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A Curious Strong Resemblance between the Goldbach
Conjecture and Fermat Last Assertion

Ikorong Anouk Gilbert Nemron

Abstract. The Goldbach conjecture (see [2] or [3] or [4]) states that every even
integer e ≥ 4 is of the form e = p+ q, where (p, q) is a couple of prime(s). The
Fermat last assertion [solved by A. Wiles (see [1])] stipulates that when n is an
integer ≥ 3, the equation xn + yn = zn has not solution in integers ≥ 1. In
this paper, via two simple Theorems, we present a curious strong resemblance
between the Goldbach conjecture and the Fermat last assertion.

1. Preliminary

This paper is an original investigation around the Fermat last assertion and the
Goldbach conjecture, and is divided into two simple Sections (namely Section 2
and Section 3). In Section 2, we introduce definitions that are not standard, and
some elementary properties. In Section 3, using definitions of Section 2, we show,
via two simple Theorems, a strong resemblance between the Fermat last assertion
and the Goldbach conjecture. Here, all properties are original, and therefore, are
completely different from all the investigations that have been done on the Fermat
last assertion and the Goldbach conjecture in the past.

2. Non-standard definitions and simple properties

In this section, we introduce definitions that are not standard. These definitions
are determining for the final two Theorems.

We say that e is goldbach, if e is an even integer ≥ 4 and is of the form e = p+q,
where (p, q) is a couple of prime(s). The Goldbach conjecture (see Abstract) states
that every even integer e ≥ 4 is goldbach [Example 1. 100 is goldbach, because
100 is an even integer ≥ 4 and is of the form 100 = 53+ 47, where 53 and 47
are prime]. We say that e is goldbachian, if e is an even integer ≥ 4, and if every
even integer v with 4 ≤ v ≤ e is goldbach [Example 2. 100 is golbachian. Indeed,
100 is an even integer ≥ 4, and it is easy to check that every even integer v of
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the form 4≤ v ≤ 100 is goldbach. Note that goldbachian implies goldbach; so there
is not confusion between goldbachian and goldbach]. Now, for every integer n≥ 2,
we define G (n) and gn as follows: G (n) = {g; 1 < g ≤ 2n, and g is goldbachian},
and gn = max

g∈G (n)
g. From the definition of G (n) and gn, we immediately deduce:

G (n + 1) = {g; 1 < g ≤ 2n + 2, and g is goldbachian}, and gn+1 = max
g∈G (n+1)

g.

In Section 3, gn+1 will help us to give the surgical reformulation of the Goldbach
conjecture. From the definition of gn and gn+1, it is immediate to see.

Proposition 2.1. Let n be an integer ≥ 2. We have the following two simple
properties.

(2.1.1) gn and gn+1 are even; gn ≤ 2n; and gn ≤ gn+1 ≤ 2n+ 2.
(2.1.2) gn+1 = 2n+ 2 if and only if 2n+ 2 is goldbachian.

Proof. Properties (2.1.1) and (2.1.2) are immediate [it suffices to use the
definition of gn and gn+1]. ¤

Proposition 2.2. Let n be an integer ≥ 2. Then we have the following three simple
properties.

(2.2.1) If 2n+ 2 is not goldbachian, then n > 2 and for every integer u ≥ n, 2u+ 2
is not goldbachian.

(2.2.2) If gn+1 < 2n+2 [i.e., if 2n+2 is not goldbachian], then n> 2 and for every
integer u≥ n, we have gu+1 = gn+1 = gn.

(2.2.3) If gn+1 = Z, where Z < 2n+ 2, then lim
y→+∞

gn+1+y = Z.

Proof. Property (2.2.1) is immediate [it suffices to apply the definition of
goldbachian]; property (2.2.2) is an immediate reformulation of Property (2.2.1),
and property (2.2.3) is an obvious consequence of property (2.2.2). ¤

That being so, we say that e is wiles, if e is an integer ≥ 3 and if the equation
x e + y e = ze has not solution in integers ≥ 1. The Fermat last assertion [solved
by Wiles (see Abstract)] states that every integer e ≥ 3 is wiles [Example 3. It
is known that 3, 4, 5 and 6 are all wiles]. We say that e is Wilian’s, if e is an
integer ≥ 3, and if every integer v with 3 ≤ v ≤ e is wiles [Example 4. 6 is
Wilian’s. Indeed, 6 is an integer ≥ 3, and using Example 3, we see that every
integer v of the form 3 ≤ v ≤ 6 is wiles. Note that Wilian’s implies wiles; so there
is not confusion between Wilian’s and wiles]. Now, for every integer n ≥ 3, we
define W (n) and wn as follows: W (n) = {w; 2 < w ≤ n, and w is Wilian’s}, and
wn = 2 max

w∈W (n)
w. From the definition of W (n) and wn, we immediately deduce:

W (n+ 1) = {w; 2 < w ≤ n+ 1, and w is Wilian’s} and wn+1 = 2 max
w∈W (n+1)

w. In

Section 3, wn+1 will help us to give the surgical reformulation of the Fermat last
assertion. From the definition of wn and wn+1, it is immediate to see.
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Proposition 2.3. Let n be an integer ≥ 3. We have the following two simple
properties.

(2.3.1) wn and wn+1 are even; wn ≤ 2n; and wn ≤ wn+1 ≤ 2n+ 2.
(2.3.2) wn+1 = 2n+ 2 if and only if n+ 1 is Wilian’s.

Proof. Properties (2.3.1) and (2.3.2) are immediate [it suffices to use the
definition of wn and wn+1]. ¤

Observe that Proposition 2.3 resembles to Proposition 2.1.

Proposition 2.4. Let n be an integer ≥ 3. Then we have the following three simple
properties.

(2.4.1) If n+ 1 is not Wilian’s, then n > 3 and for every integer u ≥ n, u+ 1 is not
Wilian’s.

(2.4.2) If wn+1 < 2n+ 2 [i.e., if n+ 1 is not Wilian’s], then n > 3 and for every
integer u≥ n, we have wu+1 = wn+1 = wn.

(2.4.3) If wn+1 = Z, where Z < 2n+ 2, then lim
y→+∞

wn+1+y = Z.

Proof. Property (2.4.1) is immediate [it suffices to apply the definition of Wilian’s
and to observe that, if n = 3, then n + 1 is Wilian’s]; property (2.4.2) is an
immediate reformulation of Property (2.4.1), and property (2.4.3) is an obvious
consequence of property (2.4.2). ¤

Observe that Proposition 2.4 resembles to Proposition 2.2. Now for every
integer n ≥ 2, we define P (n) and pn as follows: P (n) = {p; p is prime and
1< p < 2n }, and pn = max

p∈P (n)
p. Using the definition of pn, it is known:

Theorem 2.5 (The Postulate of Bertrand or Erdos Theorem). Let n be an integer
≥ 1, then there exists a prime between n and 2n.

Corollary 1. For every integer n≥ 2, pn ≥ n.

Proof. Use definition of pn and Theorem 2.5. ¤

3. The strong resemblance between the Goldbach conjecture and the Fermat
last assertion

In this section, we show that the Goldbach conjecture and the Fermat last
assertion can be restated in ways that resemble each other. More precisely, we
prove two Theorems which show that the Goldbach conjecture and the Fermat
last assertion are clearly resembling. Using the definition of goldbachian, then the
following first Theorem is the surgical reformulation of the Goldbach conjecture.

Theorem 3.1 (The surgical reformulation of the Goldbach conjectuire). The
following are equivalent.
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(1) The Goldbach conjecture holds [i.e. every even integer e ≥ 4 is of the form
e = p+ q, where (p, q) is a couple of prime(s)].

(2) For every integer n≥ 2, 2n+ 2 is goldbachian.
(3) For every integer n≥ 2, gn+1 = 2n+ 2.
(4) For every integer n≥ 2, gn ≥ pn.
(5) For every integer n≥ 2, gn ≥ n.
(6) lim

n→+∞
gn+1 =+∞.

To prove easily Theorem 3.1, let us remark.

Remark 1. The following are equivalent.

(i) The Goldbach conjecture holds.
(ii) lim

n→+∞
gn+1 =+∞.

Proof. (i)⇒(ii): Immediate [it suffices to use the definition of the Goldbach
conjecture].

(ii)⇒(i): Otherwise, let M be a finite integer such that 2M + 2 is not goldbachian
[such a M clearly exists, since the Goldbach conjecture is false]; since 2M + 2 is
not goldbachian, clearly

gM+1 6= 2M + 2 (3.1)

Observing [by using the definition of gM+1] that

gM+1 ≤ 2M + 2 (3.2)

then, using (3.1) and (3.2), we immediately deduce that

gM+1 < 2M + 2 (3.3)

Inequality (3.3) clearly says that

gM+1 = Z , where Z < 2M + 2 (3.4)

it is immediate that Z is a finite integer, since M is a finite integer. Now
using (3.4) and property (2.2.3) of Proposition 2.2, then we immediately deduce
that lim

n→+∞
gM+1+n = Z , where Z is a finite integer; the previous immediately

implies that lim
n→+∞

gn+1 = Z , where Z is a finite integer, and this is absurd, since

lim
n→+∞

gn+1 = +∞ [by the hypothesis]. So, assuming that the Goldbach conjecture

is false gives rise to a serious contradiction; so the Goldbach conjecture holds. ¤

Proof of Theorem 3.1. (1)⇒(2): Immediate [it suffices to use the definition of the
Goldbach conjecture and the definition of goldbachian]; (2)⇒(3): Immediate [it
suffices to use the definition of goldbachian and the definition of gn+1]; (3)⇒(4):
Immediate [it suffices to observe (by using the definition of pn) that pn ≤ 2n− 1];
(4)⇒(5): Immediate [it suffices to use Corollary 1]; (5)⇒(6): Indeed, observing
[by the hypothesis] that for every integer n ≥ 2 we have gn+1 ≥ n, clearly
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lim
n→+∞

gn+1 =+∞; (6)⇒(1): Observing [by the hypothesis] that lim
n→+∞

gn+1 =+∞,

then, using Remark 1, we immediately deduce that the Goldbach conjecture
holds. ¤

Now using the definition of Wilian’s, then the following Theorem is the
corresponding surgical reformulation of the Fermat last assertion.

Theorem 3.2 (The surgical reformulation of the Fermat last assertion). The
following are equivalent.

(1) The Fermat last assertion holds [i.e. for every integer n ≥ 3, the equation
xn + yn = zn has not solution in integers ≥ 1].

(2) For every integer n≥ 3, n+ 1 is Wilian’s.
(3) For every integer n≥ 3, wn+1 = 2n+ 2.
(4) For every integer n≥ 3, wn+1 ≥ pn.
(5) For every integer n≥ 3, wn+1 ≥ n.
(6) lim

n→+∞
wn+1 =+∞.

To prove easily Theorem 3.2, let us remark.

Remark 2. The following are equivalent.

(i) The Fermat last assertion holds.
(ii) lim

n→+∞
wn+1 =+∞.

Proof. (i)⇒(ii): Immediate [it suffices to use the definition of the Fermat last
assertion].

(ii)⇒(i): Otherwise, let M be a finite integer such that M + 1 is not Wilian’s[such
a M exists, since the Fermat last assertion is false]; since M + 1 is not Wilian’s,
clearly

wM+1 6= 2M + 2 (3.5)

Observing [by using the definition of wM+1] that

wM+1 ≤ 2M + 2 (3.6)

then, using (3.5) and (3.6), we immediately deduce that

wM+1 < 2M + 2 (3.7)

Inequality (3.7) clearly says that

wM+1 = Z , where Z < 2M + 2 (3.8)

it is immediate that Z is a finite integer, since M is a finite integer. Now
using (3.8) and property (2.4.3) of Proposition 2.4, then we immediately deduce
that lim

n→+∞
wM+1+n = Z , where Z is a finite integer; the previous immediately

implies that lim
n→+∞

wn+1 = Z , where Z is a finite integer, and this is absurd, since
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lim
n→+∞

wn+1 =+∞ [by the hypothesis]. So, assuming that the Fermat last assertion

is false gives rise to a serious contradiction; so the Fermat last assertion holds. ¤

Observe that Remark 2 and Remark 1 are resembling.

Proof of Theorem 3.2. (1)⇒(2): Immediate [it suffices to use the definition of
the Fermat last assertion and the definition of Wilian’s]; (2)⇒(3): Immediate [it
suffices to use the definition of Wilian’s and the definition of wn+1]; (3)⇒(4):
Immediate [it suffices to observe (by using the definition of pn) that pn ≤ 2n− 1];
(4)⇒(5): Immediate [it suffices to use Corollary 1]; (5)⇒(6): Indeed, observing
[by the hypothesis] that for every integer n ≥ 3 we have wn+1 ≥ n, clearly
lim

n→+∞
wn+1 = +∞; (6)⇒ (1): Observing [by the hypothesis] that lim

n→+∞
wn+1 =

+∞, then, using Remark 2, we immediately deduce that the Fermat last assertion
holds. ¤

Visibly, Theorem 3.2 and Theorem 3.1 are strongly resembling. Specially, if
the Goldbach conjecture and the Fermat last assertion simultaneously hold, then
Theorem 3.2 and Theorem 3.1 immediately imply that wn+1 = gn+1, for every
integer n ≥ 3. The resemblance between Theorem 3.1 and Theorem 3.2 helps us
to conjecture the following.

Conjecture. For every integer n≥ 3, gn+1 = wn+1.
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