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1. Introduction
Bell polynomials are introduced in [2] and named in honor of the mathematician E. T. Bell.
Partial Bell polynomials can be defined by the following generating function [25]:∑

n,k≥0
Bn,k(x1, x2, . . . , xn−k+1)

tn

n!
uk = exp

( ∑
m≥1

xm
tm

m!
u

)
.

The Bell polynomials are widely used for solving various problems of mathematical analysis,
algebra, statistics, probability theory and combinatorial analysis. Many scientists have studied
the Bell polynomials, such as L. Comtet [5], J. Riordan [25], S. Roman [26], and others.

Nowadays the Bell polynomials are also helpful, and they continue to be used in different
mathematical problems. For example, in [3] the authors enumerate all colored partitions
made by noncrossing diagonals of a convex polygon into polygons whose number of sides
is congruent to b modulo a and give an explicit representation in terms of the partial Bell
polynomials for the number of such partitions. In [23] the authors connect several explicit
formulas for the partial Bell polynomials with the Bessel polynomials, apply the obtained
formulas to give new expressions for the Catalan numbers and compute arbitrary higher
order derivatives of elementary functions such as the sine, cosine, arcsine, arccosine, square
root, logarithm, and exponential. Using some properties of the Bell polynomials, in [33] the
authors establish two explicit formulas for the Motzkin numbers, the generalized Motzkin
numbers, and the restricted hexagonal numbers. In [24] the authors use the explicit formulas
of the Bell polynomials for deriving explicit formulas for the Euler numbers and polynomials,
and in [31] the authors establish various mixed Euler sums and Stirling sums and present a
unified approach to determining the evaluations of unknown Euler sums. In [22] the authors
derive explicit expressions for the Bell polynomials and apply these to find explicit formulas for
derivatives of trigonometric, logarithmic, and exponential elementary functions. The derivation
of several properties and identities of Bell numbers and polynomials is presented in [?, 8].

Also in recent decades, the binary Bell polynomials have found their application. In [22]
the authors present the link between the Bell polynomials and the Hirota D-operators. After
that, the binary Bell polynomials are used for obtaining bilinear forms of nonlinear evolution
equations, which makes it possible to find their multiple-soliton solutions. These studies
are applicable to the description of nonlinear phenomena in hydrodynamics and plasma
physics [7,18,21,29,30].

To use Bell polynomials for some practical problems, it is necessary to obtain coefficients
for the powers of x. It can be done using the following explicit expression, which describes the
partial Bell polynomials:

Bn,k(x1, x2, . . . , xn−k+1)=∑ n!
j1! j2! · · · jn−k+1!

( x1

1!

) j1 ( x2

2!

) j2 · · ·
(

xn−k+1

(n−k+1)!

) jn−k+1

, (1)

where the sum is taken over all sequences j1, j2, . . . , jn−k+1 (k = 1,n) and{
j1 + j2 + . . .+ jn−k+1 = k,
j1 +2 j2 + . . .+ (n−k+1) jn−k+1 = n.

Journal of Informatics and Mathematical Sciences, Vol. 10, No. 4, pp. 659–672, 2018



Realization of a Method for Calculating Bell Polynomials. . . : V.S. Melman et al. 661

Sometimes in practical problems there is a need to use the sum of partial Bell polynomials,
which is called the n-th complete Bell polynomial and has the following form:

Bn(x1, x2, . . . , xn)=
n∑

k=1
Bn,k(x1, x2, . . . , xn−k+1). (2)

Getting Bell polynomials in the form of a polynomial using (1) and (2) has a large
computational complexity. Algorithms based on recurrence formulas are also used to obtain Bell
polynomials. For example, it can be [26]

kBn,k(x1, x2, . . .)=
n∑

i=1

(
n
i

)
xiBn−i,k−1(x1, x2, . . .),

Bn,k(x1, x2, . . .)=
n−1∑

i=k−1

(
n−1

i

)
xn−iBi,k−1(x1, x2, . . .),

or the recurrence formula [32]

Bn,k(x1, x2, . . .)=
n−k+1∑

i=1

(
n−1
i−1

)
xiBn−i,k−1(x1, x2, . . .). (3)

In [20] the following expression for the partial Bell polynomials is proved:

Bn+1,k+1(x1, x2, . . . , xn+1)=
n−k∑
i=0

(
n
i

)
xi+1Bn−i,k(x1, x2, . . . , xn−i).

Recurrence relations also exist for the n-th complete Bell polynomials, for example, the
following relation given in [10]:

Bn(x1, . . . , xn)=
n∑

k=1

(
n−1
k−1

)
xkBn−k(x1, . . . , xn−k).

But methods that are based on algorithms used recurrence relations also have a great
computational complexity, which is estimated as O(n2) [10]. This is a significant drawback
of such algorithms. Hence, one of the problems associated with the use of Bell polynomials
in practice is the complexity of calculating the coefficients for the powers of x. Therefore, the
search for new computational methods for getting Bell polynomials is an important task.

Automation of calculations is also an important task. For example, in [4] the authors consider
the effectiveness of practical implementation of integration methods for ordinary differential
equations and compare new methods with the built-in methods of MATLAB. In [17] the authors
realize a library for Wolfram Mathematica for efficient evaluation of multivariate residues
based on methods from computational algebraic geometry. In [27] the authors realize a library
for Wolfram Mathematica, that performs abstract vector calculus computations and is able to
reduce three-dimensional scalar and vector expressions of a very general type to a well defined
standard form. This library was applied for the automation of the calculation of high-order
Lagrangians for the single particle guiding center system in plasma physics. In [9] the authors
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realize a library for Wolfram Mathematica, that is dedicated to the study of various modeling,
analysis, synthesis problems for nonlinear control systems.

In this paper the authors realize the method for calculating Bell polynomials based on
compositae of generating functions [11] and compare this method with built-in methods of
mathematical packages.

The article has the following structure:

• Section 2 presents computational methods for getting Bell polynomials.
• Section 3 defines the composita of a generating function and demonstrates its connection

with the partial Bell polynomials.
• Section 4 describes a library for Wolfram Mathematica for calculating Bell polynomials,

which is realized by the authors.
• Section 5 shows the main results of the comparison of methods for calculating Bell

polynomials.
• Section 6 summarizes the results of the research.

2. Computational Methods for Calculating Bell Polynomials

Nowadays mathematical packages are widely used for solving different mathematical tasks.
Getting Bell polynomials can be realized not only using explicit and recurrent formulas, but
also applying mathematical packages. There are several built-in functions for calculating Bell
polynomials in such software as Wolfram Mathematica, Maple, and Sage. In MATLAB there is
a custom implementation of a method for calculating the partial Bell polynomials based on (3).
Table 1 describes the functions of mathematical packages that can be used for calculating Bell
polynomials.

Table 1. Functions of mathematical packages for calculating Bell polynomials

Mathematical package Function Description

Wolfram Mathematica BellY Return the partial Bell polynomial for the given
values of n and k and the sequence {x1, . . . , xn−k+1}

Maple IncompleteBellB Return the partial Bell polynomial for the given
values of n and k and the sequence {x1, . . . , xn}

CompleteBellB Return the n-th complete Bell polynomial for the
given value of n and the sequence {x1, . . . , xn}

Sage bell_polynomial Return the partial Bell polynomial for the given
values of n and k

MATLAB IncompleteBellPoly Return a matrix of the partial Bell polynomials
for the given values of n and k and the sequence
{x1, . . . , xn}
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Also there are other computational methods for calculating Bell polynomials. For example,
in [19] a method for obtaining the matrix of partial Bell polynomials based on the analytic
derivation of a polynomial is presented. In this paper special attention is paid to the specification
of a polynomial, which includes coefficients, indices and powers of polynomial terms. It allows
us to store polynomials in RAM, access to the element by its number, and make an exhaustive
search.

3. Composita of a Generating Function and Partial Bell Polynomials

In this paper we realize the method for calculating Bell polynomials based on compositae of
generating functions [11]. Previously, the compositae of generating functions were applied for
obtaining explicit expressions of polynomials [13,14] and for generating primality criteria that
are used for distinguishing prime numbers from composite numbers [16].

The notion of compositae of generating functions is described in [12,15] and can be apply to
ordinary generating functions. According to R. P. Stanley [28], ordinary generating functions
are defined as follows:

Definition 1. An ordinary generating function of the sequence (an)n≥0 is the formal power
series

A(x)= a0 +a1x+a2x2 + . . .= ∑
n≥0

anxn.

Definition 2. The composita F∆(n,k) of the generating function F(x)= ∑
n>0

fnxn is the coefficient

function of the generating function (F(x))k = ∑
n≥k

F∆(n,k)xn.

The composita can be represented using compositions as follows:

F∆(n,k)= ∑
πk∈Cn

fλ1 fλ2 · · · fλk ,

where Cn is the set of all compositions of an integer n, πk is the composition n into k parts such

that
k∑

i=1
λi = n.

Also, the composita can be represented using partitions as follows:

F∆(n,k)=∑(
k

j1 j2 · · · jn−k+1

)
f j1
1 f j2

2 · · · f jn−k+1
n−k+1,

where the sum is taken over all sequences j1, j2, . . . , jn−k+1 (k = 1,n) and{
j1 + j2 + . . .+ jn−k+1 = k,
j1 +2 j2 + . . .+ (n−k+1) jn−k+1 = n.

The following recurrence relation holds true for compositae:

F∆(n,k)=


f (n), for k = 1;
n−k+1∑

i=1
f iF∆(n−1,k−1), otherwise.
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If we consider a partial Bell polynomial where xi is the i-th derivative of a function y(x),
then we get the following expression for calculating the partial Bell polynomial [11]:

Bn,k =
n!
k!

Y∆(n,k, x), (4)

where

Y∆(n,k, x)= ∑
πk∈Cn

y(λ1)(x)
λ1!

y(λ2)(x)
λ2!

· · · y(λk)(x)
λk!

is the composita of the generating function

Y (x, z)= y(x+ z)− y(x)= ∑
n>0

y(n)(x)
n!

zn. (5)

4. Library for Wolfram Mathematica for Calculating Bell Polynomials

The method for calculating Bell polynomials based on compositae of generating functions was
realized in the form of a library for Wolfram Mathematica. This library contains the following
sections:

1. Compositae of generating functions F∆(n,k).

2. Rules for working with compositae F∆(n,k).

3. Compositae of generating functions Y∆(n,k, x).

4. Rules for calculating Bell polynomials based on compositae of generating functions.

The section “Compositae of generating functions F∆(n,k)” contains 150 functions for
calculating compositae of different generating functions for polynomials and for rational,
trigonometric, hyperbolic, logarithmic, exponential, and irrational functions. The section
“Rules for working with compositae F∆(n,k)” contains 26 functions that describe the rules for
calculating the sum, product, and composition of generating functions. The section “Compositae
of generating functions Y∆(n,k, x)” contains 28 functions for calculating compositae of different
generating functions in the form of (5) for rational, trigonometric, logarithmic, exponential, and
irrational functions. The section “Rules for calculating Bell polynomials based on compositae
of generating functions” contains functions that describe the rules for calculating partial Bell
polynomials and n-th complete Bell polynomials.

Demonstration of the correct work of the library is presented in Figure 1, which shows
calculating the partial Bell polynomial using the function BellPoly for n = 5, k = 2 and
the sequence (x1, x2, . . . , xn−k+1), where xi is the i-th derivative of the function y(x) = tan(x).
Figure 1 also shows the calculation of the same polynomial by the built-in functions of Wolfram
Mathematica. It is clear that the results of the calculations are completely the same.
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Demonstration of the correct work of the library is presented in Figure 1, which shows
calculating the partial Bell polynomial using the function BellPoly for n = 5, k = 2 and the
sequence (x1, x2, . . . , xn−k+1), where xi is the i-th derivative of the function y(x) = tan (x).
Figure 1 also shows the calculation of the same polynomial by the built-in functions of Wolfram
Mathematica. It is clear that the results of the calculations are completely the same.

Figure 1: Calculating the partial Bell polynomial for the function y(x) = tan (x).

In this example, the following functions of the library are used:

• The function CompositaTan calculates the composita of the generating function tan (x)
for the given n and k.

• The function DeTan calculates the composita of the generating function in the form of (5)
for function y(x) = tan (x) for the given n, k and x.

• The function BellPoly calculates the partial Bell polynomial for the given Y ∆(n, k, x), n,
k and x.

5 Comparison of methods for calculating Bell polynomials

The method for calculating Bell polynomials based on compositae of generating functions was
compared only with the built-in methods of Wolfram Mathematica and Maple. The built-in
method of Sage and the method described in [19] do not allow us to get Bell polynomials where
xi is the i-th derivative of a function y(x) because in these methods it is not possible to enter
a sequence (x1, x2, . . . , xn−k+1). The built-in method of MATLAB is based on a recurrence
relation and its computational complexity is known.

Wolfram Mathematica and Maple are proprietary software, and their built-in algorithms are
not freely available. Therefore, the comparison of the methods for calculating Bell polynomials
was carried out using the data obtained by conducting an experiment. Time and memory spent
on calculations were used as comparison criteria.

7

Figure 1. Calculating the partial Bell polynomial for the function y(x)= tan(x).

In this example, the following functions of the library are used:

• The function CompositaTan calculates the composita of the generating function tan(x) for
the given n and k.

• The function DeTan calculates the composita of the generating function in the form of (5)
for function y(x)= tan(x) for the given n, k and x.

• The function BellPoly calculates the partial Bell polynomial for the given Y∆(n,k, x), n, k
and x.

5. Comparison of Methods for Calculating Bell Polynomials

The method for calculating Bell polynomials based on compositae of generating functions was
compared only with the built-in methods of Wolfram Mathematica and Maple. The built-in
method of Sage and the method described in [19] do not allow us to get Bell polynomials where
xi is the i-th derivative of a function y(x) because in these methods it is not possible to enter a
sequence (x1, x2, . . . , xn−k+1). The built-in method of MATLAB is based on a recurrence relation
and its computational complexity is known.

Wolfram Mathematica and Maple are proprietary software, and their built-in algorithms are
not freely available. Therefore, the comparison of the methods for calculating Bell polynomials
was carried out using the data obtained by conducting an experiment. Time and memory spent
on calculations were used as comparison criteria.

The comparison of methods for calculating Bell polynomials includes the following steps:

1. The preparation of a test set of functions for testing.
2. The measurement of time and memory spent on calculations for all methods and for the

same functions.
3. The comparison of the obtained results.

For testing we prepare a test set of functions that consists of three parts. Each part is
distinguished by the complexity of its functions. The first part of the test set consists of
elementary functions. The second part of the test set consists of complex functions that are
obtained from two elementary functions and one operation on them (addition, multiplication,
composition). The third part of the test set consists of complex functions that are obtained from
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three elementary functions and two operations on them. Each part contains 10 functions, the
test set is given in Table 2.

Table 2. Test set of functions for testing

No. First part Second part Third part

1 sin(x) sin(tan(x)) sin
(
tan

(1
x
))

2 tan(x) ln(x)+ xex tan
(
ln2 (x)

)
3

p
x cos

(
2x− x2 + x3)

e
1−x
1+x + tan(x)

4 xex p
x+ 1−x

1+x ln(x)+ ex + xp
1−x2

5 1−x
1+x

p
tan(x)

p
4x− x2 +2x3 + 1−x

1+x

6 1
x

1
1−x−x2 + x2 ln

(√
1
x

)
7

p
1− x2 5x−3x2 + ln(x) 1−x

1+x + tan2 (x)

8 arccos(x)
p

4x− x2 +2x3 1
x+3x2−2x3 + x2

9 sec(x) ex + x+ 1
x

√
ln

(
2x− x2 + x3

)
10 −3x+2x2 +5x3 1−px

1+px
1−px
1+px + ex

The testing was performed on a computer with the following characteristics: Intel Core
i3-6100U (2.3 GHz), 12 GB DDR4 RAM. For each function from the test set, we measured time
and memory spent on calculating n-th complete Bell polynomials by each method for n in the
interval from 10 to 70 in increments of 10. To measure time and memory, we used the functions
Timing and ByteCount for Wolfram Mathematica, time and Usage with the option bytes used for
Maple. To calculate n-th complete Bell polynomials, we used the functions BellY for Wolfram
Mathematica and CompleteBellB for Maple.

Table 3 shows the average values of time spent on calculations for each part of the test set
and for the entire test set.

Table 3. Average values of time spent on calculations

Computational method First part Second part Third part Entire test set

Library 3.82 13.50 106.34 41.22

Wolfram Mathematica 24.05 24.45 124.92 57.81

Maple 79.18 407.04 1518.83 668.35

Figures 2 – 5 show graphs of the dependence of time spent on calculations on n for each part
of the test set and for the entire test set. The secondary vertical axis shows the time spent on
calculations for Maple because it is much greater than for the other methods.

On the basis of the obtained results, it can be noted that the increase in the complexity of
used functions for calculating Bell polynomials increases the time spent on calculations. There
is the smallest increase in time for Wolfram Mathematica (5.19 times) and the greatest increase
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in time for the library (27.84 times). In absolute values, the average value of time spent on
calculations for the library is smaller than for the other methods.

Computational method First part Second part Third part Entire test set

Library 3.82 13.50 106.34 41.22

Wolfram Mathematica 24.05 24.45 124.92 57.81

Maple 79.18 407.04 1518.83 668.35

Table 3: Average values of time spent on calculations.

Figures 2–5 show graphs of the dependence of time spent on calculations on n for each part
of the test set and for the entire test set. The secondary vertical axis shows the time spent on
calculations for Maple because it is much greater than for the other methods.

On the basis of the obtained results, it can be noted that the increase in the complexity of
used functions for calculating Bell polynomials increases the time spent on calculations. There
is the smallest increase in time for Wolfram Mathematica (5.19 times) and the greatest increase
in time for the library (27.84 times). In absolute values, the average value of time spent on
calculations for the library is smaller than for the other methods.

Figure 2: Dependence of time spent on calculations on n for the first part of the test set.

9

Figure 2. Dependence of time spent on calculations on n for the first part of the test set

Figure 3: Dependence of time spent on calculations on n for the second part of the test set.

Figure 4: Dependence of time spent on calculations on n for the third part of the test set.

10

Figure 3. Dependence of time spent on calculations on n for the second part of the test setFigure 3: Dependence of time spent on calculations on n for the second part of the test set.

Figure 4: Dependence of time spent on calculations on n for the third part of the test set.

10

Figure 4. Dependence of time spent on calculations on n for the third part of the test set
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Figure 5: Dependence of time spent on calculations on n for the entire test set.

Table 4 shows the average values of memory spent on calculations for each part of the test
set and for the entire test set.

Computational method First part Second part Third part Entire test set

Library 5.35 166.33 432.92 201.53

Wolfram Mathematica 6360.51 29141.23 243032.40 92844.71

Maple 3117.14 16004.49 187527.97 68883.20

Table 4: Average values of memory spent on calculations.

Figures 6–9 show graphs of the dependence of memory spent on calculations on n for each
part of the test set and for the entire test set. The secondary vertical axis shows the memory
spent on calculations for the library because it is much smaller than for the other methods.

On the basis of the obtained results, it can be noted that the increase in the complexity
of used functions for calculating Bell polynomials increases the memory spent on calculations.
There is the smallest increase in memory for Wolfram Mathematica (38.21 times) and the great-
est increase in memory for the library (80.92 times). In absolute values, the average value of
memory spent on calculations for the library is smaller than for the other methods.
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Figure 5. Dependence of time spent on calculations on n for the entire test set

Table 4 shows the average values of memory spent on calculations for each part of the test
set and for the entire test set.

Table 4. Average values of memory spent on calculations

Computational method First part Second part Third part Entire test set

Library 5.35 166.33 432.92 201.53
Wolfram Mathematica 6360.51 29141.23 243032.40 92844.71

Maple 3117.14 16004.49 187527.97 68883.20

Figures 6 – 9 show graphs of the dependence of memory spent on calculations on n for each
part of the test set and for the entire test set. The secondary vertical axis shows the memory
spent on calculations for the library because it is much smaller than for the other methods.

On the basis of the obtained results, it can be noted that the increase in the complexity of
used functions for calculating Bell polynomials increases the memory spent on calculations.
There is the smallest increase in memory for Wolfram Mathematica (38.21 times) and the
greatest increase in memory for the library (80.92 times). In absolute values, the average value
of memory spent on calculations for the library is smaller than for the other methods.

Figure 6: Dependence of memory spent on calculations on n for the first part of the test set.

Figure 7: Dependence of memory spent on calculations on n for the second part of the test set.

12

Figure 6. Dependence of memory spent on calculations on n for the first part of the test set
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Figure 6: Dependence of memory spent on calculations on n for the first part of the test set.

Figure 7: Dependence of memory spent on calculations on n for the second part of the test set.

12

Figure 7. Dependence of memory spent on calculations on n for the second part of the test set

Figure 8: Dependence of memory spent on calculations on n for the third part of the test set.

Figure 9: Dependence of memory spent on calculations on n for the entire test set.
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Figure 8. Dependence of memory spent on calculations on n for the third part of the test setFigure 8: Dependence of memory spent on calculations on n for the third part of the test set.

Figure 9: Dependence of memory spent on calculations on n for the entire test set.

13

Figure 9. Dependence of memory spent on calculations on n for the entire test set

Thus, the method for calculating Bell polynomials based on compositae of generating
functions spends less resources than the built-in methods of Wolfram Mathematica and Maple.
One drawback of using the library is the need for the manual decomposition of complex functions
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into elementary functions and operations on them. Figure 10 shows an example of calculating
the partial Bell polynomial for the function y(x)= tan(x)+ ln(x) with the manual decomposition.
This drawback can be corrected by developing an algorithm for automatic decomposition of a
given function.

Thus, the method for calculating Bell polynomials based on compositae of generating func-
tions spends less resources than the built-in methods of Wolfram Mathematica and Maple. One
drawback of using the library is the need for the manual decomposition of complex functions into
elementary functions and operations on them. Figure 10 shows an example of calculating the
partial Bell polynomial for the function y(x) = tan (x) + ln (x) with the manual decomposition.
This drawback can be corrected by developing an algorithm for automatic decomposition of a
given function.

Figure 10: Calculating the partial Bell polynomial for the function y(x) = tan (x) + ln (x).

6 Conclusion

In this paper we have considered different computational methods for calculating partial and
n-th complete Bell polynomials. As one of the new methods, we propose to use the method for
calculating Bell polynomials, which is based on compositae of generating functions. We have
realized this method in the form of a library for Wolfram Mathematica and compared with the
built-in methods of Wolfram Mathematica and Maple. The results of the comparison demon-
strate the advantage of the realization of the new method over the existing ones in spending
memory for calculating. Also there is the advantage of the new method over the built-in method
of Maple in spending time for calculating.
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Figure 10. Calculating the partial Bell polynomial for the function y(x)= tan(x)+ ln(x)
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with the built-in methods of Wolfram Mathematica and Maple. The results of the comparison
demonstrate the advantage of the realization of the new method over the existing ones in
spending memory for calculating. Also there is the advantage of the new method over the
built-in method of Maple in spending time for calculating.
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