Electron Acceleration by a Radially Polarized Laser Pulse in an Azimuthal Magnetic Field

Ravindra Singh, Shiv Shankar Gaur


Laser acceleration by radially polarized laser beams takes advantage of the strong longitudinal electric field component at the beam centre. When the laser field intensity is sufficiently high, it can push electrons initially at rest at the beam waist outside the Rayleigh zone and accelerate them to relativistic velocities along the laser axis. To obtain the best results in terms of electron dynamics and energy estimation, we suggest that the electrons could be accelerated to a very high energy level by the radially polarized laser pulse. The additionally used azimuthal magnetic field helps to retain the electron energy during acceleration. In this paper, we describe the electron energy scales with laser power and we explain how the laser beam parameter and the magnetic field both can be optimized for maximal acceleration.


Laser acceleration; Radially polarized laser beam

Full Text:



M. Y. Yu, W. Yu, Z. Y. Chen, J. Zhang, Y. Yin, L. H. Cao, P. X. Lu and Z.Z. Xu, Phys. Plasmas 10, 2468 (2003).

K.P. Singh, Phys. Plasmas 11, 1164 (2004).

C. Gahn, G. Tsakiris, A. Pukhov et al., Phys. Rev. Lett 83, 4772 (1999).

G. D. Tsakiris, C. Gahn and V. K. Tripathi, Phys. Plasmas 7, 3017 (2000).

M. G. Haines, Phys. Rev. Lett 87, 135005 (2001).

K.P. Singh, Phys. Plasmas 11, 3992 – 3996 (2004).

F. V. Hartemann, High-Field Electrodynamics, CRC Press (2001).

K.P. Singh, J. Opt. Soc. Am. B 23, (8) (August 2006), 1650.

X. He, R. X. Li, B. Shuai, X. C. Ge and Z. Z. Xu, Phys. Plasmas 12, 073101 (2005).

A. Bahari and V. D. Taranukhin, Quantum Electron. 34, 129 (2004).

F. He, W. Yu , P. Lu, H. Xu, L. Qian, B. Shen, X. Yuan, R. Li and Z. Xu, Phys. Rev. E 68, 46407 (2003).

K. P. Singh, J. Appl. Phys. 100, 044907 (2006).

F. V. Hartemann, S. N. Fochs, G. P. L. Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen and A. K. Kerman, Phys. Rev. E 51, 4833 (1995).

G. V. Stupakov and M. S. Zolotorev, Phys. Rev. Lett. 86, 5274 (2001).

P. X. Wang, Y. H. Ho, X. Q. Yuan, Q. Kong, N. Cao, L. Shao, A. M. Sessler, E. Esarey, E. Moshkovich, Y. Nishida, N. Yugami, H. Ito, J. X. Wang and S. Scheid, J. Appl. Phys. 91, 856 (2002).

G. Malka, E. Lefebvre and J. L. Miquel, Phys. Rev. Lett. 78, 3314 (1997).

H.S. Ghotra and N. Kan, Phys. Plasmas 23, 053115 (2016).

DOI: http://dx.doi.org/10.26713%2Fjamcnp.v5i2.810


  • There are currently no refbacks.

RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088