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1. Introduction

Fuzziness is one of the important and useful concepts in the modern scientific studies. Zadeh
[16] introduced the notion of fuzzy sets. Throughout, the development of fuzzy set theory,
many interesting phenomena have been observed. Fuzzy topology was introduced by Chang
[4]. An alternate definition of fuzzy topology was given by Lowen [7]. Vaidyanathaswamy [14]
studied the topic of ideal topological spaces intensively. Mahmoud [9] and Sarkar [13] introduced
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the fuzzy ideal topology. The concept of fgb-closed sets and fgb-continuous are introduced by
Benchalli and Karnel [3]. In this paper, we introduced fgb-I-closed sets, fgb-I-continuous, fgb-I-
irresolute, fgb-I-closed functions, fgb-I-open functions and fgb∗-I-open functions in fuzzy ideal
topological spaces.

2. Preliminaries

Let X be a non-empty set. A family τ of fuzzy sets of X is called a fuzzy topology [4] on X if
the null fuzzy set 0 and the whole fuzzy set 1 belongs to τ and τ is closed with respect to any
union and finite intersection. If τ is a fuzzy topology on X , then the pair (X ,τ) is called a fuzzy
topological space. A fuzzy point in X with support x ∈ X and value α (0≤α≤ 1) is denoted by
xα. For a fuzzy set A in X , Cl(A), Int(A) and 1− A denote the closure, interior and complement
of A. A fuzzy set A in (X ,τ) is said to be quasi-coincident [12] with a fuzzy set B, denoted by
A qB, if there exists a point x ∈ X such that A(x)+B(x)> 1 [5]. A fuzzy set B in (X ,τ) is called
a q-neighbourhood [12] of a fuzzy point xβ if there exists a fuzzy open set U of X such that
xβqU ≤V [5]. A nonempty collection of fuzzy sets I of a set X is called a fuzzy ideal [6,11], if

(1) A ∈ I and A ≤ B, then A∨B ∈ I .

(2) A ∈ I and B ∈ I , then A∨B ∈ I .

The triplet (X ,τ, I) is called fuzzy ideal topological space with a fuzzy ideal I and a fuzzy
topology τ.

For (X ,τ, I), the fuzzy local function of A ≤ X with respect to τ and I denoted by A∗(τ, I)
(briefly A∗) and is defined A∗ = ∨{x ∈ X : A ∧U 6∈ I for every U ∈ τ}. While A∗ is the union
of the fuzzy points such that if U ∈ τ and E ∈ I , then there is atleast one y ∈ X for which
U(y)+ A(y)−1 > E(y) [8]. Fuzzy closure operator of a fuzzy set A in (X ,τ, I) is defined as
Cl∗(A)= A∨ A∗. A subset A in (X ,τ, I) is called fuzzy ideal open [10] if A ≤ Int(A∗).

Definition 2.1 ([2]). A fuzzy set A in a fuzzy topological space X is called

(i) fuzzy b-open set if A ≤ (IntCl(A)∨ClInt(A)).

(ii) fuzzy b-closed set if (IntCl(A)∨∧Int(A))≤ A.

Definition 2.2 ([2]). Fuzzy b-closure and fuzzy b-interior of a fuzzy set A is given by

(i) bCl(A)=∧{B : B is a fuzzy b-closed set of X and B ≥ A}.

(ii) bInt(A)=∨{C : C is a fuzzy b-open set of X and A ≥ C}.

Definition 2.3. A fuzzy set A in a fuzzy topological space (X ,τ) is called

(i) a generalized closed(briefly g-closed) fuzzy set [1] if Cl(A)≤ B whenever A ≤ B and B is
fuzzy open set in (X ,τ).

(ii) a fuzzy generalized b-closed(briefly fgb-closed) set [2] if bCl(A)≤ B whenever A ≤ B and
B is fuzzy open in (X ,τ).
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Definition 2.4 ([3]). A fuzzy topological space (X ,τ) is called fuzzy gb-T1/2-space (briefly fgb-
T1/2-space) if every fgb-closed set in X is fuzzy b-closed in X .

Definition 2.5 ([1]). Let X , Y be two fuzzy topological spaces. A function f : (X ,τ)→ (Y ,σ) is
called a fg-continuous if f −1(A) is g-closed fuzzy set in X , for every closed fuzzy set A of Y .

Definition 2.6 ([3]). A function f : (X ,τ)→ (Y ,σ) is said to be fuzzy generalized b-continuous
(briefly fgb-continuous) if f −1(A) is fgb-closed set in X , for every fuzzy closed set A in Y .

Definition 2.7 ([15]). A subset A of a fuzzy ideal topological space (X ,τ, I) is said to be fuzzy
b-I-open set if A ≤Cl∗(Int(A))∨ Int(Cl∗(A).

Definition 2.8 ([11]). A function f : (X ,τ, I) → (Y ,σ) is called fuzzy-I-continuous if f −1(V ) is
fuzzy I-open set for each V in Y is fuzzy open.

Definition 2.9 ([15]). A function f : (X ,τ, I)→ (Y ,σ) is called fuzzy b-I-continuous if the inverse
image of each fuzzy open set in Y is fuzzy b-I-open in (X ,τ, I).

Remark 2.1 ([2]). Every fuzzy closed set in a fuzzy topological space (X ,τ) is fuzzy b-closed.

Theorem 2.1 ([15]). In a fuzzy ideal topological space (X ,τ, I), the following statements are
holds:

(a) every fuzzy closed set is fb-I-closed set.

(b) every fuzzy I-closed set is fb-I-closed set.

(c) every fuzzy b-I-closed set is fb-closed set.

3. Fuzzy gb-I-Closed Sets

Definition 3.1. A subset A of a fuzzy ideal topological space (X ,τ, I) is said to be fuzzy
generalized b-I-closed (briefly fgb-I-closed) if bCl(A) ≤ B, whenever A ≤ B and B is a fuzzy
I-open in (X ,τ, I).

Remark 3.1. A subset A of a fuzzy ideal topological space (X ,τ, I) is called fuzzy generalized
b-I-open (fgb-I-open) if its complement 1− A is fgb-I-closed.

Theorem 3.1. Every fuzzy closed set in (X ,τ, I) is fgb-I-closed.

Proof. Assume A is a f -closed set in X . Let A ≤ B, B is fuzzy I-open set in X . By Remark 2.1,
A is fb-closed, Cl(A)= bCl(A)= A ≤ B. Thus bCl(A)≤ B. Hence A is fgb-I-closed.

Theorem 3.2. Every fuzzy I-closed set in (X ,τ, I) is fgb-I-closed.

Proof. Assume A is a fuzzy I-closed set in X . Let A ≤ B, B is a fuzzy I-open set in X . By
Theorem 2.1 every fuzzy I-closed is fb-I-closed. Thus A is fb-I-closed. Again by Theorem 2.1,
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every fb-I-closed set is fb-closed, Cl(A) = bCl(A) = A ≤ B. Thus bCl(A) ≤ B. Hence A is fgb-I-
closed.

Theorem 3.3. Every fb-closed set in fuzzy ideal topological space (X ,τ, I) is fgb-I-closed.

Proof. Assume A is fb-closed set in X . Let A ≤ B, B is fuzzy I-open set in X . Since A is fb-closed,
we have bCl(A)= A ≤ B. Therefore bCl(A)≤ B. Hence A is fgb-closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.1. Let X = {a,b} and A, B, C be the fuzzy sets defined as follows:

A(a)= 0.3, A(b)= 0.4,

B(a)= 0.4, B(b)= 0.5,

C(a)= 0.3, C(b)= 0.7.

Let τ= {0,1, A} be the topology on X and I = {0} be the fuzzy ideal on X . Then C is fgb-I-closed
but not fb-closed in X .

Theorem 3.4. A subset A of a fuzzy ideal topological space (X ,τ, I) is called fgb-I-open if and
only if B ≤ bInt(A), whenever B is fuzzy I-closed set and B ≤ A.

Proof. Suppose A is a fgb-I-open set in X . Then 1− A is fgb-I-closed in X . Let B be a fuzzy
I-closed set in X such that B ≤ A. Then 1− A ≤ 1−B, 1−B is fuzzy I-open set in X .

Since 1− A is fgb-I-closed, we have bCl(1− A) ≤ 1−B, implies 1−bInt(A) ≤ 1−B. Therefore,
B ≤ bInt(A).

Conversely, assume that B ≤ bInt(A), whenever B ≤ A and B is fuzzy I-closed set in X . Then
1−bInt(A) ≤ 1−B = C, C is fuzzy I-open set in (X ,τ, I). Thus bCl(1− A) ≤ C, implies 1− A is
fgb-I-closed. Hence A is fgb-I-open.

Theorem 3.5. If A is a fgb-I-closed set in (X ,τ, I) and A ≤ B ≤ bCl(A), then B is a fgb-I-closed
set in (X ,τ, I).

Proof. Let C be fuzzy I-open in X such that B ≤ C. Suppose A ≤ B, then A ≤ C. Since A is a
fgb-I-closed set in X , it follows that bCl(A)≤ C. Now, B ≤ bCl(A) implies bCl(B)≤ bCl(bCl(A))=
bCl(A). Thus bCl(B)≤ C. Hence B is a fgb-I-closed set in X .

Theorem 3.6. If A is a fgb-I-open set in fuzzy ideal topological space (X ,τ, I) and bInt(A) ≤
B ≤ A then B is fgb-I-open in (X ,τ, I).

Proof. Let A be a fgb-open set and B be any fuzzy set in X , such that blnt(A)≤ B ≤ A.

Then 1−A is fgb-I-closed in X and 1−A ≤ 1−B ≤ bCl(1−A). Then from Theorem 3.5, 1−B is a
fgb-I-closed set in X . Hence B is a fgb-I-open set in X .
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3.1 Fuzzy Generalized b-I-Neighbourhood and Fuzzy Generalized bq-I-Neighbourhood

Definition 3.2. Let A be a subset of a fuzzy ideal topological space (X ,τ, I) and xp be a
fuzzy point in (X ,τ, I), then A is called fuzzy generalized b-I-neighbourhood (briefly fgb-
I-neighbourhood) of xp if and only if there exists a fgb-I-open set B in (X ,τ, I) such that
xp ∈ B ≤ A.

Definition 3.3. Let A be a subset of a fuzzy ideal topological space (X ,τ, I) and xp be a
fuzzy point in (X ,τ, I), then A is called fuzzy generalized bq-I-neighbourhood (briefly fgbq-I-
neighbourhood) of xp if and only if there exists a fgb-I-open set B such that xp qB ≤ A.

Theorem 3.7. A is fgb-I-open set in (X ,τ, I) if and only if for each fuzzy point xp ∈ A, A is a
fgb-I-neighbourhood of xp .

Proof. Let A be a fgb-I-open set in X . For each xp ∈ A, A ≤ A. Therefore A is a fgb-I-
neighbourhood of xp. Conversely, let A be a fgb-I-neighbourhood of xp. Then there exists
a fgb-I-open set B in X ,τ, I) such that xp ∈ B ≤ A. Hence A is fgb-I-open set in (X ,τ, I).

Theorem 3.8. If A and B are fgb-I-neighbourhoods of xp then A ∧ B is also a fgb-I-
neighbourhood of xp .

Proof. Let A and B be fgb-I-neighbourhoods of xp. Then there exist fgb-I-open sets L and M
such that xp ∈ L∧M ≤ A∧B. Thus A∧B is also a fgb-I-neighbourhood of xp .

4. Fuzzy gb-I-Continuous Functions

Definition 4.1. A function f : (X ,τ, I) → (Y ,σ) is said to be fuzzy generalized b-I-continuous
(briefly fgb-I-continuous), if f −1(A) is fgb-I-closed set in (X ,τ, I), for every fuzzy closed set A
in Y .

Theorem 4.1. f : (X ,τ, I) → (Y ,τ) is fgb-I-continuous if and only if the inverse image of each
fuzzy open set of (Y ,σ) is fgb-I-open set of (X ,τ, I).

Proof. Suppose B is a f -open set of Y . Then 1−B is f -closed in Y . Since f : X → Y is fgb-I-
continuous f −1(1−B) = 1− f −1(B) is fgb-I-closed set of X . Hence f −1(B) is a fgb-I-open set
of X .

Conversely, let A be a fuzzy closed set in Y . Then 1− A is f -open in Y . By hypothesis, inverse
image of 1− A in Y is a fgb-I-open set in X . Thus f −1(1− A)= 1− f −1(A) is a fgb-I-open set in
X . Therefore f −1(A) is a fgb-I-closed set in X . Hence f is fgb-I-continuous.

Theorem 4.2. If f : (X ,τ, I)→ (Y ,σ) is fgb-I-continuous then

(a) for each fuzzy point xp of X and each A ∈Y such that f (xp)q A, there exists a fgb-I-open
set A of X such that xp ∈ B and f (B)≤ A.
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(b) for each fuzzy point xp of X and each A ∈Y such that f (xp)q A, there exists a fgb-I-open
set B of X such that xp qB and f (B)≤ A.

Proof. (a) Let xp be a fuzzy point of X . Then f (xp) be a fuzzy point in Y . Also, let A ∈Y be a
fgb-open set such that f (xp)qA. Take B = f −1(A). Since f : X → Y is fgb-I-continuous, B is a
fgb-I-open set of X and xp ∈ B, it follows that f (B)= f ( f −1(A))≤ A.

(b) Let xp be a fuzzy point of X and A ∈ Y be such that f (xp)q A. Take B = f −1(A). Since
f : X → Y is fgb-I-continuous and there exists a fgb-I-open set B of X such that xp qB and
f (B)= f ( f −1(A))≤ A.

Theorem 4.3. Every fuzzy-I-continuous function is fgb-I-continuous function.

Proof. Suppose f : (X ,τ, I)→ (Y ,σ) is a fuzzy-I-continuous function. Assume A is a fuzzy open
set in Y . Since f is fuzzy-I-continuous, f −1(A) is fuzzy I-open in X . Therefore, by Theorem 3.2,
f −1(A) is a fgb-I-open set in X . Thus f is fgb-I-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.1. Let X =Y = {a,b} and the fuzzy sets A and B be defined as follows:

A(a)= 0.9, A(b)= 0.8, B(a)= 0.3, B(b)= 0.4.

Let τ = {0,1, A} and σ = {0,1,B} be the topologies on X and Y respectively and I = {0} be the
fuzzy ideal on X .

Let f : X →Y be the identity function. Then f is fgb-I-continuous but not fuzzy-I-continuous.

Definition 4.2. A function f : (X ,τ, I) → (Y ,σ, I) is said to be fuzzy gb-I-irresolute (briefly
fgb-I-irresolute), if f −1(A) is fgb-I-closed set in (X ,τ, I), for every fgb-I-closed set A in (Y ,σ, I).

Theorem 4.4. A function f : (X ,τ, I)→ (Y ,σ, I) is fgb-I-irresolute if and only if the inverse image
of every fgb-I-open set in Y is fgb-I-open set in X .

Proof. Let A be a fgb-I-open set in Y . Then 1− A is fgb-I-closed in Y . Since f : X → Y is
fgb-I-irresolute, f −1(1− A)= 1− f −1(A) is a fgb-I-closed set in X . Thus f −1(A) is a fgb-I-open
set in X .

Conversely, assume that A is a fgb-I-closed set in Y . Then 1−A is fgb-I-open in Y . By hypothesis,
f −1(1− A)= 1− f −1(A) is a fgb-I-open set in X . Thus f −1(A) is a fgb-I-closed set in X . Hence f
is fgb-I-irresolute.

Theorem 4.5. Every fgb-I-irresolute function is fgb-I-continuous.

Proof. Suppose f : (X ,τI) → (Y ,σ, I) is fgb-I-irresolute and let F be a fuzzy I-closed set in
Y . Then F is a fgb-I-closed set in Y , by Theorem 3.2. Since f is fgb-I-irresolute, f −1(F) is a
fgb-I-closed set in X . Thus f is fgb-I-continuous.
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The converse of the above theorem need not be true as seen from the following example.

Example 4.2. Let X =Y = {a,b}, and the fuzzy sets A, B, C, D and E be defined as follows:

A(a)= 0.9, A(b)= 0.9, B(a)= 0.8, B(b)= 0.5, C(a)= 0.6, C(b)= 0.5,

D(a)= 0.5, D(b)= 0.2, E(a)= 0.5, E(b)= 0.6.

Let τ= {0,1, A,B,C,D} and σ= {0,1,C} be the topologies on X and Y respectively and I = {0}
be the fuzzy ideal on X and Y respectively. Define f : X →Y by f (a)= c, f (b)= a and f (c)= b.
Then f is fgb-I-continuous but not fgb-I-irresolute.

Theorem 4.6. Let f : (X ,τ, I)→ (Y ,σ, I) and g : (Y ,σ, I)→ (Z,γ, I) be two functions. Then

(1) g ◦ f : (X ,τ, I) → (Z,γ, I) is fgb-I-continuous, if f is fgb-I-continuous and g is f -I-
continuous.

(2) g ◦ f : (X ,τ, I)→ (Z,γ, I) is fgb-I-irresolute, if f is fgb-I-irresolute and g is fgb-I-irresolute
function.

(3) g◦ f : (X ,τ, I)→ (Z,γ, I) is fgb-Icontinuous if, f is fgb-I-irresolute and g is fgb-I-continuous.

Proof. (1) Suppose B is a fuzzy I-closed set of Z. Since g : (Y ,σ, I) → (Z,γ, I) is fuzzy-I-
continuous, g−1(B) is a fuzzy I-closed set of Y . Also since f : (X ,τ, I) → (Y ,σI) is fgb-I-
continuous and g−1(B) is a fuzzy I-closed set of Y ; then from Definition 4.1, f −1(g−1(B)) =
(g◦, f )−1(B) is a fgb-I-closed set in X . Thus g ◦ f : (X ,τ, I)→ (Z,γ, I) is fgb-I-continuous.

(2) Let g : (Y ,σ, I)→ (Z,γI) be fgb-I-irresolute and B be a fgb-I-closed subset of Z. Since g is fgb-
I-irresolute, g−1(B) is a fgb-I-closed set of Y . Also since f : (X ,τ, I)→ (Y ,σ, I) is fgb-I-irresolute,
we have f −1(g−1(B)) = (g ◦ f )−1(B) is a fgb-I-closed set X . Hence g ◦ f : (X ,τ, I) → (Z,γ, I) is
fgb-I-irresolute.

(3) Let B be fuzzy b-I-closed subset of Z. Since g : (Y ,σ, I)→ (Z,γ, I) is fgb-I-continuous, g−1(B)
is a fgb-I-closed set of Y . Also f : (X ,τ, I)→ (Y ,σI) is fgb-I-irresolute, g−1(B) is fgb-I-closed in
X . Therefore f −(g−1(B))= (g ◦ f )−1(B) is a fgb-I-closed set of X . Hence g ◦ f : (X ,τ, I)→ (Z,γ, I)
is fgb-I-continuous.

Definition 4.3. A fuzzy ideal topological space (X ,τ, I) is fuzzy gb-I-T1/2-space (briefly fgb-I-
T1/2-space) if every fgb-I-closed set in X is fuzzy b-I-closed in X .

Theorem 4.7. A fuzzy ideal topological space (X ,τ, I) is fgb-I-T1/2-space if and only if every
fuzzy set in (X ,τ, I) is both fuzzy b-I-open and fgb-I-open.

Proof. Suppose X is fgb-I-T1/2-space and A is a fgb-I-open set in X . Then 1−A is a fgb-I-closed
set in X . Since X is fgb-I-T1/2-space, every fgb-I-closed set in X is fuzzy b-I-closed in X .

Therefore 1− A is a fb-I-closed set and hence A is a fb-I-open set in X .

Conversely, assume that A is a fgb-I-closed set in X . Then 1− A is a fgb-I-open set. By
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hypothesis, 1− A is fuzzy b-I-open. Therefore A is fuzzy b-I-closed. Thus every fgb-I-closed set
in X is fuzzy b-I-closed. Hence X is fgb-I-T1/2-space.

Definition 4.4. A function f : (X ,τ, I)→ (Y ,σ) is said to be fb∗-I-continuous if f −1(A) is fuzzy
b-I-closed set in (X ,τ, I), for every fuzzy b-closed set of Y .

Theorem 4.8. If f : (X ,τ, I)→ (Y ,σ) is fb∗-I-continuous and g : (Y ,σ)→ (Z,γ) is fgb-continuous
then g ◦ f : (X ,τ, I)→ (Z,σ) is fb∗-I-continuous if Y is fgb-T1/2-space.

Proof. Let B be a fuzzy b-closed set of Z. Since g : (Y ,σ)→ (Z,γ) is fgb-continuous, g−1(B) is a
fgb-closed set of Y . Since Y is fgb-T1/2-space, every fgb-closed set is fuzzy b-closed in Y .

Thus g−1(B) is a fuzzy b-closed set of Y . Also since f : (X ,τ, I) → (Y ,σ) is fb∗-I-continuous,
f −1(g−1(B)) is a fuzzy b-I-closed set in X . Thus f −1(g−1(B))= (g ◦ f )1(B) is a fuzzy b-I-closed
set X . Hence g ◦ f : (X ,τ, I)→ (Z,γ) is fb∗-I-continuous.

Theorem 4.9. If (X ,τ, I) is fgb-I-T1/2-space and f : (X ,τ, I)→ (Y ,σ) is fgb-I-continuous, then f
is fb-I-continuous.

Proof. Let B be a fuzzy closed set in Y . Since f : (X ,τ, I) → (Y ,σ) is fgb-I-continuous, f −1(B)
is a fgb-I-closed set in X . Also X is fgb-I-T1/2-space, every fgb-I-closed set is fuzzy b-I-closed.
Thus f −1(B) is a fuzzy b-I-closed set in X . Hence f : (X ,τ, I)→ (Y ,σ) is fb-I-continuous.

Definition 4.5. A function f : (X ,τ, I)→ (Y ,σ) is called fb∗-I-closed if f (A) is fuzzy b-closed in
Y for every fuzzy b-I-closed set A in X .

Theorem 4.10. Let f : (X ,τ, I) → (Y ,σ, I) be onto, fgb-I-irresolute and fb∗-I-closed. If X is
fgb-I-T1/2-space, then Y is fgb-I-T1/2-space.

Proof. Let A be a fgb-I-closed set in Y . Since f : (X ,τ, I)→ (Y ,σ, I) is fgb-I-irresolute, f −1(A) is
a fgb-I-closed set in X . Also since X is fgb-I-T1/2-space, f −1(A) is fuzzy b-I-closed set in X .

Again f : (X ,τ, I)→ (Y ,σ, I) is fb∗-I-closed, f ( f −1(A)) is fuzzy b-I-closed in Y . Since f is onto,
f ( f −1(A))= A. Thus A is fuzzy b-I-closed in Y . Hence Y is fgb-I-T1/2-space.

Definition 4.6. A function f : (X ,τ, I)→ (Y ,σ) is said to be fuzzy gb-I-open (briefly fgb-I-open)
if the image of every fuzzy I-open set in X , is fgb-open set in Y .

Definition 4.7. A function f : (X ,τ, I) → (Y ,σ) is said to be fuzzy gb-I-closed (briefly fgb-I-
closed) if the image of every fuzzy-I-closed set in X is fgb-closed set in Y .

Definition 4.8. A function f : (X ,τ, I) → (Y ,σ) is said to be fuzzy gb∗-I-open (briefly fgb∗-I-
open) if the image of every fgb-I-open set in X , is fgb-open set in Y .
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Definition 4.9. A function f : (X ,τ, I) → (Y ,σ) is said to be fuzzy gb∗-I-closed (briefly fgb∗-I-
closed) if the image every fgb-I-closed set in X is fgb-closed set in Y .

Remark 4.1. Every fgb∗-I-open function is fgb-I-open.

The converse of the above statement is not true as seen from the following example.

Example 4.3. Let X = {a,b}, Y = {x, y} and the fuzzy sets A, B are defined as follows:

A(a)= 0.9, A(b)= 0.7, B(x)= 0.5, B(y)= 0.4.

Let τ= {0,1, A}, σ= {0,1,B} be the topologies on X and Y respectively and I = {0} be the fuzzy
ideal on X . Then the function f : (X ,τ, I)→ (Y ,σ) defined by f (a)= x and f (b)= y is fgb-I-open
but not fgb∗-I-open.

Theorem 4.11. A function f : (X ,τ, I)→ (Y ,σ) is fgb-I-closed if and only if for each fuzzy set A
of Y and for each fuzzy I-open set B such that f −1(A)≤ B, there is a fgb-open set C of Y such
that A ≤ C and f −1(C)≤ B.

Proof. Suppose that f is fgb-I-closed. Let A be a fuzzy set of Y , and B be a fuzzy I-open set
of X , such that f −1(A) ≤ B. Then C = 1− f (1−B) is a fgb-open set in Y such that A ≤ C and
f −1(C)≤ B.

Conversely, suppose that F is a fuzzy I-closed set of X . Then f −1(1− f (F)) ≤ 1−F , and 1−F
is a fuzzy I-open set. By hypothesis, there is a fgb-open set C of Y such that 1− f (F)≤ C and
f −1(C)≤ 1−F . Therefore F ≤ 1− f −1(C). Hence 1−C ≤ f (F)≤ f (1− f −1(F))≤ 1−C, which implies
f (F)= 1−C. Since 1−C is a fgb-closed set, f (F) is a fgb-closed set and thus f is fgb-I-closed.

Theorem 4.12. If f : (X ,τ, I)→ (Y ,σ) is bijective, fuzzy-I-continuous and fgb-I-closed and A is
fgb-I-closed set in (X ,τ, I), then f (A) is a fgb-closed set in (Y ,σ).

Proof. Let f (A) ≤ B, B is a fuzzy open set in Y . Since f is fuzzy-I-continuous, f −1(B) is an
fuzzy I-open set containing A. Also A is fgb-I-closed set, we have bCl(A) ≤ f −1(B). Since f
is fgb-I-closed, f (bCl(A)) is a fgb-closed set contained in the fuzzy open set B. It follows that,
bCl( f (bCl(A)))≤ B and so bCl( f (A))≤ B. Thus f (A) is a fgb-closed set in Y .

Theorem 4.13. If f : (X ,τ, I)→ (Y ,σ) is fgb-I-closed and g : (Y ,σ)→ (Z,γ) is fgb∗-closed, then
g ◦ f is fgb∗-I-closed.

Proof. Let A be a fuzzy I-closed set in X . Then f (A) is fgb-closed in Y as f is fgb-I-closed.

Since g : (Y ,σ) → (Z,γ) is fgb∗-closed, g( f (A)) is fgb-closed in Z. Thus g( f (A)) = (g ◦ f )(A) is
fgb-closed in Z. Therefore g ◦ f is fgb∗-I-closed.

Theorem 4.14. Let f : (X ,τ, I) → (Y ,σ, I), g : (Y ,σ, I) → (Z,γ, I) be two functions such that
g ◦ f : (X ,τ, I)→ (Z,γ, I) is fgb∗-I-closed.
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(i) If f is fgb-I-continuous and surjective, then g is fgb-I-closed.

(ii) If g is fgb-I-irresolute and injective, then f is fgb∗-I-closed.

Proof. (i) Let F be a fuzzy I-closed set of Y . Then f −1(F) is fgb-I-closed in X as f is fgb-I-
continuous. Since g ◦ f is fgb∗-I-closed, (g ◦ f )( f −1(F))= g(F) is a fgb-I-closed set in Z.

Hence g : (Y ,τ, I)→ (Z,γ, I) is fgb-I-closed.

(ii) Let F be a fgb-I-closed set in X . Then (g ◦ f )(F) is a fgb-I-closed set in Z. Since g is fgb-I-
irresolute and injective, g−1(g ◦ f )(F)= f (F) is fgb-I-closed in Y . Hence f is fgb∗-I-closed.
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