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Abstract. When we are confronted with solving nonlinear equations which do not admit explicit
solutions, we must use approximate methods based on iterative processes or algorithms. One of the
best known iterative methods is the fixed point theorem, often applied in analysis or algebra. In our
case, we will apply this method in a stochastic context. By means of this application, we show the
relationship between this method and the EM algorithm, which is an iterative process, often applied
in statistics.
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1. Introduction
In our research, we are often confronted with solving algebraic equations. When these equations
are nonlinear, they often do not admit explicit solutions. So, we try to find approximate solutions
by applying numerical methods. These solutions are based on iterative processes or algorithms.
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We can quote the dichotomy method; the Newton method and the fixed point theorem; etc. Due
to its importance, the latter will be considered. Because of the big number of variants of the
fixed point theorem, the knowledge of the existence of fixed points of a function has relevant
applications in many branches of analysis; algebra and topology. The theory is well developed
by many authors [1,3,8,9]. In this paper, the main objective is not the analytical or algebraic
side of this theorem but rather its application in a stochastic context little known compared
to the previous ones. Section ?? of this paper consists of recalling the fixed point theorem and
the EM algorithm [2,11]. Finally, we show the relationship existing between the two methods.
Section ?? is devoted to the application of the EM algorithm in order to estimate the parameters
of a linear mixed model. Eventually, section ?? constitutes the concluding part.

2. Fixed Point Theorem and EM Algorithm
2.1 Fixed point theorem
We are interested in the approximate determination of the roots of an equation of the form
f (x)= 0, where the function f is a numerical function of a real variable defined and continuous
in a certain interval [a,b]. A fixed point of a function g is a value of x which remains invariant
for this function; i.e. any solution of the equation g(x) = x is a fixed point of the g function.
The principle of this method is to transform the equation f (x)= 0 into an equivalent equation
g(x)= x where g is an auxiliary function well chosen. The process is completed by constructing
a sequence which converges to the fixed point of g. Let us consider α a fixed point of g, we will
determine the elements of this sequence. If x0 is an initial approximation of α, x1 is calculated
by: x1 = g(x0) then x2 by x2 = g(x1) and so on until xn. This method allows us to construct
a recursive sequence (xn),n ∈ N , defined by: x0 is an initial approximation of α; (∀ n = 0),
xn+1 = g(xn). If this sequence converges, its limit will be the solution of the problem. We will not
recall the convergence of this sequence which is related to certain conditions on the function g
(e.g. g satisfies a Lipschitz condition or is a contraction), because we are more interested in the
stochastic side than the analytical one of the application of this method.

2.2 EM Algorithm
Let X be a random variable of density f (x/θ) where θ is an unknown parameter. Let us suppose
that X is not completely observed; i.e. one observes a part Y of X . Let Y =Y (X ) be a random
variable of density g(y/θ). Let t(x) be a vector of sufficient (exhaustive statistics for θ). The
purpose of the EM algorithm (E for expectation and M for maximization) is to find the value of
θ which maximizes the likelihood g(y/θ) given a value of y as described by [2]. Thereafter, many
works concerning its application were carried out by many authors (e.g. [6,11]. This method
and especially the convergence of the algorithm is performed by many authors [4,5,7,12,13].
A study related to the mathematical properties of the EM algorithm is carried out in [10].

The likelihood maximization (normal equations) gives the following equation:

E(t(x)/θ) = E(t(x)/y,θ) . (2.1)
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The EM algorithm uses two stages to solve this θ-equation
E-step: One calculates the quantity:

t(x)= E(t(x)/y,θ) . (2.2)

M-step: One solves the θ-equation:

E(t(x)/θ)= t(x) . (2.3)

In other words, in E-step, given an initial value for θ; θ(p) its value at the stage (p); at the stage
(p+1), one calculates the value of t(x) noted by t(p) and which is given by t(p) = E(t(x)/y,θ(p)).
In the M-step, given the value of t(p) calculated in the E-step, one solves the equation in θ(p+1)

which is given by:

E(t(x)/y,θ(p+1))= t(p) . (2.4)

2.3 Fixed point method and EM algorithm
Suppose that we want to solve the equation in θ; F (θ)=G(θ), where F is some easily invertible
function; a simple algorithm is: given θ(p), the value of the unknown parameter θ obtained in
step p; in step p+1, we perform two actions:
- Direct calculation of G:

t(p) =G(θ(p)) . (2.5)

-Inversion of F :

θ(p+1) = F−1(t(p)) . (2.6)

This algorithm is nothing more than a variant of an algorithm resulting from the fixed point
theorem, where F is simply the identity function. Consequently, the two actions become:

- t(p) =G(θ(p))
- θ(p+1) = (t(p))

i.e. θ(p+1) = G(θ(p))
Under certain conditions (e.g. G satisfies the Lipschitz condition), this algorithm converges

to the solution. The aim of this work is not to deal with this aspect of the question but the
stochastic context application. The EM algorithm is nothing more than the statistical version
of this simple deterministic algorithm. It is sufficient in what precedes to replace F (θ) and
G(θ) by E(t(x)/y,θ) and E(t(x)/θ) respectively. Equations (2.5) and (2.6) are just steps E (direct
calculation of G, or calculation of the conditional expectation) and M (easy inversion of F or
easy maximum likelihood of f ).

3. Application of the EM Algorithm
3.1 Model
Let us consider the following linear mixed model

yi = X iα+Zibi + e i, i = 1, . . .m (3.1)
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where yi : vector of the responses of dimension (ni × p).
X i : a known (ni × p) design matrix linking α to yi .
α: a (p×1) vector of unknown parameters, it is a vector of fixed effects.
Zi : a known (ni ×k) design matrix linking bi to yi .
bi : a (k×1) vector of unknown parameters, it is a vector of random effects.
bi is distributed as N(0,D), (normal with mean 0 and covariance matrix D).
D = D(θ)), θ: an unknown (q×1) vector.
e i : vector of the errors which are supposed to be independent and follows N(0,σ2I); I the
identity matrix.

Therefore, the variance-covariance matrix of yi noted by Vi is given by

Vi = ZiDZi
t +σ2I .

We want to find the maximum likelihood estimator of θ, parameter generating this matrix
of variance-covariance; for that, we apply the EM algorithm. We consider that bi and e i are
observations in addition to yi . The sufficient statistics noted by t1 and t2, used to estimate θ

are
∑

e i
te i , and

∑
bibi

t, respectively.
E-step: we calculate t(p)

1 and t(p)
2 given by:

t(p)
1 = E

(∑
e i

te i/yi, α(θ(p)),θ(p)
)
, (3.2)

t(p)
2 = E

(∑
bibi

t

yi
, α(θ(p)),θ(p)

)
(3.3)

M-step: we solve the equations in θ(p+1)

E
(∑

e i
te i, α

(
θ(p+1)) ,θ(p+1)

)
= t(p)

1 (3.4)

E
(∑

bibi
t/α

(
θ(p+1)) ,θ(p+1)

)
= t(p)

2 (3.5)

3.2 Calculus
The parameter θ is composed of σ2, parameter generating t1 and of

(1
2

)
k(k+1) component of t2.

M-Step: in this stage, we will use the expressions (3.6) and (3.7) below

σ2 =
∑m

1 e i
te i∑m

1 ni
= t1∑m

1 ni
(3.6)

D = m−1 ∑m
1 bibi

t = t2

m
(3.7)

E-Step: having a preliminary value for θ (initial value), we then calculate the estimators of
statistics t1 and t2.

Therefore, at the (p) stage or in θ(p) (preliminary value), we have the expressions t(p)
1 and

t(p)
2 which are given by the formulas (3.8) and (3.9) below

t(p)
1 = E

(∑
e i

te i/yi, α(θ(p)),θ(p)
)

=∑m
1 e i(θ(p))

t
e i(θ(p))+ tr var(e i/yi, α(θ(p)),θ(p)) (3.8)
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where tr and var means trace and variance respectively.

t(p)
2 = E

(∑
bibi

t/yi, α(θ(p)),θ(p)
)

=∑m
1 bi(θ(p))bi(θ(p))

t +var(bi/yi, α(θ(p)),θ(p)) (3.9)

where

e i(θ(p))= E(e i/yi,α(θ(p)),θ(p))= yi − X i α(θ(p))−Zi bi(θ(p))

with α(θ(p)) and bi(θ(p)) given by

α(θ(p))=
(∑m

1 X i
tWi(θ(p))X i

)−1(∑m
1 X i

tWi(θ(p))yi

)
bi(θ(p))= D(θ(p))Zi

tWi(θ(p))(yi − X i α(θ(p))

where Wi =Vi
−1.

Recall that the estimators of α and bi are, the maximum likelihood estimator for α and the
estimator of generalized least squares or the empirical Bayes estimator for bi which is given by:

bi(θ(p))= E(bi/yi,α(θ(p)),θ(p))

To calculate E(e i/yi,α(θ(p)),θ(p)) and tr var(ei/yi,α(θ(p)),θ(p)), it is necessary to calculate the
distribution of e i conditionally at (yi,α(θ(p)),θ(p)). The same is done to calculate bi(θ(p)) and
var(bi/yi,α(θ(p)),θ(p)).

To have the maximum likelihood estimator of θ, that we will note by θM , we start with a
suitable initial value of θ, we make then iterations between (3.8) and (3.9) stage defining the
E-step, and (3.6) and (3.7) stage defining the M-step. At convergence, we do not have only θM ,
but also α (θM) and bi(θM) of the calculation of the last E-step.

4. Conclusion
We are interested in fixed point theorem; firstly because its application in the stochastic context
is little known and secondly the hidden side of the passage of the fixed point theorem to
the EM algorithm is not obvious. In this paper, we demonstrated the relationship between
the two methods. Finally, we emphasized the importance of the EM algorithm to estimate
the parameters of a linear mixed model.
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