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1. Introduction
The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10], played
a vital role to generate some different types of fuzzy subgroups, called (α,β)-fuzzy subgroups,
introduced by Bhakat and Das [1]. In particular, (∈,∈∨q )-fuzzy subgroup is an important and
useful generalization of Rosenfeld’s fuzzy subgroup. The concept of (α,β)-fuzzy subalgebras
in BCK /BCI-algebras is also important and useful generalization of the well-known concepts,

http://doi.org/10.26713/jims.v10i4.1130


574 (ε,δ)-Characteristic Fuzzy Sets Approach to the Ideal Theory of BCK /BCI-Algebras: G. Muhiuddin et al.

called fuzzy subalgebras (see for e.g., [3], [4], [5] and [11]). Recently, Muhiuddin et al. studied
the fuzzy set theoretical approach to the BCK/BCI-algebras on various aspects (see for e.g., [7],
[8], [9]).

In this paper, we introduce the notion of (ε,δ)-characteristic fuzzy sets in BCK /BCI-algebras.
Given an ideal F of a BCK /BCI-algebra X , we provide conditions for the (ε,δ)-characteristic
fuzzy set in X to be an (∈,∈∨q)-fuzzy ideal, an (∈, q)-fuzzy ideal, an (∈,∈∧q)-fuzzy ideal, a
(q, q)-fuzzy ideal, a (q,∈)-fuzzy ideal, a (q,∈∨q)-fuzzy ideal and a (q,∈∧q)-fuzzy ideal. Using
the notions of (α,β)-fuzzy ideal µ(ε,δ)

F , we investigate conditions for the F to be an ideal of X
where (α,β) is one of (∈,∈∨q), (∈,∈∧q), (∈, q), (q,∈∨q), (q,∈∧q), (q,∈) and (q, q).

2. Preliminaries
By a BCI-algebra we mean an algebra (X ,∗,0) of type (2,0) satisfying the axioms:

(a1) ((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0,
(a2) (x∗ (x∗ y))∗ y= 0,
(a3) x∗ x = 0,
(a4) x∗ y= y∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X .
We can define a partial ordering ≤ by x ≤ y if and only if x∗ y = 0. If a BCI-algebra X

satisfies the axiom

(a5) 0∗ x = 0 for all x ∈ X ,

then we say that X is a BCK -algebra. A subset A of a BCK /BCI-algebra X is called an ideal
of X if it satisfies:

(I1) 0 ∈ A,
(I2) (∀ x ∈ X ) (∀ y ∈ A) (x∗ y ∈ A =⇒ x ∈ A).

We refer the reader to the books [2] and [6] for further information regarding BCK /BCI-
algebras.

A fuzzy set µ in a set X of the form

µ(y) :=
{

t ∈ (0,1] if y= x,
0 if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt.
For a fuzzy point xt and a fuzzy set µ in a set X , Pu and Liu [10] introduced the symbol xtαµ,

where α ∈ {∈, q ,∈∨q ,∈∧q }. To say that xt ∈µ (resp. xt q µ), we mean µ(x)≥ t (resp. µ(x)+ t > 1),
and in this case, xt is said to belong to (resp. be quasi-coincident with) a fuzzy set µ. To say that
xt ∈∨q µ (resp. xt ∈∧q µ), we mean xt ∈µ or xt qµ (resp. xt ∈µ and xt qµ). To say that xtαµ, we
mean xtαµ does not hold, where α ∈ {∈, q,∈∨q ,∈∧q }.

A fuzzy set µ in a BCK /BCI-algebra X is called a fuzzy ideal of X if it satisfies:
µ(0)≥µ(x)≥min{µ(x∗ y),µ(y)} (2.1)

for all x, y ∈ X .

Proposition 2.1 ([3]). Let X be a BCK /BCI-algebra. A fuzzy set µ in X is a fuzzy ideal of X if
and only if the following assertions are valid.

xt ∈µ =⇒ 0t ∈µ, (2.2)
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(x∗ y)t ∈µ, ys ∈µ =⇒ xmin{t,s} ∈µ (2.3)
for all x, y ∈ X and t, s ∈ (0,1].

3. Ideals of BCK/BCI-Algebras Based on (α,β)-Type Fuzzy Sets
In what follows, let X denote a BCK /BCI-algebra and let ε,δ ∈ [0,1] such that ε > δ unless
otherwise specified.

For any non-empty subset F of X , define a fuzzy set µ(ε,δ)
F in X as follows:

µ
(ε,δ)
F (x) :=

{
ε if x ∈ F,
δ otherwise.

We say that µ(ε,δ)
F is an (ε,δ)-characteristic fuzzy set in X over F (see [9]). In particular, (1,0)-

characteristic fuzzy set µ(1,0)
F in X over F is the characteristic function χF of F.

Theorem 3.1. For any non-empty subset F of X , the following are equivalent:

(1) F is an ideal of X .
(2) The (ε,δ)-characteristic fuzzy set µ(ε,δ)

F is a fuzzy ideal of X .

Proof. Assume that F is an ideal of X . Since 0 ∈ F, clearly µ
(ε,δ)
F (0)= ε≥ µ

(ε,δ)
F (x) for all x ∈ X .

Let x, y ∈ X . If y ∈ F and x∗ y ∈ F , then x ∈ F and so

µ
(ε,δ)
F (x)= ε=min

{
µ

(ε,δ)
F (y),µ(ε,δ)

F (x∗ y)
}

.

If y ∉ F or x∗ y ∉ F, then µ
(ε,δ)
F (y)= δ or µ(ε,δ)

F (x∗ y)= δ. Hence

µ
(ε,δ)
F (x)≥ δ=min

{
µ

(ε,δ)
F (y),µ(ε,δ)

F (x∗ y)
}

.

Therefore µ(ε,δ)
F is a fuzzy ideal of X for all ε,δ ∈ [0,1] with ε> δ.

Conversely, suppose that (2) is valid. Obviously, 0 ∈ F. Let x, y ∈ X be such that y ∈ F and
x∗ y ∈ F. Then µ

(ε,δ)
F (y)= ε and µ

(ε,δ)
F (x∗ y)= ε. It follows that

µ
(ε,δ)
F (x)≥min

{
µ

(ε,δ)
F (y),µ(ε,δ)

F (x∗ y)
}
= ε.

Thus x ∈ F, and therefore F is an ideal of X .

Definition 3.2 ([3]). A fuzzy set µ in X is said to be an (α,β)-fuzzy ideal of X , where
α,β ∈ {∈, q ,∈∨q ,∈∧q } and α 6= ∈∧q , if it satisfies the following condition:

(∀ x ∈ X ) (∀ t ∈ (0,1])
(
xtαµ ⇒ 0tβµ

)
, (3.1)

(∀ x, y ∈ X ) (∀ t1, t2 ∈ (0,1])
(
(x∗ y)t1αµ, yt2αµ ⇒ xmin{t1,t2}βµ

)
. (3.2)

Lemma 3.3 ([3]). A fuzzy set µ in X is an (∈,∈∨q )-fuzzy ideal of X if and only if it satisfies:

(1) (∀ x ∈ X )(µ(0)≥min{µ(x),0.5}),
(2) (∀ x, y ∈ X )(µ(x)≥min{µ(x∗ y),µ(y),0.5}).

Theorem 3.4. If F is an ideal of X , then the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is an (∈,∈∨q )-

fuzzy ideal of X .

Proof. Assume that F is an ideal of X . Since 0 ∈ F, we have

µ
(ε,δ)
F (0)= ε≥min

{
µ

(ε,δ)
F (x),0.5

}
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for all x ∈ X . For any x, y ∈ X , if x∗ y ∈ F and y ∈ F , then x ∈ F and so

µ
(ε,δ)
F (x)= ε≥min

{
µ

(ε,δ)
F (x∗ y),µ(ε,δ)

F (y),0.5
}

.

If x ∉ F or y ∉ F, then µ
(ε,δ)
F (x)= δ or µ(ε,δ)

F (y)= δ. Hence

µ
(ε,δ)
F (x∗ y)≥ δ≥min

{
µ

(ε,δ)
F (x),µ(ε,δ)

F (y),0.5
}

.

It follows from Lemma 3.3 that µ(ε,δ)
F is an (∈,∈∨q )-fuzzy ideal of X .

We consider the converse of Theorem 3.4.

Theorem 3.5. For any ε,δ ∈ [0,1] such that δ< ε≤ 0.5, if the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F

is an (∈,∈∨q )-fuzzy ideal of X then F is an ideal of X .

Proof. If 0 ∉ F , then µ
(ε,δ)
F (0) = δ < ε = µ

(ε,δ)
F (x) for some x ∈ F. Hence xε ∈ µ(ε,δ)

F , and so 0ε ∈
∨qµ(ε,δ)

F since µ(ε,δ)
F is an (∈,∈∨q )-fuzzy ideal of X . But µ(ε,δ)

F (0)= δ� ε and µ(ε,δ)
F (0)+ε= δ+ε≯ 1.

This is a contradiction, and so 0 ∈ F. Let x, y ∈ F be such that x∗ y ∈ F and y ∈ F. Then
µ

(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y). Using Lemma 3.3, we have

µ
(ε,δ)
F (x)≥min

{
µ

(ε,δ)
F (x∗ y),µ(ε,δ)

F (y),0.5
}
=min{ε,0.5}= ε,

and so x ∈ F. Therefore F is an ideal of X .

Corollary 3.6. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is an (∈,∈∨q )-fuzzy ideal of X .

Proof. The necessity is by taking ε= 1 and δ= 0 in Theorem 3.4.
Conversely, suppose that the characteristic function χF of F is an (∈,∈∨q )-fuzzy ideal

of X . Obviously, 0 ∈ F by Lemma 3.3(1). Let x, y ∈ X be such that x∗ y ∈ F and y ∈ F. Then
χF (x∗ y)= 1= χF (y), which implies from Lemma 3.3(2) that

χF (x)≥min{χF (x∗ y),χF (y),0.5}=min{1,0.5}= 0.5.
Hence x ∈ F , and therefore F is an ideal of X .

Theorem 3.7. Assume that if any element t in (0,1] satisfies xt ∈µ(ε,δ)
F for x ∈ X then δ< t and

1− t < ε. If F is an ideal of X , then the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is an (∈, q )-fuzzy ideal

of X .

Proof. Let x ∈ X and t ∈ (0,1] be such that xt ∈ µ
(ε,δ)
F . Since 0 ∈ F and 1− t < ε, we have

µ
(ε,δ)
F (0)+ t = ε+ t > 1. Hence 0t qµ(ε,δ)

F . Let x, y ∈ X and t1, t2 ∈ (0,1] be such that (x∗ y)t1 ∈µ(ε,δ)
F

and yt2 ∈ µ(ε,δ)
F . Then µ

(ε,δ)
F (x∗ y) ≥ t1 > δ and µ

(ε,δ)
F (y) ≥ t2 > δ. It follows that µ(ε,δ)

F (x∗ y) = ε=
µ

(ε,δ)
F (y), and so x∗ y ∈ F and y ∈ F. Since F is an ideal of X , we have x ∈ F. Hence µ(ε,δ)

F (x)= ε,
and thus µ(ε,δ)

F (x)+min{t1, t2}= ε+min{t1, t2}> 1 which shows that xmin{t1,t2} qµ(ε,δ)
F . Therefore

µ
(ε,δ)
F is an (∈, q )-fuzzy ideal of X .

We consider the converse of Theorem 3.7.

Theorem 3.8. If ε+δ≤ 1 and the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is an (∈, q)-fuzzy ideal of X ,

then F is an ideal of X .
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Proof. Assume that ε+δ≤ 1 and the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is an (∈, q)-fuzzy ideal

of X . Suppose that 0 ∉ F . Then µ
(ε,δ)
F (0) = δ < ε = µ

(ε,δ)
F (x) for some x ∈ X , and so xε ∈ µ(ε,δ)

F .
Since µ

(ε,δ)
F is an (∈, q)-fuzzy ideal of X , it follows that 0ε qµ(ε,δ)

F , that is, µ(ε,δ)
F (0)+ ε > 1.

This is a contradiction, and thus 0 ∈ F. Let x, y ∈ X be such that x∗ y ∈ F and y ∈ F. Then
µ

(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y), and so (x∗ y)ε ∈µ(ε,δ)

F and yε ∈µ(ε,δ)
F . Hence xε = xmin{ε,ε} qµ(ε,δ)

F , which
implies that µ(ε,δ)

F (x)+ε> 1. Therefore µ(ε,δ)
F (x) > 1−ε≥ δ, and thus µ(ε,δ)

F (x) = ε, that is, x ∈ F.
Consequently, F is an ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.7 and 3.8, then we have the following corollary.

Corollary 3.9. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is an (∈, q)-fuzzy ideal of X .

Theorem 3.10. Let ε,δ ∈ [0,1] such that ε> δ. If F is an ideal of X , then the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is a (q, q)-fuzzy ideal of X whenever if any element t in (0,1] satisfies xt ∈µ(ε,δ)
F for

x ∈ X then δ≤ 1− t < ε.

Proof. Since 0 ∈ F, we have µ
(ε,δ)
F (0) + t = ε+ t > 1, that is, 0t qµ(ε,δ)

F for any x ∈ X and
t ∈ (0,1] with xt qµ(ε,δ)

F . Let x, y ∈ X and t1, t2 ∈ (0,1] be such that (x∗ y)t1 qµ(ε,δ)
F and yt2 qµ(ε,δ)

F .
Then µ

(ε,δ)
F (x∗ y)+ t1 > 1 and µ

(ε,δ)
F (y)+ t2 > 1, which imply that µ(ε,δ)

F (x∗ y) > 1− t1 ≥ δ and
µ

(ε,δ)
F (y)> 1− t2 ≥ δ. It follows that µ(ε,δ)

F (x∗ y)= ε=µ
(ε,δ)
F (y) and so that x∗ y ∈ F and y ∈ F. Since

F is an ideal of X , we have x ∈ F and so µ(ε,δ)
F (x)= ε. Thus

µ
(ε,δ)
F (x)+min{t1, t2}= ε+min{t1, t2}> 1,

that is, xmin{t1,t2} qµ(ε,δ)
F . This shows that µ(ε,δ)

F is a (q, q)-fuzzy ideal of X .

Theorem 3.11. Let ε,δ ∈ [0,1] such that ε>max{δ,0.5} and ε+δ≤ 1. If the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is a (q, q)-fuzzy ideal of X , then F is an ideal of X .

Proof. Assume that 0 ∉ F. Then µ
(ε,δ)
F (0) = δ < ε = µ

(ε,δ)
F (x) for some x ∈ X , which implies that

µ
(ε,δ)
F (x)+ ε = 2ε > 1, that is, xε qµ(ε,δ)

F . Since µ
(ε,δ)
F is a (q, q)-fuzzy ideal of X , it follows that

0ε qµ(ε,δ)
F and so that δ+ε = µ

(ε,δ)
F (0)+ε > 1. This is a contradiction, and therefore 0 ∈ F. Let

x, y ∈ X be such that x∗ y ∈ F and y ∈ F. Then µ
(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y), which implies that

µ
(ε,δ)
F (x∗ y)+ε= ε+ε> 1 and µ

(ε,δ)
F (y)+ε= ε+ε> 1,

that is, (x∗ y)ε qµ(ε,δ)
F and yε qµ(ε,δ)

F . Since µ
(ε,δ)
F is a (q, q)-fuzzy ideal of X , it follows that

xε = xmin{ε,ε} qµ(ε,δ)
F . Hence µ(ε,δ)

F (x)> 1−ε≥ δ, and therefore µ(ε,δ)
F (x)= ε. This proves that x ∈ F ,

and F is an ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.10 and 3.11, then we have the following corollary.

Corollary 3.12. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is a (q, q)-fuzzy ideal of X .

Theorem 3.13. Let ε,δ ∈ [0,1] such that ε> δ. If F is an ideal of X , then the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is a (q,∈)-fuzzy ideal of X whenever if any element t in (0,1] satisfies xt ∈µ(ε,δ)
F for

x ∈ X then δ≤ 1− t and t < ε.
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Proof. Obviously, 0t ∈µ(ε,δ)
F for all x ∈ X and t ∈ (0,1] with xt qµ(ε,δ)

F . Let x, y ∈ X and t1, t2 ∈ (0,1]
be such that (x∗ y)t1 qµ(ε,δ)

F and yt2 qµ(ε,δ)
F . Then µ

(ε,δ)
F (x∗ y)+ t1 > 1 and µ

(ε,δ)
F (y)+ t2 > 1, which

imply that µ(ε,δ)
F (x∗ y)> 1− t1 ≥ δ and µ

(ε,δ)
F (y)> 1− t2 ≥ δ. Hence µ(ε,δ)

F (x∗ y)= ε=µ
(ε,δ)
F (y), and

so x∗ y ∈ F and y ∈ F. Since F is an ideal of X , we have x ∈ F and thus
µ

(ε,δ)
F (x)= ε≥min{t1, t2},

that is, xmin{t1,t2} ∈µ(ε,δ)
F . This shows that µ(ε,δ)

F is a (q,∈)-fuzzy ideal of X .

Theorem 3.14. Let ε,δ ∈ [0,1] such that ε>max{δ,0.5}. If the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F

is a (q,∈)-fuzzy ideal of X , then F is an ideal of X .

Proof. If 0 ∉ F , then µ
(ε,δ)
F (0)= δ< ε=µ

(ε,δ)
F (x) for some x ∈ X . Hence µ(ε,δ)

F (x)+ε= 2ε> 1, and so
xε qµ(ε,δ)

F . It follows that µ(ε,δ)
F (0)≥ ε since µ(ε,δ)

F is a (q,∈)-fuzzy ideal of X . This is a contradiction,
and thus 0 ∈ F. Let x, y ∈ X be such that x∗ y ∈ F and y ∈ F. Then µ

(ε,δ)
F (x∗ y) = ε = µ

(ε,δ)
F (y),

which implies that
µ

(ε,δ)
F (x∗ y)+ε= ε+ε> 1 and µ

(ε,δ)
F (y)+ε= ε+ε> 1,

that is, (x∗ y)ε qµ(ε,δ)
F and yε qµ(ε,δ)

F . Since µ
(ε,δ)
F is a (q,∈)-fuzzy ideal of X , it follows that

xε = xmin{ε,ε} ∈µ(ε,δ)
F and so that µ(ε,δ)

F (x)= ε, that is, x ∈ F. Therefore F is an ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.13 and 3.14, then we have the following corollary.

Corollary 3.15. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is a (q,∈)-fuzzy ideal of X .

Theorem 3.16. Let ε,δ ∈ [0,1] such that ε> δ. If F is an ideal of X , then the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is an (∈,∈∧q )-fuzzy ideal of X whenever if any element t in (0,1] satisfies xt ∈µ(ε,δ)
F

for x ∈ X then δ< t and 1− t < ε.

Proof. Obviously 0t ∈ µ(ε,δ)
F since 0 ∈ F. Now, µ(ε,δ)

F (0)+ t = ε+ t > 1, and so 0t qµ(ε,δ)
F . Thus

0t ∈ ∧qµ(ε,δ)
F . Let x, y ∈ X and t1, t2 ∈ (0,1] be such that (x ∗ y)t1 ∈ µ

(ε,δ)
F and yt2 ∈ µ

(ε,δ)
F .

Then µ
(ε,δ)
F (x ∗ y) ≥ t1 > δ and µ

(ε,δ)
F (y) ≥ t2 > δ, which imply that x ∗ y ∈ F and y ∈ F and

ε ≥ min{t1, t2}. Since F is an ideal of X , we have x ∈ F. Hence µ
(ε,δ)
F (x) = ε ≥ min{t1, t2}, i.e.,

xmin{t1,t2} ∈µ(ε,δ)
F . Now, µ(ε,δ)

F (x)+min{t1, t2}= ε+min{t1, t2}> 1 and so xmin{t1,t2} qµ(ε,δ)
F . Therefore

xmin{t1,t2} ∈∧qµ(ε,δ)
F , and consequently µ(ε,δ)

F is an (∈,∈∧q )-fuzzy ideal of X .

Theorem 3.17. Let ε,δ ∈ [0,1] such that ε> δ. If ε+δ≤ 1 and the (ε,δ)-characteristic fuzzy set
µ

(ε,δ)
F is an (∈,∈∧q )-fuzzy ideal of X , then F is an ideal of X .

Proof. Assume that ε+δ ≤ 1 and the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is an (∈,∈∧q )-fuzzy

ideal of X . If 0 ∉ F, then µ
(ε,δ)
F (0) = δ < ε = µ

(ε,δ)
F (x) for some x ∈ X . Thus xε ∈ µ(ε,δ)

F , which
implies that 0ε ∈∧qµ(ε,δ)

F since µ
(ε,δ)
F is an (∈,∈∧q )-fuzzy ideal of X . But µ(ε,δ)

F (0) < ε implies
that 0ε∈µ(ε,δ)

F . Also, µ(ε,δ)
F (0)+ε= δ+ε≤ 1, i.e., 0ε qµ(ε,δ)

F . Hence 0ε∈∧q µ(ε,δ)
F , a contradiction.

Therefore 0 ∈ F. Let x, y ∈ X be such that x∗ y ∈ F and y ∈ F. Then µ
(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y), and

so (x∗ y)ε ∈ µ(ε,δ)
F and yε ∈ µ(ε,δ)

F . Hence xε = xmin{ε,ε} ∈∧qµ(ε,δ)
F , that is, xε = xmin{ε,ε} ∈ µ(ε,δ)

F and
xε = (x∗ y)min{ε,ε} qµ(ε,δ)

F . Hence µ(ε,δ)
F (x) ≥ ε and µ

(ε,δ)
F (x)+ε> 1. If µ(ε,δ)

F (x) ≥ ε, then µ
(ε,δ)
F (x) = ε
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and thus x ∈ F. If µ(ε,δ)
F (x)+ε> 1, then µ

(ε,δ)
F (x)> 1−ε≥ δ and so µ(ε,δ)

F (x)= ε, which shows that
x ∈ F. Therefore F is an ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.16 and 3.17, then we have the following corollary.

Corollary 3.18. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is an (∈,∈∧q )-fuzzy ideal of X .

Theorem 3.19. Let ε,δ ∈ [0,1] such that ε> δ. If F is an ideal of X , then the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is a (q,∈∧q )-fuzzy ideal of X under the condition that if any element t in (0,1]
satisfies xt ∈µ(ε,δ)

F for x ∈ X then δ≤ 1− t and t < ε.

Proof. Let x ∈ X and t ∈ (0,1] be such that xt qµ(ε,δ)
F . Then µ

(ε,δ)
F (x)> 1− t ≥ δ, and so µ(ε,δ)

F (x)=
ε> 1− t. Since 0 ∈ F, we have µ(ε,δ)

F (0)= ε> t, i.e., 0t ∈µ(ε,δ)
F and µ

(ε,δ)
F (0)+ t = ε+ t > 1− t+ t = 1,

i.e., 0t qµ(ε,δ)
F . Thus 0t ∈∧qµ(ε,δ)

F . Let x, y ∈ X and t1, t2 ∈ (0,1] be such that (x∗ y)t1 qµ(ε,δ)
F and

yt2 qµ(ε,δ)
F . Then µ

(ε,δ)
F (x∗ y)+ t1 > 1 and µ

(ε,δ)
F (y)+ t2 > 1, which imply that µ(ε,δ)

F (x∗ y)> 1− t1 ≥ δ

and µ
(ε,δ)
F (y) > 1− t2 ≥ δ. Hence µ

(ε,δ)
F (x∗ y) = ε = µ

(ε,δ)
F (y), and so ε > max{1− t1,1− t2}. Thus

x∗ y ∈ F and y ∈ F. Since F is an ideal of X , we have x ∈ F and thus

µ
(ε,δ)
F (x)= ε≥min{t1, t2},

that is, xmin{t1,t2} ∈ µ(ε,δ)
F . Now, µ(ε,δ)

F (x)+min{t1, t2} = ε+min{t1, t2} > 1, and so xmin{t1,t2} qµ(ε,δ)
F .

Hence xmin{t1,t2} ∈∧qµ(ε,δ)
F , and µ

(ε,δ)
F is a (q,∈∧q )-fuzzy ideal of X .

Theorem 3.20. Let ε,δ ∈ [0,1] such that ε>max{δ,0.5}. If the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F

is a (q,∈∧q )-fuzzy ideal of X , then F is an ideal of X .

Proof. If 0 ∉ F, then µ
(ε,δ)
F (0) = δ< ε= µ

(ε,δ)
F (x) for some x ∈ X . Hence µ

(ε,δ)
F (x)+ε= 2ε> 1, and

thus xε qµ(ε,δ)
F . Since µ

(ε,δ)
F is a (q,∈∧q )-fuzzy ideal of X , it follows that 0ε ∈∧qµ(ε,δ)

F , i.e.,
0ε ∈µ(ε,δ)

F and 0ε qµ(ε,δ)
F . This is a contradiction. Therefore 0 ∈ F. Assume that x∗ y ∈ F and y ∈ F

for all x, y ∈ X . Then µ
(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y), which implies that

µ
(ε,δ)
F (x∗ y)+ε= ε+ε> 1 and µ

(ε,δ)
F (y)+ε= ε+ε> 1,

that is, (x∗ y)ε qµ(ε,δ)
F and yε qµ(ε,δ)

F . Since µ
(ε,δ)
F is a (q,∈∧q )-fuzzy ideal of X , it follows that

xε = xmin{ε,ε} ∈∧qµ(ε,δ)
F and so that µ(ε,δ)

F (x)≥ ε. Hence x ∈ F and F is an ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.19 and 3.20, then we have the following corollary.

Corollary 3.21. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is a (q,∈∧q )-fuzzy ideal of X .

Theorem 3.22. Assume that

(∀ x ∈ X )(∀ t ∈ (0,1])
(
xt ∈µ(ε,δ)

F ⇒ δ≤ 1− t
)
.

If F is an ideal of X , then the (ε,δ)-characteristic fuzzy set µ(ε,δ)
F is a (q,∈∨q )-fuzzy ideal of X .
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Proof. Let x ∈ X and t ∈ (0,1] be such that xt qµ(ε,δ)
F . Then µ

(ε,δ)
F (x) > 1 − t ≥ δ, and so

µ
(ε,δ)
F (x) = ε > 1− t. Since 0 ∈ F, we have µ

(ε,δ)
F (0)+ t = ε+ t > 1− t+ t = 1, that is, 0t qµ(ε,δ)

F .
Thus 0t ∈∨qµ(ε,δ)

F . Let x, y ∈ X and t1, t2 ∈ (0,1] be such that (x∗ y)t1 qµ(ε,δ)
F and yt2 qµ(ε,δ)

F .
Then µ

(ε,δ)
F (x∗ y)+ t1 > 1 and µ

(ε,δ)
F (y)+ t2 > 1, which imply that µ(ε,δ)

F (x∗ y) > 1− t1 ≥ δ and
µ

(ε,δ)
F (y)> 1− t2 ≥ δ. Hence µ(ε,δ)

F (x∗ y)= ε=µ
(ε,δ)
F (y), and so ε>max{1− t1,1− t2}. Thus x∗ y ∈ F

and y ∈ F. Since F is an ideal of X , we have x ∈ F and thus µ(ε,δ)
F (x) = ε which implies that

µ
(ε,δ)
F (x)+min{t1, t2}= ε+min{t1, t2}> 1, i.e., xmin{t1,t2} qµ(ε,δ)

F . It follows that xmin{t1,t2} ∈∨qµ(ε,δ)
F .

Therefore µ(ε,δ)
F is a (q,∈∨q )-fuzzy ideal of X .

Theorem 3.23. Let ε,δ ∈ [0,1] such that ε>max{δ,0.5} and ε+δ≤ 1. If the (ε,δ)-characteristic
fuzzy set µ(ε,δ)

F is a (q,∈∨q )-fuzzy ideal of X , then F is an ideal of X .

Proof. Assume that 0 ∉ F. Then µ
(ε,δ)
F (0) = δ< ε= µ

(ε,δ)
F (x) for some x ∈ X . Hence µ(ε,δ)

F (x)+ε=
2ε> 1, and thus xε qµ(ε,δ)

F . Since µ(ε,δ)
F is a (q,∈∨q )-fuzzy ideal of X , we get 0ε ∈∨qµ(ε,δ)

F which
implies that 0ε ∈ µ(ε,δ)

F or 0ε qµ(ε,δ)
F . If 0ε ∈ µ(ε,δ)

F , then µ
(ε,δ)
F (0) ≥ ε, a contradiction. If 0ε qµ(ε,δ)

F ,
then δ+ε=µ

(ε,δ)
F (0)+ε> 1 which is a contradiction. Therefore 0 ∈ F. Suppose that x∗ y ∈ F and

y ∈ F for all x, y ∈ X . Then µ
(ε,δ)
F (x∗ y)= ε=µ

(ε,δ)
F (y), which implies that

µ
(ε,δ)
F (x∗ y)+ε= ε+ε> 1 and µ

(ε,δ)
F (y)+ε= ε+ε> 1,

that is, (x∗ y)ε qµ(ε,δ)
F and yε qµ(ε,δ)

F . Since µ
(ε,δ)
F is a (q,∈∨q )-fuzzy ideal of X , it follows that

xε = xmin{ε,ε} ∈∨qµ(ε,δ)
F , that is, µ(ε,δ)

F (x) ≥ ε or µ
(ε,δ)
F (x)+ ε > 1. If µ(ε,δ)

F (x) ≥ ε, then x ∈ F. If
µ

(ε,δ)
F (x)+ε > 1, then µ

(ε,δ)
F (x) > 1−ε ≥ δ and so µ

(ε,δ)
F (x) = ε. Thus x ∈ F, and therefore F is an

ideal of X .

If we take ε= 1 and δ= 0 in Theorems 3.22 and 3.23, then we have the following corollary.

Corollary 3.24. A non-empty subset F of X is an ideal of X if and only if the characteristic
function χF of F is a (q,∈∨q )-fuzzy ideal of X .

Conclusions
We have introduced the notion of (ε,δ)-characteristic fuzzy sets in BCK /BCI-algebras. Given
an ideal F of a BCK /BCI-algebra X , we have provided conditions for the (ε,δ)-characteristic
fuzzy set in X to be an (∈,∈∨q)-fuzzy ideal, an (∈, q)-fuzzy ideal, an (∈,∈∧q)-fuzzy ideal, a
(q, q)-fuzzy ideal, a (q,∈)-fuzzy ideal, a (q,∈∨q)-fuzzy ideal and a (q,∈∧q)-fuzzy ideal. Using
the notions of (α,β)-fuzzy ideal µ(ε,δ)

F , we have investigated conditions for the F to be an ideal of
X where (α,β) is one of (∈,∈∨q), (∈,∈∧q), (∈, q), (q,∈∨q), (q,∈∧q), (q,∈) and (q, q).
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