Excitation of Electromagnetic Surface Waves at A Conductor-Plasma Interface by An Electron Beam

Ved Prakash, Ruby Gupta, . Vijayshri, Suresh C. Sharma

Abstract


Electromagnetic surface waves are driven to instability on a conductor plasma interface via Cerenkov and fast cyclotron interaction by an electron beam. A dispersion relation and the growth rate of the instability for this process has been derived. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the surface plasma waves. The plasma and beam responses are obtained using fluid treatment and the growth rate is obtained using the first-order perturbation theory. The growth rate increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. In addition, the real frequency of the unstable wave increases with the beam energy and scales as almost one half power of the beam energy. The effect of the plasma parameters and the strength of the external magnetic field on unstable frequencies and growth rates are analyzed.

Keywords


Surface plasma wave; Electron beam; Instability; Dispersion relation; Growth rate

Full Text:

PDF

References


B. Buti, Advances in Space Plasma Physics, World Scientific, Singapore (1985).

A.W. Trivelpice and R.W. Gould, J. Appl. Phys. 30 (1959), 1784.

D.J. Cooperberg, Phys. Plasmas 5 (1998), 853.

K.L. Kartwright, P.J. Christenson, J.P. Verboncoeur and C.K. Birdsall, Phys. Plasmas 7 (2000), 1740.

C. Denton, J.L. Gervasoni, R.O. Barrachina and N.R. Arista, Phys. Rev. A 57 (1998), 4498.

C.S. Liu and V.K. Tripathi, IEEE J. of Quant. Electron. 34 (1998), 1503.

S.I. Khankina, V.M. Yakovenko and I.V. Yakovenko, Telecommun. Radio Eng. (Engl. Transl.) 59 (2003), 140.

V. Prakash and S.C. Sharma, Phys.Plasmas 16 (2009), 0937031.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 17 (2010), 122105.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 17 (2010), 112701.

R. Gupta, S.C. Sharma and V. Prakash, Phys. Plasmas 18 (2011), 053704.

I.O. Girka, V.O. Girka and I.V. Pavlenko, Progress in Electromagnetics Research M 21 (2011), 267,.

E. Kretschmann, Z. Phys. 241 (1971), 313.

C.S. Liu and V.K. Tripathi, IEEE Transections of Plasma Science 28 (2) (2000), 353.

N.C. Chen, W.C. Lien, C.R. Liu, Y.L. Huang, Y.R. Liu, C. Chou, S.Y. Chang and C.W. Ho, J. Appl. Phy. 109 (2011), 0431041.

V.N. Anisimov, V.Y. Baranov, O.N. Derkach, A.M. Dykhne, D.D. Malyuta, V.D. Pismennyi, B.P Rysev and A.Y. Sebrant, IEEE J. Quantum Electron 24 (1988), 675.

J. Parashar, H.D. Pandey and V.K. Tripathi, J. Plasma Phys. 59 (1998), 97.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, Francs, D.G. Colas, J.C. Weeber, A. Dereux, G.P. Wiederrecht and L. Novotny, Optics Letters 32 (2007), 2535.

A. Macchi, F. Cornolti and F. Pegoraro, Phys. Plasmas 9 (2002), 1704.

B. Shokri and B. Jazi, Phys. Plasmas 10(12) (2003), 4622.

N. Borisov and E. Neilsen, Annales Geophysicae 23 (2005), 1249.

G. Kumar and V.K. Tripathi, Phys. Plasmas 15 (2008), 073504.

C. S. Liu and V. K. Tripathi, Electromagnetic Theory for Telecommunications, Cambridge University Press, Delhi (2007).




DOI: http://dx.doi.org/10.26713%2Fjamcnp.v3i1.384

Refbacks

  • There are currently no refbacks.




RGN Journal Management System is fully compatible with all dialects of \(\rm\LaTeX\) and \(\sf MathML\)

  eISSN 2349-2716; pISSN 2349-6088