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Exact Solutions for Generalized Klein-Gordon Equation

Libo Yang, Daoming Wang, and Fengxian An

Abstract. The Modified
� G

G′
�

-expansion method is used to solve the Generalized
Klein-Gordon equation, by means of the method, three types of exact traveling
wave solutions are obtained, including the hyperbolic functions, trigonometric
and rational function solutions. In this method, G is general solution of a second
order linear ODE, so the method is direct, simple; more importantly, this method
can be used in many other nonlinear evolution equations to obtain traveling wave
solutions. This will have a good sense to promote the broad application of Klein-
Gordon equation.

1. Introduction

The progress of physics is heavily dependent on non-linear mathematics and
methods for solving nonlinear equations [1]. In recent years, searching for explicit
solutions of nonlinear evolution equations by using various different methods is
the main goal for many researchers, and several powerful methods have been
proposed to construct exact solutions for nonlinear partial differential equations,
such as inverse scattering method [2], the Hirota’s bilinear operators [3],
homogeneous balance method [4], the hyperbolic tanh-function expansion and
its various extension [5], Jacobian elliptic functions expansion method [6–8, 11],
the F-expansion method [9, 10],

� G
G′
�

-expansion method [12–14] and so on. At
present, we found that many important nonlinear evolution equations have solitary
wave solutions, such as Sin-Gordon equation, KdV equation, Schrodinger equation
and so on. Therefore, the search for new forms of exact solutions is still a very
meaningful work.

In this paper, we consider the Generalized Klein-Gordon equation in the form

ut t − ux x + β1u+ β3u3 = 0, (1)

where β1 and β3 are constants.
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2. Description of the
� G

G′
�

-expansion method

Consider a given nonlinear evolution equation, with variables x and t ,

P(u, ut , ux , ut t , ut x , ux x , . . .) = 0, (2)

where u = u(x , t) is an unknown function, P(u, ut , ux , ut t , ut x , ux x , . . .) is a
polynomial with the variables u , ux , ut , . . . .

Step 1. We make the gauge transformation

u(x , t) = u(ξ), ξ= x − kt, (3)

where k is a nonzero constant to be determined later. Substituting eq. (3) into
eq. (2) yields a complex ordinary differential equation of u(ξ) , namely

O(u, u′, u′′, . . .) = 0, (4)

where u′ =
du

dξ
, u′′ =

d2u

dξ2 , O(u, u′, u′′, . . .) is a polynomial with the variables u

and u′ .

Step 2. We amuse the equation (4) has the solutions in the following form:

u(ξ) = a0 +
n∑

i=1

ai

�
G′

G

�i

, (5)

where ai (i = 0, 1, 2, . . . , n) are constants to be determined later, the positive
integer n can be determined by considering the homogeneous balance between
governing nonlinear terms and the highest order derivatives of u in eq. (4) where
G = G(ξ) satisfies the second order LODE

G′′ +λG′ +µG = 0, (6)

where G′ =
dG

dξ
, G′′ =

d2G

dξ2 , and λ , µ are constants to be determined later

solutions of eq. (6) as following:

Case 1. When λ2 − 4µ > 0, we have

G′

G
=−λ

2
+

p
λ2 − 4µ

2
tanh

�p
λ2 − 4µ

2
ξ+ ξ0

�
, (7)

where tanhξ0 =
C2

C1
,

����
C2

C1

����> 1.

G′

G
=−λ

2
+

p
λ2 − 4µ

2
coth

�p
λ2 − 4µ

2
ξ+ ξ0

�
, (8)

where cothξ0 =
C2

C1
,

����
C2

C1

����< 1.

Case 2. When λ2 − 4µ < 0,we have

G′

G
=−λ

2
+

p
4µ−λ2

2
cot
�p

4µ−λ2

2
ξ+ ξ0

�
, (9)
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where tanξ0 =
C2

C1
.

Case 3. When λ2 − 4µ= 0, we have

G′

G
=−λ

2
+

C2

C1 + C2ξ
, (10)

where C1 and C2 are constants.

Step 3. Substituting (5) into eq. (4), the left-hand side of eq. (4) is converted
into another polynomial in

� G
G′
�

, collecting all terms with the same order of
� G

G′
�

together, setting the coefficients of
� G′

G

�i , (i = 1, 2, . . . , n) to zero, yields a set of
nonlinear algebraic equations (NAEs) in a0 , ai , (i = 1, 2, . . . , n) , k , λ , µ , solving
the NAEs, we obtain the solution of NAEs.

Step 4. Substituting these results into (5), we can obtain several exact solutions of
eq. (2).

3. The Exact Solutions to Generalized Klein-Gordon Equation

We introduce a gauge transformation for eq. (1), set

u(x , t) = u(ξ), ξ= x − kt, (11)

where k is a nonzero constant to be determined later. Substituting (11) into
eq. (1), we have

(k2 + 1)u′′ + β1u+ β3u3 = 0. (12)

Obviously, the balance constant n = 1. Therefore, we assume eq. (1) has the
following solutions

u(ξ) = a0 + a1

�
G′

G

�
. (13)

Substituting (13) and (6) into eq. (12), we have a polynomial equation in
� G

G′
�

.

Setting the coefficients of
� G′

G

�i , (i = 1, 2, . . . , n) to zero, yields a set of nonlinear
algebraic equations (NAEs) in a0 , ai , (i = 1, 2, . . . , n) , k , λ , µ , solving the NAEs
by mathematic. we could determine the following solutions:

Case 1.

a0 = 0, a1 =

È
−2(k2 + 1)

β3
, µ=− β1

2(k2 + 1)
, λ= 0 . (14)

Substituting (14) into (13), we have

u1 =

È
−2(k2 + 1)

β3

G′

G
(ξ). (15)

Using (7)-(10), we have the following solutions of eq. (1).
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(1) When λ2 − 4µ > 0, we have

u111 =

È
−β1

β3
tanh

�r
β1

2(k2 + 1)
ξ+ ξ0

�
, (16)

u112 =

È
−β1

β3
coth

�r
β1

2(k2 + 1)
ξ+ ξ0

�
. (17)

Figure 1. Digital simulation ofu111

(2) When λ2 − 4µ < 0, we have

u12 =

È
β1

β3
cot
�r −β1

2(k2 + 1)
ξ+ ξ0

�
. (18)

(3) When λ2 − 4µ= 0, we have

u13 =

È
−2(k2 + 1)

β3

C2

C1 + C2ξ
. (19)

Case 2.

a0 = 0, a1 =−
È
−2(k2 + 1)

β3
, µ=− β1

2(k2 + 1)
, λ= 0 . (20)

Substituting (20) into (13), we have

u2 =−
È
−2(k2 + 1)

β3

G′

G
(ξ) . (21)

Using (7)-(10), we have the following solutions of eq. (1).

(1) When λ2 − 4µ > 0, we have

u211 =

È
β1

β3
tanh

�r
β1

2(k2 + 1)
ξ+ ξ0

�
, (22)
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u212 =

È
β1

β3
coth

�r
β1

2(k2 + 1)
ξ+ ξ0

�
. (23)

(2) When λ2 − 4µ < 0, we have

u22 =−
È
β1

β3
cot
�r −β1

2(k2 + 1)
ξ+ ξ0

�
. (24)

(3) When λ2 − 4µ= 0, we have

u23 =−
È
−2(k2 + 1)

β3

C2

C1 + C2ξ
. (25)

Case 3.

a0 =

È
−(k2 + 1)λ2

2β3
, a1 =

1

λ
a0 , µ=

λ2

4
− β1

2(k2 + 1)
. (26)

Substituting (26) into (13), we have

u3 =

È
−(k2 + 1)λ2

2β3
+

1

λ

È
−2(k2 + 1)λ2

β3

G′

G
(ξ) . (27)

Using (7)-(10), we have the following solutions of eq. (1).

(1) When λ2 − 4µ > 0, we have

u311 =

È
(k2 + 1)(−λ2 + 4µ)

2β3
tanh

�p
λ2 − 4µ

2
ξ+ ξ0

�
, (28)

u312 =

È
(k2 + 1)(−λ2 + 4µ)

2β3
coth

�p
λ2 − 4µ

2
ξ+ ξ0

�
. (29)

Figure 2. Digital simulation of u312
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(2) When λ2 − 4µ < 0, we have

u32 =

È
(k2 + 1)(λ2 − 4µ)

2β3
cot
�p

4µ−λ2

2
ξ+ ξ0

�
. (30)

Figure 3. Digital simulation of u32

(3) When λ2 − 4µ= 0, we have

u33 =−
È
−2(k2 + 1)

β3

C2

C1 + C2ξ
. (31)

Case 4.

a0 =−
È
(k2 + 1)λ2

2β3
, a1 =−

1

λ
a0 , µ=

λ2

4
− β1

2(k2 + 1)
. (32)

Substituting (32) into (13), we have

u4 =−
È
−(k2 + 1)λ2

2β3
− 1

λ

È
−2(k2 + 1)λ2

β3

G′

G
(ξ) . (33)

Using (7)-(10), we have the following solutions of eq. (1).

(1) When λ2 − 4µ > 0, we have

u411 =−
È
(k2+1)(−λ2 + 4µ)

2β3
tanh

�p
λ2−4µ

2
ξ+ ξ0

�
− 2

È
−(k2+1)λ2

2β3
, (34)

u412 =

È
(k2 + 1)(−λ2 + 4µ)

2β3
coth

�p
λ2 − 4µ

2
ξ+ ξ0

�
−
È
−2(k2 + 1)λ2

β3
. (35)

(2) When λ2 − 4µ < 0, we have

u42 =

È
(k2 + 1)(λ2 − 4µ)

2β3
cot
�p

4µ−λ2

2
ξ+ ξ0

�
−
È
−2(k2 + 1)λ2

β3
. (36)
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Figure 4. Digital simulation of u42

(3) When λ2 − 4µ= 0, we have

u43 =−
È
−2(k2 + 1)

β3

C2

C1 + C2ξ
−
È
−2(k2 + 1)λ2

β3
. (37)

4. Conclusion

By using this modified
� G

G′
�

-expansion method we obtained several exact
solutions of Generalized Klein-Gordon equation, including the hyperbolic
functions, trigonometric and rational function solutions. And we carry out
numerical simulations for some solutions by math software. This method is concise
and easy understand. Besides, the method can be used to other nonlinear evolution
equations.
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