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Abstract. Due to the existence of the strong correlation between microarray gene expression levels,
procedures which are commonly used to select the significant genes between two or more phenotypes
cannot overcome the main problems: high instability of the number of false discoveries and low power.
It may be impossible to completely understand these correlations due to the complexity of the biology
nature. Gordon et al. [1] proposed a new multiple testing procedure to balance type I and I I errors
in an optimal way. However, the correlation structure of microarray data is still the main obstacle
standing in the way of various gene selection procedures. To remove this obstacle, we improved
the statistical methodology by exploiting the properties associated with the low dependency of the
so-called delta-sequence proposed in Klebanov et al. [4]. Our study showed a similar behavior has
been observed that both the mean and the standard deviation of the number of false positives are
monotonically decreasing as a function of the threshold parameter. In addition, working with pairs,
we have substantial reduction in both numbers, which means we gain power and stability in our new
study.
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1. Introduction
Due to the existence of the extremely strong and long-ranged correlation between gene
expression levels, all procedures which are commonly used to select the significant genes
between two or more phenotypes cannot overcome the main problems: high instability of the
number of false discoveries and low power. It may be impossible to completely understand
these correlations due to the complexity of the biology nature. Some believe that normalized
data can be of some utility in correlation analysis. The adverse effects of normalization have
been reported in conjunction with single-color microarrays in several publications ([3, 9, 5, 8]).
Leaving aside the question of whether or not the currently used normalization procedures
achieve their promulgated goal, it is a well-known fact that they distort to various degrees
the correlation structure of microarray data ([9, 7]), the latter being the main concern in
reference to the results reported in [6]. The popular view that the observed correlations between
gene expression levels are solely attributable to an array-specific random effect caused by the
technical noise is demonstrably false ([3, 4, 2]). The analysis of the MAQC data set by Klebanov
et al. [3] shows that the level of random fluctuations of gene expression signals attributable
to the technical noise in the contemporary Affymetrix platform is too low to cause a tangible
bias in estimated correlation coefficients. There is also independent evidence discussed in paper
[5] that normalization procedures distort the joint distribution of the true expression signals
quite dramatically, even affecting their marginal distributions. Every known normalization
procedure resorts to pooling (heavily dependent) observed signals across different probes (probe
sets), thereby producing surrogate variables whose distributions differ from those of the true
biological signals. In the context of testing for differentially expressed genes, this distortion of
the true signal may induce an uncontrollable number of false discoveries, an effect especially
pronounced in large sample studies where the control of type I errors may be entirely lost.

The idea of normalization was initially offered as an ad hoc expedience to improve
significance testing for differentially expressed genes in two-sample comparisons. Even in
this setting, the universal benefits of normalization are questionable. The situation is more
obvious when the main focus is on correlation coefficients. Destroying correlations before
studying them quantitatively is self-defeating and may lead to false biological conclusions.
Therefore, it is best that normalization should not be used (or at least be used cautiously) when
making inferences about the correlation structure of microarray data.

Klebnov and Yakovlev [2] introduced the δ-sequence of weak dependency. In this paper, we
further study the application of this δ-sequence in the selection of the significantly changed
genes. In Section 1, the δ-sequence is reviewed. The use of δ-sequence in conjunction with the
Bonferroni adjustment and balancing type I and type I I errors are presented in Section 2, with
some real microarray data analysis results. The comparison with the univariate gene selection
method is discussed in Section 3.
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2. The δ-Sequence and Its Utility in Microarray Data Analysis
Klebnov and Yakovlev [2] proposed a new sequence of gene pairs (for each chip) that are weakly
dependent random variables. This sequence, noted as the δ-sequence, provides a new method
for identifying the most differentially expressed genes between phenotypes. In the present
section, the δ-sequence is reviewed with its properties versus gene expression.

Suppose there are m genes and each gene has n independent replicates of gene expression
measurements which are identically distributed. In the analysis, we use the logged expression
levels, though the tendency of the correlation between the genes (or gene pairs) should be
similar if we use the raw expression values.

The new sequence of gene pairs is formed in two steps. First, the genes are re-ordered
according to their calculated variances in increasing order. Second, based on this reordered gene
list, we form the sequence δi = y2i − y2i−1, where yj is the jth logged gene expression value for
gene j, j = 1, . . . ,m, where i = 1, . . . , m

2 . When m is an odd number, the mth gene, which is the
last one in the original list, can be paired with any other genes in the list. Under this situation,
only two overlapping gene pairs are generated in the whole sequence and the impact on the
results is not tangible.

The aforesaid is summarized in the form of the following algorithm:

1. Sort the gene lists with respect to their variance in increasing order.

2. Calculate δi = y2i − y2i−1, where yi is the ith gene expression value for gene i, i =
1, . . . , # of genes

2 . If the number of genes is odd, pair the last gene with any other randomly
chosen gene.

The sequence produced is termed δ-sequence, and the properties of this new list of gene
pairs have been examined thoroughly in the paper of Klebnov and Yakovlev [2]. They showed
that the correlation within this new sequence is shifted toward left dramatically, compared
with the correlation within their original gene values. Klebnov and Yakovlev [2] confirmed this
property in various real data sets where the histogram of the correlation coefficients becomes
symmetric and centered around zero. Figure 1 (Klebnov and Yakovlev [2]) is presented in their
paper to illustrate the sample correlation between log-expression level of the single genes and
the formed δ-sequence. To emphasis this nice property, we re-present their figure here. As
seen, the correlation between the single genes tends to be very high while the elements in the
δ-sequence are almost independent with the mean of the correlation coefficient of the all pairs
of the elements around zero.

Gordon et al. [1] proposed a method of balancing type I and type I I errors in multiple testing
for differentially expressed genes. Because of the nature of the multiple testing procedure and
the high dependency existing in the gene expression data, the testing has unusually high
instability and low power. Having the new produced gene-paired sequence, which has the nice
property of having a weak dependency, we improve the selection procedure by applying our
novel method of balancing the type I error and type I I error on this δ-sequence. To much
preserve the natural information of the gene expression data, we use the re-sampling method,
and the details of our study are presented in the following section.
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Figure 1. Histogram of correlation coefficients for all gene pairs from the first 2000 ordered genes (left
panel) and for all pairs of the corresponding elements δi (right panel). The mean values are 0.97 for
expression levels (left panel) and −1.5×10−4 for δi (right panel). HYPERDIP data set

3. The Use of δ-Sequence in Conjunction With the Bonferroni
Adjustment and the Balancing Type I and Type I I Errors

In the paper of Gordon et al. [1], a procedure was presented to balance type I and type I I errors
in significance testing for differential expression of individual genes. In the present section, we
apply our new procedure on the δ-sequence in the process of selecting the significantly changed
genes between two phenotypes.

3.1 Re-sampling
As one can expect from the paper of Gordon et al. [1], the study presented here is extensively
computing expensive as there is double looping of the re-sampling for the real microarray data.
To accomplish our study, we carried out our computing on a computer cluster. The study was
designed similarly to the one described in [1]. We conduct our study by re-sampling from real
data to preserve the actual correlation structure of gene expression levels as much as possible.
The same data set, a set of microarray data of expression levels (Affymetrix GeneChip platform)
of m = 7084 genes in n = 88 patients with hyperdiploid (HYPERDIP) acute lym-phoblasic
leukemia identified through the St. Jude Children’s Research Hospital Database (Yeoh et al.
[10]), is used. 350 genes were randomly selected before the sub-sampling, and the standard
deviation of their log-expression levels were estimated. These 350 pre-selected genes were fixed
throughout all experiments.

For each step of the re-sampling procedures, two sub-samples of subjects (array) without
overlapping, each of size n = 30, were generated from the collection of 88 available arrays.
One sub-sample (n = 30) was modified manually by adding a constant shift (effect size) to the
observed log-expression levels of the pre-defined 350 genes, and the second sub-sample stayed
untouched. We use the calculated standard deviation described above as the effect size in our
re-sampling study, and report the results obtained in the next section. A total 1500 pairs of
sub-samples were generated and each of them was used to select differentially expressed genes
by the proposed balancing method.

For each pair of sub-samples, the set Si was formed by the permutation method. In doing so,
for each looping, we permuted the gene list, formed a new sequence of gene pair by subtracting
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the gene expression levels of gene 2 j−1 from gene 2 j, where j = 1, . . . ,m/2, and applied a two-
sample test to the “new” log-expression measurements. A list of new gene pairs were selected
at a significance level of 0.05. Each set Si included genes for which the genes are included
in the list obtained above. The procedure was repeated k = 1500 times and the frequencies of
occurrence of each gene in the set Si , i = 1, . . . ,k, were estimated. Using the frequencies, a final
set of differential expressed genes was identified from each sub-sample of size n = 30 and the
numbers of false and true discoveries were recorded, with their mean and standard deviation
serving as the main performance indicators.

The details of the algorithm are summarized in the following:

1. Specify the penalties CI and CI I for type I and type I I errors, respectively, and compute
h = CI

CI+CI I
.

2. Randomly select m = 350 genes out of all genes.

3. Estimate the standard deviation σ of m = 350 genes, and use this σ to calculate the effect
size: effect.size = σ.

4. Randomly draw two groups 30/30 (no-overlapping) out of 88 slides. For one group, add
effect.size to each of the gene expression value of those pre-determined 350 genes.

5. Based on 30/30 group settings

5.a. Calculate the standard deviation for each gene in one group, and sort the genes (two
groups together) by the calculated standard deviation in increasing order. The genes
mentioned below are based on the sorted genes.

5.b. Obtain a list of modified genes by y2n − y2n−1, where yi is the gene expression value
for gene i, i = 1, . . . , # of genes

2 . We now have a list of 7084/2 paired-genes.

5.c. Apply the Wilcoxon test to all the paired genes, and select the “significant” genes at
the significance level α with the Bonferroni adjustment.

5.d. ’Shift’ method for δ-sequence to form the new gene list by subtracting the gene
expression levels of gene 2i from gene 2i+1, i = 1, . . . , # of genes

2 e.g., 3-2, 4-3, . . ., the
last one-the first one.

5.e. Apply the Wilcoxon test to all the paired genes formed above, and select the
“significant genes” at the significance level α with the Bonferroni adjustment.

5.f. Select the genes which are in the two selected gene lists, and compare with the
pre-defined true 350 genes, and calculate the number of the true discoveries and the
number of the false discoveries, and report the results.

6. Permutation 30/30 (K times), for each iteration,

6.a. Permute all the genes, form a list of new gene list by subtracting the gene expression
levels of gene (2∗n−1) from gene (2∗n).

6.b. Apply Wilcoxon test on the data set from step 6.a, and obtain a list of significant
genes (p-value < α (= 0.05)), denoted as Si .
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6.c. Repeat step 6.a and step 6.b for K = 1500 times, and then we will have a collection of
subsets Si of selected genes, where i = 1, . . . ,K .

6.d. For each gene j of all the genes (7084), calculate the proportion of set Si (i = 1, . . . ,K )
that contain the gene j, denoted as b j , if b j > h, gene j is selected

6.e. Repeat step 6.d for all the genes, and get a list of genes selected, denoted it as S
6.f. Calculate the number of true discoveries and false discoveries.

7. Repeat step 4-6 M times.

The procedure described above is conducted on the HYPERDIP data set, and the results are
shown in the next section.

4. Results and Discussion
The mean number of the discoveries and the corresponding standard deviation as functions of
the threshold parameter h (for h ≥ 0.5) are shown in Figure 2 together with the relationship
between the true discoveries and false discoveries. The effect size of one σ is used to carry out
the experiment in this figure. As shown, it is easy to see that the mean of the true discoveries
decreases as the variation increases. The mean number of false discoveries decreases as the
variation decreases. The number of the true discoveries increases to some point then becomes
stable as the number of the false discoveries increases. The flatness of the number of the true
discoveries after some point is related to the fact that the number of true positives is bounded
from above by the value of 350 in our experiment, and the number of false discoveries is bounded
by the total number of null hypothesis. In our study, there are 6783 null hypotheses, which is
much larger than the number of the true alternative hypotheses. We have studied the different
effect sizes, and with the smaller effect size (half σ), the mean and the variance of the number
of false discoveries both increase a little bit but not much, as shown in Figure 3. The observation
is the same as when the effect size is σ. It is a natural result, as one would expect.

To better demonstrate the different trend in the number of true discoveries, false discoveries
and total discoveries and the variations, two more figures (Figure 4 and Figure 5) with the
means (or standard variations) are also presented for easy and clear comparison.

Comparing with the results in paper ([1]), a similar behavior have been observed that
both the mean and the standard deviation of the number of false positives are monotonically
decreasing as a function of h. However, working with pairs, we have substantial reduction
in both numbers, which means we gain power and stability in our new study. Figure 6 and
Figure 7 confirmed our observation. This effect is attributable to the fact that the paired-genes
have much weaker dependency than the single genes. The extremely strong and long-ranged
correlation between gene expression levels is one of the reasons that causes the high standard
deviation of the number of false discoveries.
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Figure 2. Mean and standard deviation of the number of true and false positives as functions of the
parameter h. The total number of genes is 7084, the number of ‘truly different’ genes is 350, the effect
size is equal to one σ. Other parameters are described in the text
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Figure 3. Mean and standard deviation of the number of true and false positives as functions of the
parameter h. The total number of genes is 7084, the number of ‘truly different’ genes is 350, the effect
size is equal to σ
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Figure 4. Mean of the number of the discoveries as functions of the parameter h
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Figure 5. Standard deviation of the number of discoveries as functions of the parameter h
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Figure 6. Mean of the number of the discoveries as functions of the parameter h
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Figure 7. Standard deviation of the number of discoveries as functions of the parameter h
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Figure 8. Mean and standard deviation of the number of true and false positives as functions of the
parameter γ. The total number of genes is 7084, the number of “truly different” genes is 350, the effect
size is equal to one σ. Other parameters are described in the text

Similar results are shown in Figure 8 with the Bonferroni procedure that controls the
Per-Family Error Rate (PFER) at level γ. The tendency is the same to those in Figure 2. With the
favorable property of the weak dependency between the paired genes, the test results confirm
the large reduction of the number of mean false discoveries and the variation, compared with
the analysis with single genes.

Similar to what we have talked about before, the behavior of the mean and variance of the
total number of rejections produced by the Bonferroni procedure in the neighborhood of γ= 0
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deserves a closer look. The standard deviation of the total number of rejected hypotheses attains
a minimum in the region of small values of γ almost concurrently with a sharp increase in the
mean power. The same behavior of the standard deviation of the total number of rejections is
expected from the proposed procedure in the neighborhood of h = 1, but testing this conjecture
by re-sampling or simulations is computationally prohibitive.

In this paper, we improved the optimized procedure with the δ sequence in terms of
improving power and stability by reducing the mean and standard deviation of the false
positive rates. We need to point out that the way of pairing genes to form pair with the resultant
weakly dependence sequences can be extended to more numbers of genes in a pair, which we
will investigate further in the future.
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