2.5). In the next section, some numerical examples are
presented. In each example, the error over any element (e) between the approximate solution
(u) and the exact solution (U) is calculated as a function of random variable using L2 error
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norm with the form

e =
√∫

Ωe
(u−U)2dΩ (2.11)

in which the integration is numerically calculated using Gauss quadrature points. Then by
summation of element’s errors, we obtain the error over the whole domain (ew) as a function of
random variable.

The steps is summarized as follows:

Step 1. Choose a tolerance of error over the whole domain (e t).

Step 2. Construct suitable mesh for spatial variables x and y.

Step 3. Discretize the random variable β

β ∈ [βi,β f ], M ∈ Z+, hβ = (β f −βi)/M, βi = ihβ i = 0,1, . . . , (n−1).

Step 4. Solve the discretized problems by FEM.

Step 5. utilize the curve fitting to construct the nodal values as functions of β.

Step 6. utilize the FEM shape functions to construct the approximate solution.

Step 7. Compute ew.

Step 8. Define the maximum error of ew by emax =max[ew].

Step 9. If emax less or equal e t then stop.

Step 10. Increasing the discretized values of β.

Step 11. Go to 4.

Finally, expectation (E) of the approximate solution over any element and variance (V ) of
the approximate solution over any element are computed by [24,28]

E[u(x, y,β)]=
Nh∑
j=1

s j(x, y)E[u j(β)], (2.12)

V [u(x, y,β)]= E[(u(x, y,β))]2 − [E(u(x, y,β))]2, (2.13)

and compared with expectation and variance of the exact solution to illustrate the efficiency
and accuracy of the proposed technique.

3. Illustrative Examples
In this section, we solve some numerical examples to illustrate the efficiency of the previous
presented technique for solving nonlinear RPDEs in different domains with different types of
nonlinearities using FEM.

Example 1. Consider the following nonlinear 2-D problem which on a domain shown in Figure 1
∂2u
∂x2 + ∂2u

∂y2 +
(
∂u
∂x

)2
+

(
∂u
∂y

)2
= f (x, y,β), β ∈ [0.1,0.5], (3.1)

where the source term and boundary conditions are prescribed so that the exact solution is
given by u =βxy.
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By discretization the two dimensional domain as shown in Figure 1 and using Matlab code,
we obtain the results listed in the following tables. Table 1 illustrates FEM solution for the
internal nodes at discretized values of RV. Table 2 illustrates the internal nodal values as
functions of the RV. Table 3 represents the approximate solution for every element. The error
over whole domain ew is illustrated in Figure 2 as a function of RV. For this example we chose
a tolerance of error over the whole domain e t = 0.004. Figure 3 illustrates expectations of the
approximate and exact solutions at y= 0.2. Figure 4 illustrates variances of the approximate
and exact solutions at y= 0.2.

Figure 1. Domain discretization for Example 1

Table 1. FEM solution for the internal nodes at selected values of the random variable β for Example 1

β= 0.1 β= 0.2 β= 0.3 β= 0.4 β= 0.5

u(1/3,1/3) 0.0111 0.0221 0.0331 0.044 0.0549

u(2/3,1/3) 0.0222 0.0443 0.0663 0.0882 0.11

u(1/3,2/3) 0.0222 0.0443 0.0663 0.0882 0.11

u(2/3,2/3) 0.0444 0.0887 0.1329 0.177 0.2219

Table 2. Internal nodal values as functions of random variable β for Example 1

u(1/3,1/3) 0.083333β4 −0.1β3 +0.039167β2 +0.104β+0.0004

u(2/3,1/3) −0.005β2 +0.2225β

u(1/3,2/3) −0.005β2 +0.2225β

u(2/3,2/3) 0.375β4 −0.375β3 +0.12625β2 +0.42575β+0.0009
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Table 3. Approximate random solution over every element for Example 1

element(1)

0.7497β4xy−0.9β3xy+0.3528β2xy+0.936βxy+0.0036xy

element(2)

−0.7497β4xy+0.9β3xy−0.3978β2xy+1.0665βxy−0.0036xy

+0.4998β4 y−0.6β3 y+0.2502β2 y−0.0435βy+0.0024y

element(3)

0.045β2xy+0.9975βxy−0.045β2xy+0.0025βy

element(4)

−0.7497β4xy+0.9β3xy−0.3978β2xy+1.0665βxy−0.0036xy

+0.4998β4x−0.6β3x+0.2502β2x−0.0435βx+0.0024x

element(5)

4.1247β4xy−4.275β3xy+1.5795β2xy+0.7632βxy+0.0117xy

−1.6248β4 y+1.725β3 y−0.6591β2 y+0.1011βy−0.0051y

−1.6248β4x+1.725β3x−0.6591β2x+0.1011βx−0.0051x

+0.7082β4 −0.775β3 +0.3031β2 −0.0482β+0.0025

element(6)

−3.375β4xy+3.375β3xy−1.18125β2xy+1.17075βxy−0.0081xy

+3.375β4 y−3.375β3 y+1.18125β2 y−0.17075βy+0.0081y

+1.125β4x−1.125β3x+0.40875β2x−0.05775βx+0.0027x

−1.125β4 +1.125β3 −0.40875β2 +0.05775β−0.0027

element(7)

0.405β2xy+0.9975βxy−0.405β2x+0.0025βx

element(8)

−3.375β4xy+3.375β3xy−1.18125β2xy+4.17075βxy−0.0081xy

+1.125β4 y−1.125β3 y+0.40875β2 y−0.05775βy+0.0027y

+3.375β4x−3.375β3x+1.18125β2x−7.82925βx+0.0081x

−1.125β4 +1.125β3 −0.40875β2 +0.05772β−0.0027

element(9)

3.375β4xy−3.375β3xy+1.13625β2xy+0.83175βxy+0.0081xy

−3.375β4 y+3.375β3 y−1.13625β2 y+0.16825βy−0.0081y

−3.375β4x+3.375β3x−1.13625β2x+0.16825βx−0.0081x

+3.375β4 −3.375β3 +1.13625β2 −0.16823β+0.0081
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Figure 2. Error over whole domain ew as a function of β for Example 1

Figure 3. Expectations of the approximate and exact solutions at y= 0.2 for Example 1

Figure 4. Variances of the approximate and exact solutions at y= 0.2 for Example 1
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Example 2. Consider the following nonlinear 2-D problem which on a domain shown in Figure 5
∂2u
∂x2 + ∂2u

∂y2 +u
(
∂u
∂x

+ ∂u
∂y

)
= f (x, y,β), β ∈ [0.5,0.9], (3.2)

where the source term and boundary conditions are prescribed so that the exact solution is
given by u =β(x+ y).

Figure 5. Domain discretization for Example 2

Table 4. Finite element solution for internal nodes at discretized values of random variable β for
Example 2

β= 0.5 β= 0.6 β= 0.7 β= 0.8 β= 0.9

u(1/3,1/3) 0.3278 0.3921 0.456 0.5194 0.5825

u(2/3,1/3) 0.4960 0.5943 0.6923 0.79 0.8874

u(1/3,2/3) 0.4933 0.5905 0.6873 0.7836 0.8794

u(1/3,1) 0.6569 0.7866 0.9157 1.0443 1.1722

u(1/3,4/3) 0.8179 0.9922 1.1409 1.3016 1.4617

u(1/3,5/3) 0.9671 1.1589 1.3502 1.5409 1.7311

u(2/3,5/3) 1.1414 1.3700 1.5985 1.8272 2.0559

Table 5. Internal nodal values as functions of random variable β for Example 2

u(1/3,1/3) 0.125β4 −0.34167β3 +0.32375β2 +0.51392β+0.0248

u(2/3,1/3) −0.015β2 +0.9995β

u(1/3,2/3) 0.041667β4 −0.125β3 +0.11458β2 +0.93175β+0.0118

u(1/3,1) −0.125β4 +0.34167β3 −0.37375β2 +1.4811β−0.0251

u(1/3,4/3) −20.917β4 +60.65β3 −65.061β2 +32.153β−5.2676

u(1/3,5/3) 0.083333β4 −0.23333β3 +0.21417β2 +1.8388β+0.0181

u(2/3,5/3) −0.20833β4 +0.59167β3 −0.61792β2 +2.5671β−0.0486
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Figure 6. Error over whole domain ew as a function of random variable β for Example 2

Figure 7. Expectations of the approximate and exact solutions at y= 5/3 for Example 2

Figure 8. Variances of the approximate and exact solutions at y= 5/3 for Example 2
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By discretization the two-dimensional domain as shown in Figure 5 and using Matlab code,
we obtain the results listed in the following tables. Table 4 illustrates FEM solution for the
internal nodes at discretized values of RV. Table 5 illustrates the internal nodal values as
functions of the RV. The error over whole domain ew is illustrated in Figure 6 as a function of
RV. For Example 2 we chose a tolerance of error over whole domain e t = 0.2. Figure 7 illustrates
expectations of the approximate and exact solutions at y= 5/3. Figure 8 illustrates variances of
the approximate and exact solutions at y= 5/3.

Example 3. Consider the following nonlinear 2-D problem which on a domain shown in Figure 9
∂2u
∂x2 + ∂2u

∂y2 +βu2 = f (x, y,β), β ∈ [0.1,0.5], (3.3)

where the source term and boundary conditions are prescribed so that the exact solution is
given by u =β(x− y)2.

Figure 9. Domain discretization for Example 3

By discretization the two dimensional domain as shown in Figure 9 and using Matlab code,
we obtain the results listed in the following tables. Table 6 illustrates FEM solution for the
internal nodes at discretized values of RV. Table 7 illustrates the internal nodal values as
functions of the RV. The error over whole domain ew is illustrated in Figure 10 as a function
of RV. For Example 3 we chose a tolerance of error over whole domain e t = 0.1. Figure 11
illustrates expectations of the approximate and exact solutions at y= 0.5. Figure 12 illustrates
variances of the approximate and exact solutions at y= 0.5.

Table 6. Finite element solution for internal nodes at discretized values of random variable β for
Example 3

β= 0.1 β= 0.2 β= 0.3 β= 0.4 β= 0.5
u(1/3,1/3) 0.000694 0.0013 0.0018 0.0022 0.0024
u(2/3,1/3) 0.01 0.021 0.032 0.043 0.053
u(1/3,2/3) 0.011 0.0172 0.028 0.038 0.045
u(2/3,2/3) 0.002 0.005 0.007 0.009 0.01
u(1/3,1) 0.04 0.073 0.11 0.146 0.184

u(1/3,4/3) 0.092 0.19 0.28 0.37 0.47
u(1/3,5/3) 0.172 0.345 0.52 0.7 0.8813
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Table 7. Internal nodal values as functions of random variable β for Example 3

u(1/3,1/3) −0.044167β4 +0.045167β3 −0.021358β2 +0.0099683β−0.00013

u(2/3,1/3) −0.41667β4 +0.41667β3 −0.14583β2 +0.13083β−0.002

u(1/3,2/3) 14.508β3 −15.186β2 +6.7743β−0.52

u(1/3,2/3) 1.3333β4 −2.2333β3 +1.2367β2 −0.17267β+0.018

u(2/3,2/3) −0.83333β4 +β3 −0.44167β2 +0.105β−0.005

u(1/3,1) 3.3333β4 −4.1667β3 +1.8667β2 +0.011667β+0.024

u(1/3,4/3) 0.83333β4 +0.5β3 −0.90833β2 +1.205β−0.02

u(1/3,5/3) −2.7917β4 +3.2917β3 −1.1771β2 +1.8946β−0.0087

Figure 10. Error over whole domain ew as a function of β for Example 3

Figure 11. Expectations of the approximate and exact solutions at y= 0.5 for Example 3
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Figure 12. Variances of the approximate and exact solutions at y= 0.5 for Example 3

4. Conclusion
In this paper, we discuss a new technique for solving nonlinear random partial differential
equation using finite element method. The nodal coefficients are proposed as functions of the
random variable. So for some selected values of the random variable, the systems of nonlinear
algebraic equations are solved. Then by applying the curve fitting and the basis of the finite
element method, we obtain the approximate solution as a function of both space and random
variable. The number of discretized values of the random variable depends on the comparison
of the maximum error over the whole domain with the desired chosen tolerance of error over
the whole domain. The results obtained in the numerical examples illustrate the accuracy of
the proposed scheme as the expectations and variances of the approximate solutions agree with
those of the exact solutions.
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